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Estimation of the time-integrated activity (TIA) for dosimetry from
imaging at a single time point (STP) facilitates the clinical translation of
dosimetry-guided radiopharmaceutical therapy. However, the accu-
racy of the STP methods for TIA estimation varies on the basis of
time-point selection. We constructed patient data–driven regression
models to reduce the sensitivity to time-point selection and to com-
pare these newmodels with commonly used STPmethods.Methods:
SPECT/CT performed at time period (TP) 1 (3–5h), TP2 (days 1–2),
TP3 (days 3–5), and TP4 (days 6–8) after cycle 1 of [177Lu]Lu-DOTA-
TATE therapy involved 27 patients with 100 segmented tumors and
54 kidneys. Influenced by the previous physics-based STP models of
Madsen et al. and H€anscheid et al., we constructed an STP prediction
expression, TIA 5 A(t) 3 g(t), in a SPECT data–driven way (model 1),
in which A(t) is the observed activity at imaging time t, and the curve,
g(t), is estimated with a nonparametric generalized additive model by
minimizing the normalized mean square error relative to the TIA
derived from 4-time-point SPECT (reference TIA). Furthermore, we fit
a generalized additive model that incorporates baseline biomarkers as
auxiliary data in addition to the single activity measurement (model 2).
Leave-one-out cross validation was performed to evaluate STP mod-
els using mean absolute error (MAE) and mean square error between
the predicted and reference TIA. Results: At days 3–5, all evaluated
STP methods performed very well, with an MAE of less than 7%
(between-patient SD of ,10%) for both kidneys and tumors. At other
TPs, the Madsen method and data-driven models 1 and 2 performed
reasonably well (MAEs , 17% for kidneys and , 32% for tumors),
whereas the error with the H€anscheid method was substantially
higher. The proof of concept of adding baseline biomarkers to the pre-
diction model was demonstrated and showed a moderate enhance-
ment at TP1, especially for estimating kidney TIA (MAE 6 SD from
15.6% 6 1.3% to 11.8% 6 1.0%). Evaluations on 500 virtual patients
using clinically relevant time–activity simulations showed a similar per-
formance. Conclusion: The performance of the Madsen method and
proposed data-driven models is less sensitive to TP selection than is
the H€anscheid method. At the earliest TP, which is the most practical,
the model incorporating baseline biomarkers outperforms other meth-
ods that rely only on the single activity measurement.
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For neuroendocrine tumors, [177Lu]Lu-DOTATATE peptide
receptor radionuclide therapy (PRRT) is typically administered
over the course of 4 cycles at 7.4 GBq/cycle (1). In addition to the
therapeutic b-particles, 177Lu emits imageable g-rays, which pro-
vide a unique opportunity to perform imaging-based dosimetry
after each cycle to plan subsequent cycles. Despite this potential,
fixed-activity protocols without any dosimetry-guided adjustments
remain the standard of care in [177Lu]Lu-DOTATATE PRRT and
some other radiopharmaceutical therapies.
Dosimetry-guided treatment planning is rarely used in routine

radiopharmaceutical therapy clinical practice, lagging external-
beam radiotherapy, for which substantial time and resources are
used to generate individualized plans. In radiopharmaceutical ther-
apy, pharmacokinetics can vary considerably between patients;
hence, multiple-time-point imaging is desirable to determine the
time-integrated activity (TIA) for dosimetry. Imaging typically
takes place over a few days to 1 wk, depending on the effective
half-life (Teff) of the agent, requiring multiple return visits that can
be burdensome and costly. Furthermore, SPECT data acquisition
is relatively time-consuming, especially if multiple bed positions
are necessary. With the goal of simplifying dosimetry, Madsen et al.
(2) and H€anscheid et al. (3) derived equations for estimating TIA
from an activity measurement performed at a single time point
(STP). Their methods are based on the principle that the TIA can be
computed exactly from a single activity measurement, A(t), at time t,
assuming monoexponential clearance, as TIA5AðtÞ3Teff 32t=Teff =
lnð2Þ. Because the Teff is typically unknown for a new patient, the
method of H€anscheid et al. (3) assumes that t=Teff �1, simplifying
to the closed form, TIA5AðtÞ32t=lnð2Þ. This approximation pre-
sumes that the imaging time point is near the unknown Teff. The
method of Madsen et al. (2) does not require an assumption about
the time point but instead requires prior knowledge of the population
average Teff, Teff,p, which is then used directly in the equation
TIA5AðtÞ3Teff ;p32

t
Teff ;p=lnð2Þ. A challenge with STP estimation

of TIA is the selection of the optimal timing of the measurement,
which varies depending on the pharmacokinetics associated with
each therapy and tissue type. For [177Lu]Lu-DOTATATE therapy,
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previous studies (3–5) reported the optimal sampling time to be
about 3 d for kidneys and 4–5 d for tumors because of the longer Teff
associated with the latter. However, in practice, imaging close to that
time may not always be feasible because of patient and clinic sched-
ules. Earlier imaging, ideally on the same day as therapy, is most
suitable when considering patient convenience and clinic logistics.
Our study is motivated by the value of STP methods that are

less sensitive to time-point selection. Having access to retrospec-
tive multiple-time-point SPECT/CT imaging data after [177Lu]Lu-
DOTATATE PRRT in a cohort of 27 patients (54 kidneys, 100
tumors), we had a goal of constructing and evaluating data-driven
regression models for estimating TIA from a single activity mea-
surement. We also strove to develop a model incorporating addi-
tional clinically relevant baseline data ([68Ga]Ga-DOTATATE
PET SUV and laboratory biomarkers; Fig. 1). Such imaging and
nonimaging biomarkers have been investigated as predictive and
prognostic factors in 177Lu therapies (6,7), but to our knowledge,
they have not been investigated in the context of reduced-time-
point imaging. Using the TIA calculated from multiple-time-point
SPECT/CT as the reference standard, we evaluated the perfor-
mance of our proposed regression models and compared this per-
formance with that of previous STP methods.

MATERIALS AND METHODS

Data-Driven STP Model Derivation (Model 1)
If we assume biexponential behavior for the kinetics of the radio-

pharmaceutical in the tissue of interest, the activity at time t, A(t), can
be expressed as

AðtÞ5A0e
2k1t2A0e

2k2t, Eq. 1

where A0 is the scale parameter, k1 is the effective decay rate, and
k2 is the effective absorption rate. Then the TIA is

TIA5A03
1
k1
2

1
k2

� �
5AðtÞ3 1=k121=k2

e2k1t2e2k2 t
: Eq. 2

Inspired by the STP models discussed previously, we proposed a
group of prediction models with a more generalized functional form:

TIA5AðtÞ3 gðtÞ, Eq. 3

where gðtÞ is a function of measurement time, t. Therefore, the
H€anscheid and Madsen methods are both special cases under this
framework, with gHänscheidðtÞ52t=lnð2Þ and gMadsenðtÞ5Teff ;p3
2t=Teff;p=lnð2Þ. Rather than these parametric functions, we used a

nonparametric generalized additive model (GAM) (8) to estimate the
optimal gðtÞ in a data-driven manner, minimizing the normalized
mean square error (MSE) between the predicted TIA and the refer-
ence TIA, which we consider to be the integral of the time–activity
curve from multiple-time-point imaging. We used normalized least
squares as our objective function rather than ordinary least squares to
avoid overweighting the few patients with very high TIA values.

The GAM is able to fit nonlinear trends with multiple basis functions.
It is entirely data-driven, without any model assumption such as expo-
nential kinetics. Our proposed model is thus a nonparametric smooth
curve, which gives a consistent prediction at any time by directly mini-
mizing the prediction error. The prediction is fitted with a local estima-
tion in a data-driven way, which means the prediction for an individual
is based on other patients with activities measured at similar times.

STP Model Extension: Incorporating Auxiliary Data (Model 2)
We then fit another data-driven model (model 2) that, in addition to

the single activity measurement, can incorporate auxiliary data to
potentially improve TIA prediction (Fig. 1). For simplicity and inter-
pretability, we extend the GAM used in model 1 as

TIA5AðtÞ3 gðtÞ1
Xp

j5 1
gjðXjÞ

n o
, Eq. 4

where Xj (j 5 1, 2,… p) are the candidate variables and gj are the
smooth curves measuring their effects. Candidate variables were
selected a priori as biomarkers that are commonly available and
have the potential to enhance STP prediction, based on biologic
principles or previous reports.

Patient Data
Data were obtained from a cohort of patients with progressive, histolo-

gically proven neuroendocrine tumors treated clinically with fixed-activity
[177Lu]Lu-DOTATATE between August 2018 and December 2021.
These patients volunteered for research SPECT/CT imaging at 4 time
points after the first cycle as part of an ongoing dosimetry study. Internal
review board approval and informed consent were obtained for the retro-
spective analysis described in this paper. The SPECT/CT time–activity
data generation was described previously (9) and is summarized below.
Kidney and Tumor Segmentation. Kidneys were segmented using

deep-learning–based autosegmentation (9) on the CT images of the 68Ga
PET/CT and the 177Lu SPECT/CT and subsequently verified by a radiol-
ogist. Up to 5 index lesions greater than 2 cm3 in volume were manually
segmented by a radiologist on diagnostic-quality baseline CT or MRI
and then transferred to the coregistered PET/CT and SPECT/CT images.
Fine manual adjustment of the contour location was performed, as
needed, if misregistration was evident.

Posttherapy 177Lu Time–Activity Data.
177Lu SPECT/CT imaging was performed at
4 time periods (TPs) on a Siemens Intevo sys-
tem at day 0 (3–5h) for TP1, days 1–2 (23–
51h) for TP2, days 3–5 (72–126h) for TP3,
and days 6–8 (144–193h) for TP4, with timing
relative to the start of the [177Lu]Lu-DOTA-
TATE infusion. (Note that TP1 is within
30min after the completion of amino acid infu-
sion.) Using the manufacturer’s recommended
settings, we performed a 25-min acquisition
and xSPECT Quant reconstruction (Siemens
Healthineers; images in activity units, Bq/mL)
(10) as described previously.

Once contours were transferred to the ref-
erence SPECT images, a contour intensity–
based SPECT–SPECT alignment procedure
was used to coregister the sequential scans.

FIGURE 1. Proposed data-driven models use either single activity measurement or single activity
measurement plus biomarkers to predict TIA. Reference TIA is calculated using multiple-time-point
177Lu SPECT/CT imaging. HU5 Hounsfield units.
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In this process, the contours were directly propagated to other time
points, and the time–activity data were extracted. Finally, activities
were corrected for partial-volume effects by applying volume-
dependent recovery coefficients determined from a 177Lu phantom
experiment (9).
Baseline Auxiliary Data for Data-Driven Model 2. For model 2,

in addition to the above time–activity data, we further considered patient
baseline information (Supplemental Table 1; supplemental materials are
available at http://jnm.snmjournals.org). We considered PET SUVmean

because we hypothesized that additional information on PET uptake,
if different from the uptake measurements from 177Lu SPECT, may
enhance the model performance. We also considered the number of pre-
vious systemic treatments as well as tumor volume as these factors may
cause direct changes to tumor biology and microenvironment, potentially
impacting the uptake. We considered estimated glomerular filtration rate
(eGFR), as [177Lu]Lu-DOTATATE undergoes physiologic renal clear-
ance and cortical uptake, and eGFR has been shown to be predictive of
dosimetry (11). We included chromogranin A levels because this is a
tumor marker secreted by neuroendocrine tumors and may serve as a sur-
rogate for tumor burden (12); likewise, alkaline phosphatase is a marker
of liver function and osseous metastatic disease burden and has been
shown to be a prognostic marker of progression-free survival (13). These
variables could provide additional information on tumor uptake and
kinetics, thus potentially improving the model performance for tumors
directly and kidneys through a possible sink effect. The nonimaging bio-
markers were obtained from patient medical records and correspond to
the last laboratory tests performed before the first cycle of PRRT.

SUV metrics were obtained from [68Ga]Ga-DOTATATE (NetSpot;
Novartis) PET/CT performed between 1 and 15mo (median, 3mo)
before [177Lu]Lu-DOTATATE PRRT. The SUVmean was corrected for
partial-volume effects by applying volume-dependent recovery coeffi-
cients determined from a 68Ga phantom experiment.

Generation of Virtual Patient Time–Activity Data for
Simulation Studies

Because clinical data were available only for a relatively small sam-
ple size, we generated additional time–activity data for 500 kidneys and
500 tumors by simulation using a bootstrapping approach (14). The
measured time–activity data described above were used in the boot-
strapping process, in which patient i’s measurement time and activity
values are given by (tim, Ai(tim)) at the mth time point (i 5 1, 2,… n;
m 5 1, 2, 3, or 4). To produce virtual time–activity data, biexponential
time–activity curves were assumed, and the least-square estimates of para-
metersðA0i, k1i,k2iÞ were calculated from clinical data as the true value
for every observed patient i. We can then define the sets as follows:
QA5fA0ig, Q15fk1ig, Q25fk2ig, and T5ftim j i51, 2, . . . ,n;
m51, 2, 3, 4g. For each simulated patient j, the measurement value at
time s is AðsÞ5 A0je2k1js2A0je2k2js, where
(s, A0j, k1j, k2j) are sampled from ðT ,QA ,

Q1,Q2Þ. We introduce measurement noise to
generate the final simulation data: fðsj, ~AðsjÞÞ,
j51, 2, . . .Bg, ~AðsjÞ5AðsjÞ1«j,«j � Nð0,
r2A2ðsjÞÞ, where r is the relative error in the
SPECT activity measurement. We set r to 5%
and 10% on the basis of previous reports for
state-of-the-art 177Lu SPECT (10). Virtual data
were not used with data-driven model 2 because
it requires patient-specific clinical biomarkers.

Model Performance Comparison and
Statistical Analysis

We compared the performance of our data-
driven models with that from the previous
monoexponential STP models of H€anscheid

et al. and Madsen et al. For the Madsen model’s Teff,p, we used the
median values for the lesions and tumors from our current cohort. For
the patient data, because the ground truth is unknown, we considered
the reference TIA to be the integral of a 3-parameter biexponential fit
to the 4-time-point SPECT/CT activity measurements. For the simula-
tion, the reference TIA was the integral of the true simulated time–ac-
tivity curve. Then the MSE and mean absolute error (MAE) in TIA
were calculated as

MSE5 n21
Xn

i5 1
ðTIA�

i =TIAi21Þ2 Eq. 5

MAE5 n21
Xn

i5 1
j TIA�

i =TIAi21 j, Eq. 6

where n is the sample size, TIA�
i is the predicted TIA, and TIAi is

the reference TIA of the kidney or tumor i.
To estimate how models 1 and 2 would perform in future patients,

the MSE and MAE were calculated by leave-one-out cross validation
(LOOCV): for each patient, the TIAs of the tumors and kidneys were
predicted using only the STP measurement, and the models were
trained using only the other patients’ 4-time-point data. Because of
our relatively small sample size when incorporating biomarkers into
model 2, we used univariable analysis rather than multivariable model
selection, which may cause overfitting. Separately for tumors and kid-
neys, we performed univariable analysis to select the biomarker with
the best LOOCV performance. All model fitting was performed using
R version 4.1.2.

RESULTS

Four-time-point SPECT/CT imaging and baseline biomarkers
were available for 27 patients (100 tumors, 54 kidneys). Patient
characteristics and biomarkers are summarized in Supplemental
Table 1.

Multiple-Time-Point Time–Activity Data and Fits
Figure 2 shows example time–activity data used to construct the

data-driven models and the corresponding biexponential fits used
to derive the reference TIA. The Teff, corresponding to the slowest
component of the biexponential fit, had a median (6SD) value
of 89.56 35.5 h (range, 47.9–249.1 h) for tumors, 51.76 13.4 h
(range, 41.6–108.2 h) for left kidneys, 50.36 14.4 h (range, 40.7–
113.6 h) for right kidneys, and 51.26 13.7 h (range, 40.7–113.6 h)
for kidneys (Supplemental Fig. 1). These results agree well with
reported values from other groups for similar cohorts (3,15–17),
and the median values were used as Teff,p for the Madsen method
in the current study. Only 2 of 54 kidneys had a Teff greater than
80 h and corresponded to the patient with the lowest eGFR in our
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FIGURE 2. Example time–activity data and biexponential fits shown for select tumor, 1 tumor from
each patient (A), and all left kidneys, corresponding to 27 patients (B). Curves are normalized to 4h
after therapy.
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cohort (Supplemental Table 1). Only 4 of 100 tumors (from 2
patients) had unusually high Teff (.150 h); however, in these
cases, the investigation of clinical factors did not identify the rea-
sons for the observed kinetics.

Prediction Model Analysis: Patient Data
Model 1. We found that the estimated curve from the GAM for

model 1 (consisting of multiple basis functions) could be accurately
reproduced by a simpler cubic function (Supplemental Fig. 2). To
facilitate future implementation, we used the simpler cubic curve;
explicit formulas are presented in Table 1.
In Figure 3, TIA/A(t) is plotted as a function of time, with the

function g(t) corresponding to the methods of H€anscheid, Madsen,
and model 1. The function fits the data best in TP3 for kidneys and
TP3 and TP4 for tumors. At other TPs, although g(t) corresponding
to the Madsen method and model 1 fits the data reasonably well,
this is not the case for the H€anscheid method. The GAM method
makes the tradeoff between smoothness and accuracy of its predic-
tion curve and possesses the desirable statistical property of being a
consistent estimator.
Model 2. The LOOCV results when each of the biomarkers

was included as auxiliary data in model 2 were compared with
LOOCV results for model 1, for which auxiliary data were not
used (Supplemental Table 2). On the basis of LOOCV, at TP1, the
tumor volume was selected as a predictor of tumor TIA, and
eGFR was selected as a predictor of kidney TIA over other bio-
markers. At the other TPs, none of the considered biomarkers led
to model enhancement. Using the same GAM method for estimat-
ing the potentially nonlinear effect of biomarkers, we selected a
piecewise linear function of tumor volume for the tumor and linear

functions of eGFR for kidneys (Table 1). Unlike at the other TPs,
time is not a significant predictor at TP1 and thus does not appear
in the corresponding prediction model. We presume this is due to
the narrow range of time points included in TP1 (3–5 h).

STP Model Performance Comparison: Patient Results
Table 2 compares the performance of the different STP methods

for TIA estimation. SDs are also shown to measure the patient var-
iability. At TP3, all 4 methods performed very well for both
tumors and kidneys: all had an MAE of less than 7% (SD ,

10%), and more than 93% of tumors and kidneys had an absolute
error of less than 20%. For tumors, all methods performed very
well at TP4, with an MAE of less than 9%. At other TPs, the
MAE for the H€anscheid method was substantially higher, whereas
the Madsen method and data-driven methods performed reason-
ably well for both kidneys (MAE , 17%, SD , 20%) and tumors
(MAE , 31%, SD , 32%). Adding auxiliary data (eGFR for kid-
neys and volume for tumors) to our data-driven model enhanced
the performance at TP1 to achieve an MAE of less than 12% for
kidneys and less than 27% for tumors.
The density plots of the prediction error (Fig. 4) also demon-

strated comparable performance at optimal TPs (TP3 and TP4 for
tumors and TP3 for kidneys) for all methods. For the remaining
nonoptimal TPs, the H€anscheid method resulted in substantial
underestimation of the TIA, whereas the prediction error with the
Madsen method and our data-driven methods was more centered
at zero. At TP1 for tumors and kidneys, model 2 showed a modest
improvement over the Madsen method and model 1.
In addition to the relative errors shown in these figures and

tables, a plot of predicted TIA from LOOCV versus reference TIA
is included in Supplemental Figure 3.

STP Model Performance Comparison:
Simulation Results
Supplemental Tables 3 and 4 and Supple-

mental Figure 4 show the results of testing
on the simulated time–activity data. The
results were consistent with the patient
results: all 3 methods showed comparable
performance at the optimal TPs (TP3 for
kidneys and TP3 and TP4 for tumors), with
an MAE of less than 12% for tumors and
kidneys. At all other TPs, the H€anscheid
method substantially underestimated the
TIA, whereas the Madsen method and
model 1 showed reasonable performance

TABLE 1
Prediction Equations for Data-Driven Models

Model Equation

Tumor (model 1, TP1–TP4) TIA 5 A(t) 3 (151.1 – 0.861 3 t 1 0.02982 3 t2 – 7.862310–5 3 t3)

Kidney (model 1, TP1–TP4) TIA 5 A(t) 3 (84.5610.3454 3 t 1 0.0168 3 t2)

Tumor (model 2, TP1) TIA 5 A(t) 3 [287.5 – 55 3 log(volume)] when volume # 12mL

TIA 5 A(t) 3 [167.5 – 7 3 log(volume)] when volume . 12mL

Kidney (model 2, TP1) TIA 5 A(t) 3 (154 – 0.818 3 eGFR)

No biomarkers were selected as significant predictors at TP2–TP4, so model 2 is presented for only TP1.
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FIGURE 3. Estimated g(t) curves with patient data as function of time for different STP methods for
individual tumors (A) and kidneys (B).
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(MAE , 20% for kidneys and , 31% for tumors). Note that model
2 was not evaluated with simulation, given its reliance on patient
biomarkers.

DISCUSSION

Taking advantage of existing multiple-time-point SPECT/CT
data after [177Lu]Lu-DOTATATE PRRT for a cohort of patients,
we tested the performance of TIA estimation with STP imaging,
developing novel, data-driven methods. We demonstrated, for the
first time, to our knowledge, the proof of concept of incorporating
other standard clinical factors and biomarkers beyond the single

activity measurement alone to potentially enhance the STP model
performance. The prediction equations (Table 1) are valid for sim-
ilar patients imaged after [177Lu]Lu-DOTATATE PRRT and gen-
eralizable for different acquisition or processing protocols as long
as the TIA/A(t) ratio remains constant across the time points. For
example, if on a different system the activity is always overesti-
mated by 10% compared with our values because of a different
calibration procedure, the TIA will also be overestimated by 10%
and our prediction model remains valid.
Our results show that the optimal TP for the single measurement

is in the range of 72–126 h after administration, an interval during
which all methods evaluated performed very well, with an MAE

TABLE 2
Performance of STP Models for TIA Estimation in Patient Data

Sample Parameter TP H€anscheid method Madsen method Model 1 Model 2

Tumor MSE TP1 0.885 0.126 0.124 0.102

TP2 0.248 0.063 0.062 0.071

TP3 0.009 0.010 0.009 0.010

TP4 0.011 0.010 0.011 0.012

MAE TP1 94.1% (0.2%) 31.1% (1.7%) 30.5% (2.4%) 27.1% (1.7%)

TP2 47.3% (1.6%) 19.4% (1.6%) 19.5% (1.6%) 21.5% (1.6%)

TP3 6.6% (0.7%) 6.5% (0.7%) 6.4% (0.8%) 7.1% (0.7%)

TP4 8.4% (0.6%) 8.0% (0.6%) 8.0% (0.7%) 8.5% (0.7%)

Proportion of patients with
prediction error # 20%

TP1 0.0% 27.0% 29.0% 40.0%

TP2 5.1% 64.3% 58.2% 53.1%

TP3 94.2% 94.2% 93.3% 92.3%

TP4 92.9% 92.9% 92.8% 91.8%

Between-patient SD TP1 2.3% 28.5% 31.9% 31.0%

TP2 15.8% 25.2% 23.4% 26.2%

TP3 9.5% 9.4% 9.2% 10.0%

TP4 10.3% 9.8% 10.2% 10.7%

Kidney MSE TP1 0.7890 0.0500 0.0420 0.0245

TP2 0.0743 0.0146 0.0158 0.0154

TP3 0.0079 0.0057 0.0061 0.0062

TP4 0.0612 0.0465 0.0209 0.0199

MAE TP1 88.8% (0.3%) 16.9% (1.5%) 15.6% (1.3%) 11.8% (1.0%)

TP2 25.6% (1.0%) 9.3% (0.8%) 9.6% (0.8%) 10.0% (0.7%)

TP3 6.6% (0.6%) 5.5% (0.5) 5.7% (0.5%) 6.0% (0.5%)

TP4 22.5% (1.1%) 16.4% (1.4%) 11.8% (0.8%) 11.7% (0.8%)

Proportion of patients with
prediction error # 20%

TP1 0.0% 68.5% 68.5% 83.3%

TP2 25.0% 92.3% 88.5% 92.3%

TP3 94.6% 96.4% 98.2% 96.4%

TP4 27.8% 72.2% 81.5% 85.2%

Between-patient SD TP1 2.8% 17.8% 19.8% 15.6%

TP2 10.4% 12.2% 11.5% 12.5%

TP3 8.6% 7.5% 7.6% 7.9%

TP4 11.3% 16.3% 13.8% 14.2%

Data in parentheses are SD.
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of less than 7% for both kidneys and tumors. This is consistent
with previous reports for [177Lu]Lu-DOTATATE PRRT (3–5,17),
including the study by H€anscheid et al., which accordingly recom-
mended a 96-h time point. However, practical considerations may
lead to imaging of patients at other TPs. At these nonoptimal TPs,
the Madsen method and our data-driven models provide reason-
able prediction accuracy that is superior to that of the H€anscheid
method (Fig. 4). At the earliest TP, which is likely the most conve-
nient as it does not require a return visit to the clinic, adding
eGFR and tumor volume into the data-driven models for kidneys
and tumors, respectively, enhances STP prediction (model 2 MAE

of 11.8% for kidneys and 27.1% for
tumors; Table 2). It is worth noting that,
with model 2, 83% of kidneys and 40% of
tumors have an absolute error of less than
20%, with only 2 of 54 kidneys (both cor-
responding to the same patient) having an
absolute error of more than 31% (Supple-
mental Fig. 5).
In addition to the methods of Madsen

and H€anscheid, there are other recently
reported methods for STP estimation by
our group (18) and others (19,20). Devasia
et al. (18) assumed biexponential kinetics
and used a mixed-effect model to estimate
the unknown fit parameters. Then a new
patient’s STP measurement was combined
with the assumed biexponential and the
estimated parameters to make the TIA pre-
diction. This approach does not involve a
time-varying parameter and, as with the
H€anscheid and Madsen methods, relies on
the assumption of exponential kinetics
across all time. Our present results suggest
that exponential kinetics may not be accu-
rate at the first TP because, in model 2,
time is not a significant predictor of TIA,
whereas tumor volume and eGFR are sig-
nificant predictors (Table 1). Thus, a
model whose parameters are data-driven
and time-varying may be preferred. The
method of Jackson et al. (19) can also be
classified as a data-driven nonparametric
STP model. They normalized existing
time–activity curves to a single measure-
ment time, making it possible to calculate
a mean and range of TIA values that relate
to the absorbed dose. Physiologically
based pharmacokinetic models (20) use a
system of differential equations to model
the process of absorption and decay, on
the basis of which the TIA can be calcu-
lated. However, this model has no explicit
formula and requires mathematic software
to make the predictions.
The advantages of data-driven models

over physics-driven models mainly result
from their property of local estimation (e.g.,
GAM (8) and local regression (21)), which
means the prediction for an individual is
based on patients in a localized subset who

share similar features. Such models do not require the same global
assumptions of physics-driven models and are therefore more flexi-
ble. As a result, the predictions are optimal across time points and
robust to model misspecification. However, the local estimation
property also has disadvantages. When the underlying model is cor-
rectly specified (e.g., if the time–activity data behave exponentially
and the Teff is the same for all patients), data-driven models will be
less efficient than parametric models such as Madsen method. This
shortcoming is common to nonparametric models and is the result of
the inherent trade-off between bias and variance (21). Although
GAMs often use complex formulas for prediction, we were able to
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FIGURE 4. Prediction error in TIA estimation for patient tumors (A) and kidneys (B) corresponding
to different STP models. Negative error indicates underestimation of TIA by STP methods. Binned
representation of model 2 prediction error is presented in Supplemental Figure 3. Period 1 5 3–5 h,
period 25 23–51 h, period 35 72–126 h, period 45 144–193 h.
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identify a much simpler model (Table 1) based on the fitted GAM
(Supplemental Fig. 2)
The inclusion of biomarkers showed a moderate improvement

in performance of the data-driven STP approach at TP1. Enhance-
ment of the model for tumors with the inclusion of volume may be
due to the kinetic differences between small and large tumors due
to variations in tumor biology and microenvironment, which pro-
vide additional data not explained by the magnitude of SPECT
uptake. The model for kidneys was enhanced by the inclusion of
eGFR; this is unsurprising given that eGFR quantifies kidney
function and directly influences the rate of activity uptake and
clearance, providing additional kinetic information that is not
available from SPECT uptake alone. Furthermore, eGFR has
previously been demonstrated to predict kidney dosimetry in
[177Lu]Lu-DOTATATE therapy (11). Notably, uptake on baseline
[68Ga]Ga-DOTATATE PET/CT did not enhance the model perfor-
mance for either tumors or kidneys (Supplemental Table 2) and
thus was not included in the final model.
The level of accuracy that is needed to make dosimetry relevant

to radiopharmaceutical therapy clinical practice depends on the
application, that is, whether the role of dosimetry is in verifying
treatment, in building models of absorbed dose versus outcome, or
in planning and modifying treatment. For individualized planning,
accuracy requirements for therapies delivered over several
cycles—with absorbed dose estimates performed between
cycles—are less stringent than for therapies delivered over 1 or
2 cycles. Regardless of the application, before STP estimates are
used for clinical decision making, the variability in accuracy should
be considered. The prediction error–density plots of Figure 4 and
Supplemental Figure 4 indicate that, in general, the errors are nega-
tively skewed for all STP methods, including at the optimal TP.
This was previously reported for [177Lu]Lu-DOTATATE in both a
theoretic study (22) and a clinical study with 777 kidneys (17),
evaluating the methods of H€anscheid and Madsen. The negatively
skewed error corresponds to an underestimation of TIA and, conse-
quently, absorbed dose; hence, caution should be exercised when
these methods are used for kidney dosimetry-guided treatment
modification in individual patients. When dosimetry is performed
with STP imaging instead of multiple-time-point imaging, a wider
safety margin can be used for the kidney-absorbed dose limit, for
example, based on reported prediction error distribution (Fig. 4) in
studies such as ours. Protocols can also be designed to switch
to multiple-time-point imaging in the next cycle as a cautionary
measure only for those patients whose STP-estimated kidney-
absorbed dose in the previous cycle is above a limit predetermined
on the basis of the predicted error distribution for the specific
STP model.
To mitigate the limitations due to the small size of our clinical

dataset, we used bootstrap methods to generate simulated data
with a larger sample size. The simulation also allowed us to com-
pare methods under different noise conditions and with the true
TIA available. However, the simulation study could not include
data-driven model 2 because of the need for biomarker informa-
tion. Furthermore, the limited sample size confined our biomarker
selection for model 2 to a more conservative approach to avoid
overfitting; hence, only univariable models were considered.
Although we used internal validation (cross validation), external
independent validation of our data-driven models, which are spe-
cific to [177Lu]Lu-DOTATATE, should be performed before clini-
cal implementation.

CONCLUSION

The STP methods for TIA estimation in dosimetry that were
proposed in the current study performed equally as well as previ-
ous physics-based methods (MAE , 7%) for both kidneys and
tumors at the optimal TP of days 3–5 after [177Lu]Lu-DOTA-
TATE PRRT. At other TPs (days 0–2 and days 6–8), our data-
driven models and the Madsen model performed reasonably well,
especially for kidney TIA, where the MAE was less than 17%.
Adding auxiliary data to the single activity measurement enhanced
the performance of the data-driven model for kidneys at TP1,
where an MAE of less than 12% (SD , 15%) was achieved with
the inclusion of eGFR.
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KEY POINTS

QUESTION: How accurate is the STP-imaging–based TIA
estimation for dosimetry in [177Lu]Lu-DOTATATE PRRT when
imaging is performed at a nonoptimal time point?

PERTINENT FINDINGS: Although the optimal time point is from
day 3 to day 5, the Madsen and the proposed data-driven STP
methods provide a reasonable estimate (MAE , 17% for kidneys
and , 31% for tumors) for time points from day 0 to day 8. At day
0, the model incorporating baseline biomarkers outperforms other
methods, achieving an MAE of less than 12% for kidneys.

IMPLICATIONS FOR PATIENT CARE: STP methods that are less
sensitive to time-point selection and perform well even with early
imaging (day of therapy) provide flexibility to the patient and clinic,
enhancing the feasibility of radiopharmaceutical therapy dosimetry
in clinical practice.
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