Unspecific ¹⁸F-PSMA-1007 Bone Uptake Evaluated Through PSMA-11 PET, Bone Scanning, and MRI Triple Validation in Patients with Biochemical Recurrence of Prostate Cancer

Robert Seifert¹⁻⁴, Tugce Telli^{1,3,4}, Marcel Opitz^{3,4,5}, Francesco Barbato^{1,3,4}, Christoph Berliner^{1,3,4}, Michael Nader¹, Lale Umutlu³⁻⁵, Martin Stuschke^{3,4,6}, Boris Hadaschik^{3,4,7}, Ken Herrmann^{1,3,4}, and Wolfgang P. Fendler^{1,3,4}

¹Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; ²Department of Nuclear Medicine, University Hospital Münster, Münster, Germany; ³German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany; ⁴West German Cancer Center, University Hospital Essen, Essen, Germany; ⁵Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany; ⁶Department of Radiation Oncology, University Hospital Essen, Essen, Germany; and ⁷Department of Urology, University Hospital Essen, Essen, Germany

¹⁸F-PSMA-1007 PET is used in the management of patients with prostate cancer. However, recent reports indicate a high rate of unspecific bone uptake (UBU) with ¹⁸F-PSMA-1007, which may lead to a falsepositive diagnosis. UBU has not been evaluated thoroughly. Here, we evaluate the frequency of UBU and bone metastases separately for ¹⁸F-PSMA-1007 and ⁶⁸Ga-PSMA-11 in biochemical recurrence (interindividual comparison). Additionally, we investigate UBU seen in ¹⁸F-PSMA-1007 through follow-up examinations (intraindividual comparison) using ⁶⁸Ga-PSMA-11 PET, bone scintigraphy, and MRI. **Methods:** First, all patients (n = 383) who underwent ⁶⁸Ga-PSMA-11 PET between January 2020 and December 2020 and all patients (n = 409) who underwent ¹⁸F-PSMA-1007 PET between January 2020 and November 2021 due to biochemical recurrence were included for an interindividual comparison of bone metastases and UBU rate. In a second approach, we regarded all patients with UBU in ¹⁸F-PSMA-1007, characterized by focal bone uptake with an $SUV_{max} > 4$ and prostate-specific antigen (PSA) \leq 5 ng/mL, who underwent additional 68 Ga-PSMA-11 PET (n = 17) (interindividual comparison). Of these, 12 patients also had bone scintigraphy and whole-body MRI within a 1- to 5-wk interval. Bone uptake seen on ¹⁸F-PSMA-1007 but not on any of the other 4 modalities (CT, MRI [n = 1], bone scanning, and ⁶⁸Ga-PSMA-11 PET) was recorded as false-positive. Results: Patients scanned with ¹⁸F-PSMA-1007 PET had a significantly higher rate of UBU than those scanned with ⁶⁸Ga-PSMA-11 (140 vs. 64; P < 0.001); however, the rate of bone metastases was not significantly different (72 vs. 64: P = 0.7). In the intraindividual comparison group, workup by CT, MRI, bone scanning, and ⁶⁸Ga-PSMA-11 PET resulted in a positive predictive value for ¹⁸F-PSMA-1007 focal bone uptake (mean SUV_{max}, 6.1 \pm 2.9) per patient and per lesion of 8.3% and 3.6%, respectively. **Conclusion:** In patients with PSA \leq 5 ng/mL and SUV > 4 at biochemical recurrence, most ¹⁸F-PSMA-1007 focal bone uptake is likely to be false-positive and therefore due to UBU. In the case of low clinical likelihood of metastatic disease, ¹⁸F-PSMA-1007 bone uptake without morphologic surrogate should be assessed carefully with regard to localization and clinical context. However, the rate of bone metastases was not higher with ¹⁸F-PSMA-1007 in the clinical routine, indicating that experienced reporting physicians adjust for UBU findings.

Key Words: prostate cancer; PET; PSMA-11; PSMA-1007

J Nucl Med 2023; 64:738–743 DOI: 10.2967/jnumed.118.215434

U_p to 60% of prostate cancer patients develop biochemical recurrence (BCR) after initial radiotherapy or radical prostatectomy in 10 y of follow-up (1). Local salvage therapy and complete metastatic ablation of oligometastatic prostate cancer may provide a curative pathway and an alternative to initiation of palliative androgen deprivation therapy (2). Therefore, to determine location and extent of recurrent PC is of the utmost importance for directing salvage therapy.

The recent European Association of Urology Prostate Cancer guideline recommended that prostate-specific membrane antigen (PSMA) PET should be offered to BCR patients with a persistent prostate-specific antigen (PSA) level greater than 0.2 ng/mL if the results will influence subsequent treatment decisions (3). PSMA PET readers need proper training, as each PSMA ligand features distinct characteristics (4,5).

More recently, ⁶⁸Ga-labeled PSMA ligands are increasingly replaced by ¹⁸F-labeled compounds offering mostly technical and logistic advantages including lower positron energy; improved spatial resolution; longer half-life; high-yield production in cyclotrons; and large batch production, thereby enabling long-distance distribution and potential cost savings (4). Moreover, ¹⁸F-PSMA-1007 exhibits blood clearance through the liver that leads to only minimal urinary excretion, yielding potential advantages for pelvic tumor assessment (6,7). However, unspecific bone uptake (UBU) on ¹⁸F-PSMA-1007 PET, reported in a considerable fraction of patients, may lead to falsepositive findings as metastasis; this in turn may result in overstaging, leading to inadequate therapy (4,8,9). However, despite large observational data, UBU have not been correlated systematically by other imaging, including ⁶⁸Ga-PSMA-11 PET/CT, MRI, and bone scanning.

Therefore, the aim of this study was 2-fold. First, we evaluated the rate of UBU and bone metastases reported in clinical reads separately for ¹⁸F-PSMA-1007 and ⁶⁸Ga-PSMA-11 PET to estimate the relevance of UBUs (interindividual group). Second, we present a single-center experience with ¹⁸F-PSMA-1007 UBU in 17 patients, who underwent follow-up examinations to clarify the nature of the bone uptake. In those patients, we evaluated ¹⁸F-PSMA-1007 UBUs intraindividually with bone scanning, ⁶⁸Ga-PSMA-11 PET, and MRI.

Received Aug. 13, 2022; revision accepted Nov. 17, 2022.

For correspondence or reprints, contact Robert Seifert (robert.seifert@ukessen.de).

Published online Dec. 2, 2022.

COPYRIGHT © 2023 by the Society of Nuclear Medicine and Molecular Imaging.

MATERIALS AND METHODS

Patient Characteristics

Patient characteristics are shown in Table 1 and Supplemental Table 1 (supplemental materials are available at http://jnm.snmjournals.org). All patients were recruited at the Department of Nuclear Medicine of the University Hospital Essen. The analysis was performed retrospectively, and the need for study-specific written consent was waived (Ethics approval no. 22-10694-BO and 21-9865-BO). Briefly, 2 patient cohorts were investigated: First, the rate of UBU and bone metastases in all patients scanned with ⁶⁸Ga-PSMA-11 in the last year before the introduction of ¹⁸F-PSMA-1007 was compared with the respective rates in all patients scanned with ¹⁸F-PSMA-1007 in the first year of its use in our Department (interindividual comparison group). Additionally, patients who received ¹⁸F-PSMA-1007 and underwent ⁶⁸Ga-PSMA-11 due to ¹⁸F-PSMA-1007 UBU clinical workup were included (intraindividual group).

Inclusion Criteria of the Interindividual Comparison Group

All patients who received ⁶⁸Ga-PSMA-11 PET between January 2020 and December 2020 and all patients who received ¹⁸F-PSMA-1007 PET between January 2020 and November 2021 were regarded for the interindividual comparison group. Of these, 383 and 409 patients were referred to PET due to BCR or persistence and further analyzed with regard to the rate of UBU and bone metastases. For this group of patients, bonerelated imaging findings were retrospectively extracted from our archives regardless of the finding's SUV_{max} and regardless of preimaging prostatespecific antigen (PSA) values in the case of histologically proven prostate

TABLE 1	
Patient Characteristics ($n = 17$	7)

	x
Characteristic	Data
Median age (y)	71 (69.5–74)
Initial T (n)	
T1	0
T2	5 (29.5%)
ТЗ	8 (47%)
Τ4	0
Unknown	4 (23.5%)
Gleason score (n)	
3 + 3	1 (5.9%)
3 + 4	2 (11.8%)
4 + 3	5 (29.4%)
4 + 4	2 (11.8%)
5 + 5	1 (5.9%)
Unknown	6 (35.3%)
Previous therapy to prostate (n)	
Radical prostatectomy	17 (100%)
Additional adjuvant/salvage radiotherapy	8 (47.1%)
Blood levels	
Median PSA (ng/mL)	0.5 (0.2–1)
Median ALP (IU/L)	70 (55–83)
Median bone-specific ALP	12.7 (11.5–17.8)

IQR = interquartile range; ALP = alkaline phosphatase. Data in parentheses are IQRs, unless otherwise specified.

cancer and biochemical recurrence (BCR) or PSA persistence without any known metastases.

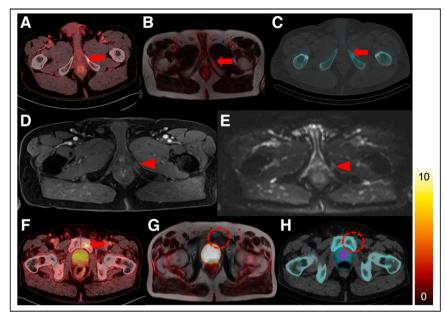
The incidence of UBU and bone metastases on ¹⁸F-PSMA-1007 and ⁶⁸Ga-PSMA were compared in different preimage PSA–level groups (PSA < 1 ng/mL vs. 1–5 ng/mL vs. > 5 ng/mL).

Inclusion Criteria of the Intraindividual Comparison Group

The SUV_{max} of UBU was reported among different studies with similar image acquisition, and the measurements ranged between 3.6 and 21.1 (4,10). Therefore, in this study, UBU was defined as focally increased ¹⁸F-PSMA-1007 uptake in the bone with an SUV_{max} higher than 4 and clear visualization in the maximum-intensity-projection images without CT correlate (no lytic or osteoplastic reaction). Patients with ¹⁸F-PSMA-1007 PET UBU were offered additional workup in the case of histologically proven prostate cancer, BCR of prostate cancer, PSA levels at the time of imaging \leq 5 ng/mL, and no known distant metastases.

Patients underwent additional clinical whole-body ⁶⁸Ga-PSMA-11 PET/MRI and bone scanning (together with SPECT/CT). Patient datasets were analyzed retrospectively.

Imaging and Image Interpretation of the Intraindividual Comparison Group


Tracer precursors (PSMA-11 and PSMA-1007) were obtained from ABX advanced biochemical compounds (ABX GmbH). ¹⁸F-PSMA-1007 and ⁶⁸Ga-PSMA-11 were synthesized on site using a kit-based approach on automated platforms with comprehensive pH, radiochemical, chemical, and radionuclide purity control tests.

After intravenous injection (111 \pm 20 min) of ¹⁸F-PSMA-1007 (350.6 \pm 61.8 MBq), PET/CT was obtained between the base of the skull and midthighs with the patient supine. A Biograph Vision and Biograph mCT were used for image acquisition (all: Siemens Healthineers). Full-dose CT was acquired for attenuation correction (210 mAs, 120 keV, 512 \times 512 matrix, 128 \times 0.6 mm slice thickness). PET emission data were attenuation corrected by help of the CT data and iteratively reconstructed (Vision—4 iterations; 5 subsets; voxel size, 3.3 \times 3.3 \times 3 mm³; Gauss filtering, 4 mm, and mCT—3 iterations; 21 subsets; voxel size; 4.07 \times 4.07 \times 3 mm³; Gauss filtering; 4 mm) with time-of-flight information and point-spread function correction (HD PET).

⁶⁸Ga-PSMA-11 PET/MR (n = 14) or PET/CT (n = 3) was used to acquire coregistrated images. The mean injected dose and mean imaging delay were 133.3 ± 81.2 MBq and 67 ± 14 min, respectively. PET/MRI examination was performed with an integrated 3.0-T Biograph mMR scanner (Siemens Healthineers), and simultaneous PET and 3D Dixonvolumetric interpolated breath-hold examination (VIBE) sequences for MRI-based scatter correction were performed, followed by a standardized whole-body MRI protocol. The following MR sequences of choice were acquired: high-resolution T2-weighted fast spin-echo sequences (axial, coronal, and sagittal planes), diffusion-weighted sequences (b values, b = 0, 500, 1,000 s/mm²), and dynamic contrast-enhanced imaging sequences (namely, T1-weighted VIBE sequence obtained every 7 s during 5–10 min). PET emission data were iteratively reconstructed (3 iterations; 21 subsets; voxel size, $2.09 \times 2.09 \times 2.03 \text{ mm}^3$, Gauss filtering, 4 mm).

Whole-body planar bone scintigraphy imaging was performed after 2.5–4 h of the administration of the median dose of 628.5 MBq (range, 584–652 MBq) ^{99m}Tc-3,3-diphosphono-1,2-propanodicarboxylic acid radiopharmaceutical in a continuous mode at a rate of 15 cm/min on a 256 × 1,024 acquisition matrix of anterior and posterior planes with a dual-head γ -camera equipped with a low-energy, high-resolution collimator (Symbia T2 or Intevo; Siemens Healthineers). In all cases of uncertain radionuclide accumulations on bone scan, SPECT/CT images were acquired (15 s/view step and shoot with 128 × 128 matrix).

The time interval between the PET image acquisitions was between 1 and 5 wk. Images were interpreted using a dedicated workstation and software (SyngoVia; Siemens). All available imaging modalities were present

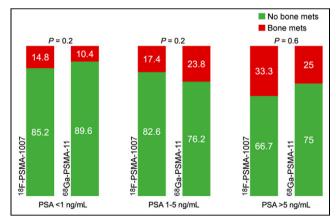
FIGURE 1. Exemplary cases of UBU regarded as true-positive and false-positive. Axial slices of a patient with suspected UBU on ¹⁸F-PSMA-1007 PET (A, arrow). Suggestive uptake was seen on ⁶⁸Ga-PSMA-11 PET/MRI (B, arrow) and on bone scan SPECT/CT (C, arrow). Corroborating these findings, the MRI showed contrast enhancement (D, arrowhead) and diffusion restriction (E, arrowhead). Therefore, the bone uptake was rated as true-positive. A second patient is shown in F–H. Axial slices of a patient with unspecific ¹⁸F-PSMA-1007 uptake rated as false-positive in left inferior pubic ramus (SUV_{max}, 5.6) without any CT correlate (F, arrow) are shown. There was no suspicious finding either in ⁶⁸Ga-PSMA-11 PET/MRI (G, dashed circle) or bone SPECT/CT (H, dashed circle). Therefore, this bone uptake was considered as false-positive.

for retrospective image reading. All PET and bone scintigraphy images were interpreted by 2 nuclear medicine physicians, and MR images were interpreted by 2 radiologists. Two nuclear medicine physicians performed semiquantitative analyses of the PET data retrospectively in consensus. For example, a focal bone uptake of ¹⁸F-PSMA-1007 (Fig. 1A) showing contrast enhancement (Fig. 1D), diffusion restriction (Fig. 1E), and radiotracer uptake in ⁶⁸Ga-PSMA PET (Fig. 1B) and bone scintigraphy (Fig. 1C) was rated as bone metastasis. Conversely, a focal ¹⁸F-PSMA-1007 uptake of the bone without any suspicious finding on bone scan, ⁶⁸Ga-PSMA-11, and MRI was rated as false-positive (Figs. 1F–1H).

Statistical Analysis

SPSS Statistics (version 22; IBM Inc.) was used for statistical analyses. The compliance of variables to normal distribution was determined using the Kolmogorov–Smirnov test. Patient characteristics were presented as median (interquartile range [IQR] or range) or mean \pm SD in accordance with the data distribution. The χ^2 or Pearson goodness-of-fit tests were used to compare the differences of bone metastases and UBU in between 2 PSMA PET agents. A *P* value of less than 0.05 was considered statistically significant. A Sankey diagram was designed with the online Diagram Generator (Acquire Procurement Services, http://sankey-diagram-generator.acquireprocure.com).

RESULTS


Rate of Reported Bone Metastases and UBU in the Interindividual Group (Comparing 68 Ga-PSMA-11 and 18 F-PSMA-1007 Cohorts, n = 792)

A total of 792 PSMA PET scans of patients with BCR were included (n = 409 for ¹⁸F-PSMA-1007 and n = 383 for ⁶⁸Ga-PSMA-11) to evaluate the frequency of UBU and bone metastases. Among the patients who were imaged with ¹⁸F-PSMA-1007, 332 (81.2%), 33 (8%), 13 (3.2%), 3 (0.1%), and 115 (28.1%) patients underwent

radical prostatectomy, definitive radiotherapy, transurethral prostate resection, local ablative treatments, and adjuvant/salvage radiotherapy as previous local therapy, respectively. Among the patients who were imaged with ⁶⁸Ga-PSMA-11, 324 (84.6%), 28 (7.3%), 7 (1.8%), 1 (0.2%), and 99 (25.8%) patients underwent radical prostatectomy, definitive radiotherapy, transurethral prostate resection, local ablative treatments, and adjuvant/ salvage radiotherapy as previous local therapy, respectively. Overall, there was no statistically significant difference for the bone metastases rate when the final reports of ¹⁸F-PSMA-1007 and ⁶⁸Ga-PSMA-11 were compared (72 vs. 64; P = 0.7). Stratifying by PSA value, 229 of 397 (57.7%) patients undergoing ¹⁸F-PSMA-1007 and 201 of 360 (55.8%) patients undergoing ⁶⁸Ga-PSMA-11 PET had PSA levels lower than 1 ng/mL. A fraction of the 138 of 397 (34.8%) patients undergoing ¹⁸F-PSMA-1007 and the 147 of 360 (40.8%) patients undergoing ⁶⁸Ga-PSMA-11 PET had PSA levels between 1 and 5 ng/mL. Thirty of 397 (7.6%) patients undergoing ¹⁸F-PSMA-1007 and 12 of 360 (3.3%) patients undergoing ⁶⁸Ga-PSMA-11 PET had >5 ng/mL of PSA. There was no statistically significant difference of bone metastasis detection between ¹⁸F-PSMA-1007

and ⁶⁸Ga-PSMA-11 among different PSA groups (P = 0.2, 0.2, and 0.6 for PSA levels groups < 1 ng/mL, 1-5 ng/mL, and > 5 ng/mL, respectively) (Fig. 2).

UBU was reported at a significantly higher rate with ¹⁸F-PSMA-1007 than it was in the ⁶⁸Ga-PSMA-11 group (140 [34.2%] vs. 64 [16.7%]; P < 0.001). Moreover, there was at least 1 identifiable benign bone lesion with focal PSMA uptake in 22 (5.4%) and 11 (2.9%) of the ¹⁸F-PSMA-1007 and ⁶⁸Ga-PSMA-11 PET reports, respectively. There was no significant difference between the PSAlevel groups and UBU rate for both agents (P = 0.4 and 0.6, respectively, for ¹⁸F-PSMA-1007 and ⁶⁸Ga-PSMA-11).

FIGURE 2. Frequency of bone metastases is presented separately for PSA groups and PET tracers (¹⁸F-PSMA-1007 or ⁶⁸Ga-PSMA-11). There was no statistically significant difference of bone metastasis detection between ¹⁸F-PSMA-1007 and ⁶⁸Ga-PSMA-11 among 3 different PSA level groups. mets = metastasis.

Patient Characteristics of the 18 F-PSMA-1007 and 68 Ga-PSMA-11 PET Intraindividual Comparison Cohort (n = 17)

Seventeen prostate cancer patients (mean age, 70.9 y; median duration of disease, 43.7 mo [IQR, 18.6–122.9]) underwent both ⁶⁸Ga-PSMA-11 and ¹⁸F-PSMA-1007 PET due to clinical indication. The median time interval between PET scans was 22 d (IQR 8.0–29.5) days. Most patients were also evaluated with bone scanning and SPECT/CT (n = 14) and whole-body MRI (n = 15), and 12 patients were evaluated with all 4 modalities. All the patients had PSA recurrence after radical prostatectomy, and 8 of 17 patients also had undergone adjuvant or salvage radiation therapy. Twelve of 17 patients had a PSA level lower than 1, and 5 of 17 had PSA levels between 1 and 5 ng/mL. Further characteristics of the patients are outlined in Table 1.

Local recurrence was detected on ¹⁸F-PSMA-1007 in 7 (41.1%) of the patients with a median SUV_{max} of 8.1 (range, 3.48–24.6); 41.1% (7/17) of the patients were rated as pelvic lymph node–positive on ¹⁸F-PSMA-1007 PET. The median SUV_{max} and size of the most prominent pelvic lymph node was 10.9 (range, 3.2–37.6) and 0.5 cm (range, 0.4–1.2), respectively. Moreover, 4 patients were staged as extrapelvic lymph node–positive (n = 2 inguinal and 2 retroperitoneal; median SUV_{max} = 5.1 [range: 3.4–10.2]) by ¹⁸F-PSMA-1007 PET.

Intraindividual Analysis of ¹⁸F-PSMA-1007 Bone Uptake by Bone Scanning and ⁶⁸Ga-PSMA-11 PET/MRI

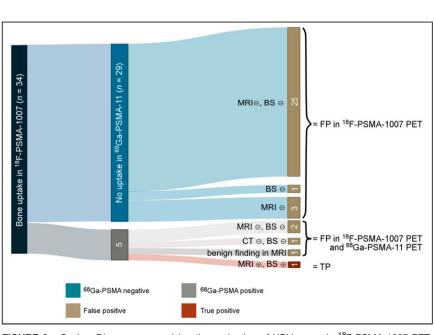
In ¹⁸F-PSMA-1007 PET, 34 suggestive bone uptake findings (in 17 patients) were seen (Supplemental Figs. 1–17 for details on patients). Evaluation of the UBUs and final decisions are summarized in Figure 3. Eleven patients (64.7%) showed unifocal, 4 patients (23.5%) showed oligofocal, and 2 patients (11.8%) showed multifocal ¹⁸F-PSMA-1007 bone uptake without any correlative lesion on CT (n = 13 ribs, n = 10 pelvis, n = 4 vertebrae, n = 3 scapula, n = 2 sternum, n = 1 clavicula, n = 1 humerus head). Distribution of the false-positive bone uptake on ¹⁸F-PSMA-1007 is presented in Figure 4.

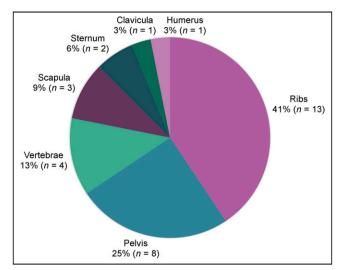
The per-patient true-positive rate was 8.3%, the per-lesion (n = 28) true-positive rate was 3.6%; the positive predictive value of bone uptake seen in ¹⁸F-PSMA-1007 PET was 8.3% (95% CI, -7%-23.8%) per patient (n = 12) and 3.6% (95% CI, -3.3%-10.5%) per lesion (n = 28) (only n = 12 patients with all modalities, that is, MRI, bone scanning, and ⁶⁸Ga-PSMA-11 PET, were included).

One lesion with PSMA expression (SUV_{max} 6.7 and 3 on ¹⁸F-PSMA-1007 and ⁶⁸Ga- PSMA-11 PET, respectively) in the left ischiopubical junction without any correlative CT lesion was regarded as true-positive because it was also positive on the bone scan and showed contrast enhancement on T1-weighted images with diffusion restriction on MRI (Fig. 1). The patient with truepositive pelvic bone metastasis had a PSA level of 0.91 ng/mL, PSA doubling time of 1 mo, 83 IU/L of alkaline phosphatase, and 21.5 ug/L of bone-specific alkaline phosphatase.

One lesion with PSMA expression (SUV_{max} 6.1 and 2.3 on ¹⁸F-PSMA-1007 and ⁶⁸Ga-PSMA-11 PET, respectively) without any significant CT correlation was evaluated as enchondroma on MRI (Supplemental Fig. 17). Follow-up examinations of the bone findings are summarized in Figure 3.

All other sites of ¹⁸F-PSMA-1007 focal bone uptake were rated as false-positive and likely UBU.


DISCUSSION


In this article, we investigated $^{18}\mbox{F-PSMA-1007}$ PET UBU in patients with BCR by $^{68}\mbox{Ga-PSMA-11}$ PET, MRI, and bone scanning

correlation. In patients with correlative imaging, the positive predictive value of ¹⁸F-PSMA-1007 PET for bone metastases was very low. We present a systematic confirmation of ¹⁸F-PSMA-1007 PET UBU. However, the higher rate for ¹⁸F-PSMA-1007 than for ⁶⁸Ga-PSMA-11 PET did not translate into more frequent diagnosis of bone metastases if images were read by experienced readers.

PSMA PET has become the reference standard examination of the staging and restaging of patients with prostate cancer (11,12). It was shown previously that PSMA PET is superior to CT and bone scanning in primary staging of patients with high-risk prostate cancer (12). PSMA-11 was assessed in most prospective trials on PSMA-directed imaging, which led to recent Food and Drug Administration approval. Several other PSMA ligands have been studied. For example, ¹⁸F-DCF-Pyl showed high diagnostic accuracy and was also approved by the Food and Drug Administration (13). Head-to-head comparison of ¹⁸F-DCF-Pyl and ¹⁸F-PSMA-1007 revealed near equal tumor detection in a small group of patients with newly diagnosed prostate cancer (14). In France, the ligand ¹⁸F-PSMA-1007 is available through expanded access.

FIGURE 3. Sankey Diagram summarizing the evaluation of UBUs seen in ¹⁸F-PSMA-1007 PET. BS = bone scan; FP = false-positive; TP = true-positive; PSMA = prostate-specific membrane antigen; \ominus = no suspicious finding; \oplus = suspicious finding. A total number of 34 UBUs were detected on ¹⁸F-PSMA-1007 PET. One lesion was regarded as true-positive (bone metastasis) and 1 lesion was rated as benign because of characteristic MRI findings. Thirty-three UBU were rated as false-positive on ¹⁸F-PSMA-1007 PET and 4 instances of false-positive bone uptake were seen on ⁶⁸Ga-PSMA-11 PET (triple validation was only available in a subcohort).

FIGURE 4. Anatomic distribution of UBU seen on ¹⁸F-PSMA-1007 PET. Thirty-two instances of bone uptake were seen on ¹⁸F-PSMA-1007 PET (in multiple regions) and 4 instances of bone uptake were seen on ⁶⁸Ga-PSMA-11 (all located in ribs). Most common UBU localizations for ¹⁸F-PSMA-1007 were ribs and pelvis.

PSMA ligands show comparable tumor uptake and distribution, but also have distinctive biodistribution features (5). ¹⁸F-PSMA-1007 has a liver-dominant excretion, which offers advantages for the assessment of local prostate cancer infiltration (6). Because of lesser ligand accumulation in the bladder, the differentiation between true tracer uptake and urinary background activity is often easier, which facilitates the detection of local recurrence.

The rise of ¹⁸F-PSMA-1007 is mainly caused by the ease of cyclotron-based ¹⁸F-fluorine production, which enables the syntheses of larger quantities of PSMA ligands compared with ⁶⁸Ga generators (4). Additionally, ¹⁸F-fluorine offers a longer half-life than ⁶⁸Ga, enabling an optimized patient management (4). Moreover, the lower positron energy of ¹⁸F enables a higher spatial resolution and higher signal-to-background ratio than ⁶⁸Ga (4).

Despite these benefits of ¹⁸F-PSMA-1007, it has been reported that the rate of UBU is notably higher than that of ⁶⁸Ga-PSMA-11 (8,15). In our study, 33 UBUs have been reported for ¹⁸F-PSMA-1007 PET and 4 for ⁶⁸Ga-PSMA-11 (triple validation was available only in a subcohort). This makes the clear delineation of bone metastases challenging in patient cohorts in which bone metastases have a low prevalence, such as in men with biochemically recurrent prostate cancer at low PSA level. The false-positive assessment of bone uptake may potentially lead to inadequate treatment when anticipating that ¹⁸F-PSMA-1007 has the same high specificity of other PSMA ligands.

UBU has also been reported in other PSMA-targeting tracers. For example, preliminary reports indicate that rhPSMA-7 also shows UBU (16). The cause of UBU is not yet known. Unconjugated fluorine, activated bone marrow granulocytes (15), and PSMA expression in nonprostate cancer tissue have been discussed previously (17,18).

Interestingly, UBUs of ¹⁸F-PSMA-1007 show a distinct distribution pattern. Especially, uptake in the ribs and pelvis can be observed, yet the explanation for this is unknown. Despite a higher UBU rate for ¹⁸F-PSMA-1007, the rate of bone metastases was not different in the cohorts of patients imaged with ¹⁸F-PSMA-1007 versus ⁶⁸Ga-PSMA-11 in patients with BCR. For this, all patients scanned in the year before transition to ¹⁸F-PSMA-1007 were compared with all patients scanned in the year after the tracer switch. This observation indicates that experienced nuclear medicine physicians can detect the UBU pattern and identify the lesions as unspecific. The distinctive pattern of UBU at the above-described locations may contribute to this observation. Current knowledge on UBU for ¹⁸F-PSMA-1007 and radioligands with similar bone pattern should be summarized in a comprehensive reader training before local implementation of these tracers.

This study comes with limitations. First, the comparisons of patient cohorts before and after the change of PSMA tracers (from ⁶⁸Ga-PSMA-11 to ¹⁸F-PSMA-1007) were analyzed retrospectively. Therefore, the analysis might be prone to selection bias and missing information. In the subgroup of patients undergoing MRI, bone scanning, and ⁶⁸Ga-PSMA-11 as well as¹⁸F-PSMA-1007 PET, the additional PSMA PET and bone scintigraphy were performed only when clinically indicated and after patient approval and the data collection was done retrospectively. Therefore, our cohort with 4 imaging assessments was relatively small, and the results may not be transferable to larger cohorts. Finally, histopathologic confirmation and follow-up imaging were not acquired for this study.

CONSLUSION

In patients with BCR of prostate cancer and PSA ≤ 5 ng/mL, focal bone uptake on ¹⁸F-PSMA-1007 PET (SUV > 4) was most often false-positive/UBU when compared with ⁶⁸Ga-PSMA-111 PET, MRI, and bone scanning. ¹⁸F-PSMA-1007 false-positive/UBU findings were most commonly located in the ribs and pelvis. Bone uptake in ¹⁸F-PSMA-1007 and ¹⁸F radioligands with similar bone pattern should therefore be evaluated carefully with regards to the location and clinical context. Most likely due to reader experience, the rate of bone metastases was not higher when clinical cohorts of patients with BCR imaged with ⁶⁸Ga-PSMA-11 and ¹⁸F-PSMA-1007 were compared. To prevent false bone upstaging and consequently incorrect therapy management of the patients, ¹⁸F-PSMA-1007 PET should be performed by experienced physicians with knowledge of UBU distribution pattern and characteristics

DISCLOSURE

Wolfgang P. Fendler reports fees from SOFIE Bioscience (research funding), Janssen (consultant, speakers bureau), Calyx (consultant), Bayer (consultant, speakers bureau, research funding), Parexel (image review), and AAA (speakers bureau) outside of the submitted work. Boris Hadaschik has had advisory roles for ABX, AAA/Novartis, Astellas, AstraZeneca, Bayer, Bristol Myers Squibb, Janssen R&D, Lightpoint Medical, Inc., and Pfizer; has received research funding from Astellas, Bristol Myers Squibb, AAA/Novartis, German Research Foundation, Janssen R&D, and Pfizer; and has received compensation for travel from Astellas, AstraZeneca, Bayer and Janssen R&D. Robert Seifert has received research funding from the Else Kröner-Fresenius-Stiftung and Boehringer Ingelheim Fonds. No other potential conflict of interest relevant to this article was reported.

ACKNOWLEDGMENT

We thank Andrei Iagaru for his support in revising the article.

KEY POINTS

QUESTION: How clinically relevant is the previously reported occurrence of UBU on ¹⁸F-PSMA-1007 PET in prostate cancer?

PERTINENT FINDINGS: Bone uptake seen on ¹⁸F-PSMA-1007 PET in patients with BCR, PSA \leq 5 ng/mL, and SUV > 4 is likely false-positive. Common locations for false positive findings were ribs and pelvis. However, in the clinical routine, the rate of reported bone metastases of patients imaged with ¹⁸F-PSMA-1007 or ⁶⁸Ga-PSMA-11 is comparable, indicating that reporting physicians adapt to the tracer characteristics.

IMPLICATIONS FOR PATIENT CARE: When metastatic disease is suspected in biochemical recurrent prostate cancer, osseous ¹⁸F-PSMA-1007 uptake without morphologic correlate has to be carefully assessed.

REFERENCES

- Mullins JK, Feng Z, Trock BJ, Epstein JI, Walsh PC, Loeb S. The impact of anatomical radical retropubic prostatectomy on cancer control: the 30-year anniversary. J Urol. 2012;188:2219–2224.
- Phillips R, Shi WY, Deek M, et al. Outcomes of observation vs stereotactic ablative radiation for oligometastatic prostate cancer: The ORIOLE phase 2 randomized clinical trial. *JAMA Oncol.* 2020;6:650–659.
- Cornford P, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer: part ii—2020 update: treatment of relapsing and metastatic prostate cancer. *Eur Urol.* 2021;79:263–282.
- Rauscher I, Krönke M, König M, et al. Matched-pair comparison of ⁶⁸Ga-PSMA-11 PET/CT and ¹⁸F-PSMA-1007 PET/CT: frequency of pitfalls and detection efficacy in biochemical recurrence after radical prostatectomy. *J Nucl Med.* 2020;61: 51–57.
- Eiber M, Herrmann K, Calais J, et al. Prostate cancer molecular imaging standardized evaluation (PROMISE): proposed miTNM classification for the interpretation of PSMA-ligand PET/CT. J Nucl Med. 2018;59:469–478.

- Dietlein F, Kobe C, Hohberg M, et al. Intraindividual comparison of ¹⁸F-PSMA-1007 with renally excreted PSMA ligands for PSMA PET imaging in patients with relapsed prostate cancer. *J Nucl Med.* 2020;61:729–734.
- Seifert R, Schafigh D, Bogemann M, Weckesser M, Rahbar K. Detection of local relapse of prostate cancer with ¹⁸F-PSMA-1007. *Clin Nucl Med.* 2019;44:e394–e395.
- Arnfield EG, Thomas PA, Roberts MJ, et al. Clinical insignificance of [¹⁸F]PSMA-1007 avid non-specific bone lesions: a retrospective evaluation. *Eur J Nucl Med Mol Imaging*. 2021;48:4495–4507.
- Pattison DA, Debowski M, Gulhane B, et al. Prospective intra-individual blinded comparison of [¹⁸F]PSMA-1007 and [⁶⁸Ga]Ga-PSMA-11 PET/CT imaging in patients with confirmed prostate cancer. *Eur J Nucl Med Mol Imaging*, 2022;49:763–776.
- Vollnberg B, Alberts I, Genitsch V, Rominger A, Afshar-Oromieh A. Assessment of malignancy and PSMA expression of uncertain bone foci in [¹⁸F]PSMA-1007 PET/CT for prostate cancer-a single-centre experience of PET-guided biopsies. *Eur J Nucl Med Mol Imaging*. 2022;49:3910–3916.
- Fendler WP, Calais J, Eiber M, et al. Assessment of ⁶⁸Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. *JAMA Oncol.* 2019;5:856–863.
- Hofman MS, Lawrentschuk N, Francis RJ, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. *Lancet.* 2020;395:1208–1216.
- Morris MJ, Rowe SP, Gorin MA, et al. Diagnostic performance of ¹⁸F-DCFPyL-PET/CT in men with biochemically recurrent prostate cancer: results from the CONDOR phase III, multicenter study. *Clin Cancer Res.* 2021;27:3674–3682.
- Giesel FL, Will L, Lawal I, et al. Intraindividual comparison of ¹⁸F-PSMA-1007 and ¹⁸F-DCFPyL PET/CT in the prospective evaluation of patients with newly diagnosed prostate carcinoma: a pilot study. *J Nucl Med.* 2018;59:1076–1080.
- Grünig H, Maurer A, Thali Y, et al. Focal unspecific bone uptake on [¹⁸F]-PSMA-1007 PET: a multicenter retrospective evaluation of the distribution, frequency, and quantitative parameters of a potential pitfall in prostate cancer imaging. *Eur J Nucl Med Mol Imaging*. 2021;48:4483–4494.
- Eiber M, Kroenke M, Wurzer A, et al. ¹⁸F-rhPSMA-7 PET for the detection of biochemical recurrence of prostate cancer after radical prostatectomy. *J Nucl Med.* 2020;61:696–701.
- Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. *Clin Cancer Res.* 1997;3:81–85.
- Backhaus P, Noto B, Avramovic N, et al. Targeting PSMA by radioligands in nonprostate disease—current status and future perspectives. *Eur J Nucl Med Mol Imaging*. 2018;45:860–877.