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This paper proposes a novel method for automatic quantification of
amyloid PET using deep learning–based spatial normalization (SN) of
PET images, which does not require MRI or CT images of the same
patient. The accuracy of the method was evaluated for 3 different
amyloid PET radiotracers compared with MRI-parcellation–based PET
quantification using FreeSurfer.Methods: A deep neural networkmodel
used for the SN of amyloid PET images was trained using 994 multicen-
ter amyloid PET images (367 18F-flutemetamol and 627 18F-florbetaben)
and the corresponding 3-dimensional MR images of subjects who had
Alzheimer disease or mild cognitive impairment or were cognitively nor-
mal. For comparison, PET SN was also conducted using version 12
of the Statistical Parametric Mapping program (SPM-based SN). The
accuracy of deep learning–based and SPM-based SN and SUV ratio
quantification relative to the FreeSurfer-based estimation in individual
brain spaces was evaluated using 148 other amyloid PET images (64
18F-flutemetamol and 84 18F-florbetaben). Additional external valida-
tion was performed using an unseen independent external dataset
(30 18F-flutemetamol, 67 18F-florbetaben, and 39 18F-florbetapir).
Results: Quantification results using the proposed deep learning–
based method showed stronger correlations with the FreeSurfer esti-
mates than SPM-based SN using MRI did. For example, the slope,
y-intercept, and R2 values between SPM and FreeSurfer for the
global cortex were 0.869, 0.113, and 0.946, respectively. In contrast,
the slope, y-intercept, and R2 values between the proposed deep
learning–based method and FreeSurfer were 1.019, 20.016, and
0.986, respectively. The external validation study also demonstrated
better performance for the proposed method without MR images
than for SPM with MRI. In most brain regions, the proposed method
outperformed SPM SN in terms of linear regression parameters and
intraclass correlation coefficients. Conclusion:We evaluated a novel
deep learning–based SN method that allows quantitative analysis of
amyloid brain PET images without structural MRI. The quantification
results using the proposed method showed a strong correlation with
MRI-parcellation–based quantification using FreeSurfer for all clinical
amyloid radiotracers. Therefore, the proposed method will be useful
for investigating Alzheimer disease and related brain disorders using
amyloid PET scans.

Key Words: amyloid PET; spatial normalization; deep learning;
quantification

J Nucl Med 2023; 64:659–666
DOI: 10.2967/jnumed.122.264414

Because of the nature of brain diseases, the pathologic condi-
tion of the brain should be evaluated noninvasively. PET is a use-
ful imaging tool for assessing the functional and molecular status
of the brain (1,2). The application of brain PET imaging in the
diagnosis and treatment of degenerative brain diseases is widely
increasing (3–5). In Alzheimer disease (AD), the most common
degenerative brain disease, brain deposition of fibrillar amyloid
b-plaques is a neuropathologic hallmark for diagnosis. Therefore,
amyloid PET has significantly contributed to the diagnosis and
treatment of AD.
Visual assessment of PET images by nuclear medicine physicians

or radiologists is the standard method for clinical neuroimaging inter-
pretation. Nevertheless, quantitative and statistical analyses of PET
images are widely used in brain disease research (1,2,6–9) because
such analyses provide useful information for objective interpretation
of the PET images of individual patients. The most prevalent method
of quantitative image analysis is evaluating regional uptake of radio-
tracers by manually drawing a region of interest or volume of interest
(VOI) on individual brain PET images. Another common method for
brain PET image analysis is voxelwise statistical analysis, which is
based on spatial normalization (SN) of images (10–12). Furthermore,
brain PET SN allows the use of predefined VOIs, which are a suit-
able alternative to laborious and time-consuming manual VOI draw-
ing (13–19).
Monoclonal antibodies such as aducanumab and donanemab are

emerging as AD treatment drugs that target aggregated amyloid b

to reduce its buildup in the brain (20,21). Therefore, the importance
of quantification methods for amyloid brain PET images with high
objectivity, accuracy, and reproducibility is increasing. Although
voxelwise statistical analysis and predefined-VOI–based automated
anatomic labeling are objective and efficient methods for amyloid
brain PET image analysis, their reliability depends primarily on the
accuracy of the SN procedure. However, accurate amyloid PET SN
without the complementary use of anatomic images, such as MRI
or CT, is technically challenging because of the large discrepancy
in amyloid deposit patterns between cognitively normal and abnormal
cases (22–24). Additionally, severe cerebral atrophy and hydrocepha-
lus, which are frequently observed in older patients, complicate SN.
Previously, we proposed 2 deep-learning–based amyloid PET SN
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methods that did not require matched MRI or CT data (25,26). In
one of these approaches (25), we used a generative adversarial net-
work to generate pseudo-MRI data from amyloid PET and applied
spatial transformation parameters—obtained by performing SNs of
pseudo-MR images on the MRI template—to amyloid PET images.
In the second approach (26), we used deep neural networks
(DNNs) to generate adaptive PET templates for individual amyloid
PET images and performed SN of amyloid PET images using indi-
vidual adaptive templates. Both approaches showed a strong corre-
lation of regional SUV ratio (SUVR) relative to cerebellar activity
with the matched MRI-based PET SN and outperformed the MRI-
less SN with the average amyloid PET template. However, these
methods have the following limitations: first, the process of gener-
ating a pseudo-MRI or adaptive template using DNNs and the SN
process are separated. Second, we used the SN algorithm provided
by the Statistical Parametric Mapping (SPM; Wellcome Centre for
Human Neuroimaging) software, which iteratively applies image
registration and segmentation algorithms (27). Therefore, the accu-
racy and speed of the entire SN pipeline depend on the SN perfor-
mance and computation time of SPM. These limitations undermine
the advantage of not requiring matched MRI for amyloid PET SN
in both approaches.
Therefore, in this study, we developed a novel MRI-less amyloid

PET SN method that allows 1-step generation of spatially normalized
PET images using cascaded DNNs that estimate linear and nonlinear
SN parameters from individual amyloid PET images. Furthermore,
we evaluated the accuracy of the proposed method for 3 different
amyloid PET radiotracers compared with MRI-parcellation–based
PET quantification using FreeSurfer (28), which has shown a strong
correlation with a manual-drawing method in cortical thickness and
volume measurement (29–31) and in regional amyloid load estimation
(32,33) but requires a significantly longer computation time (�8 h).

MATERIALS AND METHODS

Datasets
To train and test the DNN model for PET SN, we used an open-

access dataset provided by the National Information Society Agency
(https://aihub.or.kr/). This internal dataset comprised pairs of multicen-
ter amyloid PET scans (18F-florbetaben or 18F-flutemetamol) and struc-
tural T1-weighted 3-dimensional MRI scans of patients with AD or
mild cognitive impairment and cognitively normal subjects. The image
data were acquired from 6 university hospitals in South Korea. The
demographic information and clinical diagnoses of the training and test
sets are summarized in Table 1. A public institutional bioethics com-
mittee designated by the Ministry of Health and Welfare of South
Korea approved the retrospective use of the scan data and waived the
need for informed consent.

Furthermore, the trained network was evaluated using an external
dataset obtained from the Global Alzheimer Association Interactive
Network (http://www.gaain.org/centiloid-project). The trained network
was tested for 3 different Food and Drug Administration–approved
amyloid tracers: 18F-florbetaben, 18F-flutemetamol, and 18F-florbetapir.
Originally, this dataset, comprising young controls and elderly sub-
jects, was acquired for the centiloid calibration of each tracer (34–36).
The demographic information is summarized in Table 2.

Network Model
The proposed DNN model, comprising cascaded U-nets (37,38),

takes an affine-registered amyloid PET image as input and generates
local displacement fields for nonlinear registration (Supplemental Fig. 1;
supplemental materials are available at http://jnm.snmjournals.org).
The generated displacement fields were then applied to the coregistered
MR images in the training phase, and the cross-correlation loss between
the spatially normalized MR images and the T1 template (individual

TABLE 1
Demographic and Clinical Diagnosis of Training and Test Datasets

Sex Diagnosis Tracer

Parameter n Age (y) M F NC MCI AD FMM FBB

Training set 994 73.2 6 5.6 318 676 200 543 251 367 627

Test set 148 74.8 6 6.6 75 73 26 85 37 64 84

NC 5 cognitively normal control; MCI 5 mild cognitive impairment; FMM 5 18F-flutemetamol; FBB 5 18F-florbetaben.

TABLE 2
Demographic and Clinical Diagnosis of External

Test Dataset

Diagnosis

Tracer n Young control Elderly

18F-florbetaben 30 8 22
18F-flutemetamol 67 22 45
18F-florbetapir 39 12 27

Age and sex were anonymized.

FIGURE 1. Three approaches used to estimate regional SUVR from
amyloid PET images are compared in this study: DNN-based PET SN (A),
PET/MRI coregistration and MRI-based PET SN using SPM (B), and
PET/MRI coregistration and MRI parcellation using FreeSurfer (C).
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Montreal Neurological Institute [MNI] 152)
was minimized by error back propagation.
Additionally, the gray matter segment of each
MR image was used to improve the perfor-
mance of the trained network and deformed
using the same displacement fields as shown
in Supplemental Figure 1. Dice loss was calcu-
lated between the deformed gray matter seg-
ment and the gray matter of the MNI 152
template, which was minimized along with the
cross-correlation loss. On-the-fly data augmen-
tation was applied when training the network
model to prevent parameter overfitting. Spa-
tially normalized PET images were not required
in the training phase, and only PET images in
individual spaces were used to create defor-
mation fields. When the DNN model was
trained, only PET images in an individual space
were fed into the DNN model to generate SN
images in the template space (Fig. 1A).

Quantification of Amyloid Load
SN was conducted using the SPM program (version 12; https://

www.fil.ion.ucl.ac.uk/spm) for comparison (Fig. 1B). Using the SPM
program, PET and MRI pairs were coregistered, and the MR images

FIGURE 2. SNof 18F-florbetabenPET in amyloid-positive case: input image in individual space (A),MRI-
based SN using SPM (B), PET SN using DNN (C), T1 MRI template (D), and estimated deformation fields
usingDNN (E). Red arrows indicate the enlarged ventricles,which are not properly deformedbySPM.

FIGURE 3. SN result of patient with chronic stroke lesion using proposed
method. (A) Patient’s original FLAIR MRI (top), 18F-florbetaben (middle), and
PET/MRI fusion (bottom). (B) SN PET overlaid on standard T1 MRI template.

FIGURE 4. Internal validation: SUVR comparison in 18F-florbetaben and
18F-flutemetamol (n 5 148). x-axis represents ground truth SUVR esti-
mated in individual space using FreeSurfer VOI, whereas y-axis repre-
sents SUVR estimated in template space using coregistered MRI and
SPM (black symbols and lines) or proposed DNN (blue symbols and
lines). PCC5 posterior cingulate cortex.
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were spatially normalized. MRI SN was performed using a unified seg-
mentation method that applies tissue probability maps as deformable
spatial priors for regularization of the nonlinear deformations (27). The
PET images were then spatially normalized using the deformation fields
estimated from the paired MRI.

Using the VOIs predefined in the template space, regional PET
counts were extracted from spatially normalized images using DNN or
SPM. The predefined VOIs were generated by applying automatic
MRI parcellation using FreeSurfer software (version 7.1.0; Martinos
Center for Biomedical Imaging) to the MNI template (39,40). The cor-
tical and subcortical structures segmented and parcellated by FreeSur-
fer were grouped into 6 composite VOIs: global cerebral cortex, frontal
lobe, posterior cingulate cortex and precuneus, lateral parietal, lateral
temporal, and medial temporal. The counts of the VOIs were then
divided by the counts of the cerebellar gray matter to calculate SUVR.

As a reference, SUVRs in individual brain spaces were estimated
using T1-weighted 3-dimensional MR images and FreeSurfer (Fig. 1C).
The results of the FreeSurfer segmentation of MR images were visually
inspected by a neuroscience expert to ensure the quality of all datasets.
About 10% of the datasets were excluded because of incomplete cortex
segmentation or cessation of the FreeSurfer program. Cases of failure
were higher in elderly subjects (young controls, 8.7%; elderly, 10.5%).
Finally, the 6 composite VOIs were applied to the coregistered amyloid
brain PET images to calculate SUVR. FreeSurfer SUVR estimated in
individual space was regarded as ground truth because FreeSurfer and

manual-drawing approaches achieved nearly identical estimates of amy-
loid load (32).

Statistical Analysis
The correlation between SN-based approaches (DNN or SPM) and

the FreeSurfer approach was evaluated using Pearson correlation. Fur-
thermore, we performed a Bland–Altman analysis on the SUVR.
Additionally, intraclass correlation coefficients were calculated to
assess the consistency of the quantification results.

RESULTS

After network training, the proposed DNN method successfully
generated displacement fields for SN and achieved accurate spatially
normalized PET images, as shown in Figure 2 and Supplemental Fig-
ure 2. However, the SPM SN was not sufficiently accurate for patients
with severe ventricular enlargement (Fig. 2; Supplemental Fig. 2);
nonetheless, the ventricular enlargement did not degrade the perfor-
mance of the proposed method. Figure 2 and Supplemental Figure 2
show a representative amyloid-positive case and an amyloid-negative
case with a global SUVR of 1.889 (73-y-old woman; diagnosis, AD;
tracer,18F-florbetaben) and 1.318 (80-y-old woman; cognitively nor-
mal; tracer,18F-florbetaben), respectively.
The proposed DNN method is also robust in the SN of lesioned

brains. Figure 3 and Supplemental Figure 3 show the SN result for

FIGURE 5. External validation: SUVR comparison in 18F-florbetaben
(n 5 30). x-axis represents ground truth SUVR estimated in individual
space using FreeSurfer VOI, whereas y-axis represents SUVR estimated
in template space using coregistered MRI and SPM (black symbols and
lines) or proposed DNN (blue symbols and lines). PCC 5 posterior cingu-
late cortex.

FIGURE 6. External validation: SUVR comparison in 18F-flutemetamol
(n 5 67). x-axis represents ground truth SUVR estimated in individual
space using FreeSurfer VOI, whereas y-axis represents SUVR estimated
in template space using coregistered MRI and SPM (black symbols and
lines) or proposed DNN (blue symbols and lines). PCC 5 posterior cingu-
late cortex.
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a patient (84-y-old woman; tracer,18F-florbetaben) with a chronic
stroke lesion using the proposed method, thereby enabling accu-
rate SN with no shrinkage in lesion volume.
Additionally, the proposed DNN method correlated better with the

FreeSurfer approach than did SPM SN for all 3 tested radiotracers
and most of the tested VOIs (Figs. 4–7; Tables 3–6). Furthermore,
the proposed method yielded higher intraclass correlation coefficient

results than did SPM in almost all comparisons (Tables 3–6). More-
over, the proposed method showed a lower bias in SUVR estimation
in the Bland–Altman analysis (Supplemental Figs. 4–7). No remark-
able differences were observed between the internal and external
validation results. Although the 18F-florbetapir data were not used
in the DNN training, the proposed method showed no performance
degradation for the external 18F-florbetapir dataset. The results of
separate analysis for amyloid-positive and -negative cases, which
were divided by a global SUVR of 1.5, are summarized in Supple-
mental Tables 1–4.
The computation time required for PET SN using the proposed

method was approximately 1 s. Conversely, SPM required more
than 60 s for the batch operation, which included coregistration
between PET and MRI, SN parameter estimation from MRI, and
writing of the spatially normalized PET image. FreeSurfer required
approximately 8 h for automatic MRI parcellation.

DISCUSSION

In this study, we developed a fast amyloid brain PET SN method
based on DNNs to overcome the limitations of existing approaches
based on paired anatomic images or patient-specific templates
(25,26,32). Furthermore, we assessed the correlation and measure-
ment consistency between the proposed method and FreeSurfer-
based SUVR quantification, which showed a strong correlation
with the manual VOI approach (32). In terms of correlation and
consistency with the FreeSurfer-based approach, the DNN-based
PET SN method outperformed MRI-based PET SN conducted
using the coregistration and SN routines of SPM, which is one of
the most widely used pipelines for amyloid brain PET research.
The DNN model trained in this study allowed a robust SN of

amyloid PET images without MRI. The superiority of the SN per-
formance of the proposed method compared with that of SPM SN
using MRI was most pronounced in cases with hydrocephalus, as
shown in Figure 2 and Supplemental Figure 2. The DNN model
trained using nearly 1,000 datasets with on-the-fly data augmenta-
tion was able to generate SN PET images that were morphologi-
cally consistent with the standard MRI template. Although the
DNN model was trained using a Korean dataset, no performance
difference was observed when it was applied to external datasets
obtained from other countries. Accurate SN of the lesioned brain
was also possible, as shown in Figure 3, without shrinkage of the
lesion volume, which is frequently observed in conventional SN

FIGURE 7. External validation: SUVR comparison in 18F-florbetapir (n 5

39). x-axis represents ground truth SUVR estimated in individual space
using FreeSurfer VOI, whereas y-axis represents SUVR estimated in tem-
plate space using coregistered MRI and SPM (black symbols and lines) or
proposed DNN (blue symbols and lines). PCC5 posterior cingulate cortex.

TABLE 3
Internal Validation: Pearson Correlation and ICC Analysis for SUVR of Internal 18F-Florbetaben and 18F-Flutemetamol

Dataset (n 5 148) Relative to FreeSurfer Approach

SPM Proposed

Parameter Slope y-intercept R2 ICC Slope y-intercept R2 ICC

Global 0.869 0.113 0.946 0.965 1.019 20.016 0.986 0.992

Frontal 0.956 0.183 0.947 0.946 0.983 0.019 0.987 0.992

PCC–precuneus 0.877 0.158 0.950 0.921 0.998 0.026 0.981 0.993

Lateral parietal 0.734 0.267 0.910 0.970 0.936 0.092 0.977 0.988

Lateral temporal 0.853 0.173 0.957 0.865 1.008 0.003 0.987 0.987

Medial temporal 0.879 0.269 0.732 0.554 0.944 0.125 0.891 0.861

PCC 5 posterior cingulate cortex.
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approaches (41). However, despite the use of MRI, SPM SN could
not compensate for the large morphologic differences between the
input images and the template. In the SN algorithm used in SPM,
the images are deformed by the linear combination of 1,000 cosine
transform bases, which allowed only a limited amount of image
deformation.
A potential alternative approach to the proposed method is gener-

ating spatially normalized amyloid PET images directly from individ-
ual PET inputs using DNNs. This method is faster than the proposed
method considering it directly conducts SN without generating
explicit deformation fields. However, direct SN methods are more
susceptible to the perturbation of input images because of noise.
Therefore, it is difficult to ensure maintenance of regional count rate
concentrations after the direct SN of brain PET images. However,
the DNN model used in the proposed method does not directly pro-
vide the intensity of SN images. The intensities were calculated by
interpolating neighbor voxel values using DNN-generated deforma-
tion fields, which reduced the risk of erroneous intensity mapping by
the SN. In addition, the DNN model trained for deformation field
generation using amyloid PET images can be used for transfer learn-
ing on other radiotracers with small datasets available. Our prelimi-
nary (unpublished data, June 2022) study on 18F-flortaucipir showed

that the transfer learning allows for highly accurate quantification of
18F-flortaucipir brain PET using the proposed method.
The proposed fast and reliable deep-learning–based SN of

amyloid PET images can potentially be used to improve inter-
reader agreement on, and confidence in, amyloid PET interpreta-
tion. In our previous study (42), when visual amyloid PET
interpretation was supported by a deep-learning model that
directly estimated regional SUVR from input images (43), inter-
reader agreement (Fleiss k-coefficient) and the confidence score
increased from 0.46 to 0.76 and from 1.27 to 1.66, respectively.
The method proposed here requires a longer computation time
for regional SUVR calculation than the direct end-to-end SUVR
estimation, mainly because of the voxel-by-voxel multiplication
of SN results and the predefined brain atlas. However, the reli-
ability of the amyloid burden estimation based on the proposed
method is higher, considering that the proposed method allows
visual confirmation of SN results and exclusion of cases with
erroneous SNs. Furthermore, accurate automatic quantification
of amyloid burden can be used in longitudinal follow-up studies
on patients with AD and mild cognitive impairment. Several
dementia treatment drugs based on the amyloid hypothesis are
now emerging, and amyloid PET scans are important for

TABLE 4
External Validation: Pearson Correlation and ICC Analysis for SUVR of External 18F-Florbetaben Dataset (n 5 30)

Relative to FreeSurfer Approach

SPM Proposed

Parameter Slope y-intercept R2 ICC Slope y-intercept R2 ICC

Global 0.853 0.167 0.979 0.972 1.003 20.006 0.995 0.998

Frontal 0.836 0.181 0.983 0.966 0.970 0.010 0.995 0.994

PCC–precuneus 0.970 0.121 0.986 0.981 0.990 0.019 0.993 0.996

Lateral parietal 0.821 0.209 0.965 0.961 0.994 0.016 0.996 0.998

Lateral temporal 0.794 0.151 0.936 0.879 0.963 0.054 0.986 0.993

Medial temporal 0.972 0.134 0.898 0.800 0.990 0.062 0.931 0.927

PCC 5 posterior cingulate cortex.

TABLE 5
External Validation: Pearson Correlation and ICC Analysis for SUVR of External 18F-Flutemetamol (n 5 67)

Relative to FreeSurfer Approach

SPM Proposed

Parameter Slope y-intercept R2 ICC Slope y-intercept R2 ICC

Global 0.907 0.104 0.979 0.977 1.033 20.020 0.990 0.989

Frontal 0.893 0.117 0.976 0.975 1.025 20.015 0.990 0.987

PCC–precuneus 0.978 0.150 0.978 0.945 1.024 20.032 0.985 0.984

Lateral parietal 0.919 0.103 0.975 0.969 1.001 0.036 0.987 0.979

Lateral temporal 0.794 0.136 0.946 0.844 0.986 0.042 0.984 0.984

Medial temporal 0.943 0.206 0.857 0.758 0.921 0.149 0.926 0.931

PCC 5 posterior cingulate cortex.
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monitoring the efficacy of treatments. The proposed method will
enable an objective measurement of drug-induced amyloid clearance
without requiring additional 3-dimensional structural MRI.

CONCLUSION

We evaluated a novel deep-learning–based SN method that allows
quantitative analysis of amyloid brain PET images without structural
MRI. The quantification results using the proposed method correlated
strongly with MRI-parcellation–based quantification using FreeSurfer
for all clinical amyloid radiotracers. Therefore, the proposed method
will be useful for investigating AD and related brain disorders using
amyloid PET scans.
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KEY POINTS

QUESTION: Is quantification of amyloid PET images without MRI
feasible?

PERTINENT FINDINGS: A method based on deep learning
allowed fast and reliable amyloid PET SN and quantification
without MRI.

IMPLICATIONS FOR PATIENT CARE: The proposed method will
be useful for interpreting amyloid PET scans in AD and related
brain disorders.
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