
Clinical Decision Support for Axillary Lymph Node Staging
in Newly Diagnosed Breast Cancer Patients Based on
18F-FDG PET/MRI and Machine Learning

Janna Morawitz1, Benjamin Sigl2, Christian Rubbert1, Nils-Martin Bruckmann1, Frederic Dietzel1, Lena J. H€aberle3,
Saskia Ting4, Svjetlana Mohrmann5, Eugen Ruckh€aberle5, Ann-Kathrin Bittner6, Oliver Hoffmann6, Pascal Baltzer2,
Panagiotis Kapetas2, Thomas Helbich2, Paola Clauser2, Wolfgang P. Fendler7, Christoph Rischpler7, Ken Herrmann7,
Benedikt M. Schaarschmidt8, Andreas Stang9, Lale Umutlu8, Gerald Antoch1, Julian Caspers*1, and Julian Kirchner*1

1Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany;
2Department of Biomedical Imaging and Image-Guided Therapy, Division of General Radiology, Medical University of Vienna, Vienna,
Austria; 3Institute of Pathology, Medical Faculty, Heinrich Heine University and University Hospital Duesseldorf, Duesseldorf,
Germany; 4Institute of Pathology, University Hospital Essen, West German Cancer Center, University of Duisburg–Essen and the
German Cancer Consortium (DKTK), Essen, Germany; 5Department of Gynecology, University of Duesseldorf, Medical Faculty,
Duesseldorf, Germany; 6Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg–Essen, Essen,
Germany; 7Department of Nuclear Medicine, University Hospital Essen, University of Duisburg–Essen and German Cancer
Consortium (DKTK), Essen, Germany; 8Department of Diagnostic and Interventional Radiology and Neuroradiology, University
Hospital Essen, University of Duisburg–Essen, Essen, Germany; and 9Institute of Medical Informatics, Biometry, and Epidemiology,
Essen University Medical Center, Essen, Germany

In addition to its high prognostic value, the involvement of axillary
lymph nodes in breast cancer patients also plays an important role in
therapy planning. Therefore, an imaging modality that can determine
nodal status with high accuracy in patients with primary breast cancer
is desirable. Our purpose was to investigate whether, in newly diag-
nosed breast cancer patients, machine-learning prediction models
based on simple assessable imaging features on MRI or PET/MRI are
able to determine nodal status with performance comparable to that
of experienced radiologists; whether such models can be adjusted to
achieve low rates of false-negatives such that invasive procedures
might potentially be omitted; and whether a clinical framework for
decision support based on simple imaging features can be derived
from these models. Methods: Between August 2017 and September
2020, 303 participants from 3 centers prospectively underwent dedi-
cated whole-body 18F-FDG PET/MRI. Imaging datasets were evalu-
ated for axillary lymph node metastases based on morphologic and
metabolic features. Predictive models were developed for MRI and
PET/MRI separately using random forest classifiers on data from 2
centers and were tested on data from the third center. Results: The
diagnostic accuracy for MRI features was 87.5% both for radiologists
and for the machine-learning algorithm. For PET/MRI, the diagnostic
accuracy was 89.3% for the radiologists and 91.2% for the machine-
learning algorithm, with no significant differences in diagnostic perfor-
mance between radiologists and the machine-learning algorithm for
MRI (P 5 0.671) or PET/MRI (P 5 0.683). The most important lymph
node feature was tracer uptake, followed by lymph node size. With an
adjusted threshold, a sensitivity of 96.2% was achieved by the ran-
dom forest classifier, whereas specificity, positive predictive value,
negative predictive value, and accuracy were 68.2%, 78.1%, 93.8%,
and 83.3%, respectively. A decision tree based on 3 simple imaging

features could be established for MRI and PET/MRI. Conclusion:
Applying a high-sensitivity threshold to the random forest results
might potentially avoid invasive procedures such as sentinel lymph
node biopsy in 68.2% of the patients.

Key Words: breast cancer; lymph node metastases; machine learning;
PET/MRI

J Nucl Med 2023; 64:304–311
DOI: 10.2967/jnumed.122.264138

With more than 2.3 million cases in 2020, breast cancer repre-
sents the world’s most prevalent cancer (1). In primary breast cancer,
axillary lymph node involvement is the most important predictor of
overall survival and recurrence in breast cancer patients (2) and has a
decisive influence on the therapy regime. Whereas a few years ago
mastectomy and extensive axillary dissection were performed in
most clinically node-positive patients, advances in imaging, among
other factors, have helped to make therapeutic options for local con-
trol much less invasive (3,4). When imaging procedures such as
sonography and mammography do not reveal affected axillary lymph
nodes, sentinel lymph node biopsy is now the gold standard for clini-
cally node-negative patients (5). With regard to the planned therapy,
this is decisive, because depending on these findings, axillary dissec-
tion and axillary radiation are further therapy options (6). Nearly
60% of breast carcinoma patients do not have lymph node metasta-
ses at the time of initial diagnosis (7). These patients, in particular,
would benefit from deescalation of invasive procedures. Although
the recently introduced Node-RADS (Reporting and Data System)
classification tries to standardize reporting of possible lymph node
metastases (8), no universal consensus exists on objective criteria for
evaluation of metastatic disease in the axillary lymph nodes of breast
cancer patients, and N staging by imaging remains a challenge
(7,9,10).
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In recent years, artificial intelligence and machine learning have
emerged strongly into the medical imaging field (11). Thus, incor-
porating machine-learning models into imaging-based decision-
support tools has great potential to enhance diagnostic workup in
breast cancer patients.
Therefore, the aim of this study was to investigate whether, in

newly diagnosed breast cancer patients, machine-learning predic-
tion models based on simple and easily assessable imaging features
on MRI or PET/MRI are able to detect lymph node metastases
with performance comparable to that of experienced radiologists;
whether such models can be adjusted to achieve low rates of false-
negatives such that invasive procedures might potentially be omit-
ted; and whether a clinical framework for decision support based
on simple imaging features can be derived from these models.

MATERIALS AND METHODS

Because of the multiple aims of this study, the workflow was structured
into 3 consecutive steps involving different methods. All calculations were
based on the assessment of predefined imaging features of axillary lymph
nodes by radiologists. First, machine-learning–based prediction models
applying random forest classifiers were developed using the imaging fea-
tures derived from the radiologist reader assessments, and their predictive
performance on an independent test sample was compared with that of
radiologists. Second, the random forest classifiers were adjusted to

minimize false-negative results by receiver-operating-characteristic (ROC)
area-under-the-curve (AUC) optimization. Third, to facilitate a simple
decision framework for everyday clinical routine, a simple decision tree
classifier was trained on the imaging features independently of the opti-
mized random forest classifiers trained beforehand.

Participant Population, Inclusion Criteria, and
Imaging Protocol

The study sample consisted of 2 samples: a training sample derived
from 2 centers (University Hospital Duesseldorf and University Hospi-
tal Essen) and a testing sample from a third center (Medical University
of Vienna, General Hospital).

For the training sample, 255 participants were prospectively included
(Fig. 1). All had newly diagnosed, therapy-naïve breast cancer with at least
one of the following criteria for a worse prognosis: a newly diagnosed,
therapy-naïve T2 tumor or a higher T stage; a newly diagnosed, therapy-
naïve triple-negative tumor of any size; or a newly diagnosed, therapy-
naïve tumor with a high-risk molecular profile (Ki-67 . 14%, grade 3, or
overexpression of human epidermal growth factor receptor type 2). All par-
ticipants underwent whole-body 18F-FDG PET/MRI. Some participants
have been reported before (7,12,13). This study was approved by the local
ethics committees (study 6040R, 17-7396-BO 1 510-2009). The test sam-
ple consisted of 48 participants. All PET/MRI examinations were per-
formed on an integrated hybrid 3.0-T PET/MRI system (Biograph mMR;
Siemens Healthcare) (14).

Image Analysis
Imaging data from the training and test samples were analyzed by 1

reader, whereas data from the test sample were additionally rated by a sec-
ond reader. MRI or PET/MRI datasets were analyzed in random order
using an Osirix workstation (Pixmeo SARL). Readers were unaware of
participant identity and all clinical information except for the diagnosis of
breast cancer. For every participant, the presence or absence of axillary
lymph node metastasis was evaluated on MRI and subsequently on
PET/MRI separately. This assessment was of predefined imaging features
of the most suggestive axillary lymph node for each participant. The mor-
phologic features for the assessment of lymph node metastases were
short-axis diameter in millimeters, irregular margin (yes/no), inhomoge-
neous cortex (yes/no), intact nodal border (yes/no), perifocal edema (yes/
no), absence of fatty hilum (yes/no), and contrast medium enhancement
(yes/no) (Fig. 2). On PET/MRI, tracer uptake in terms of the SUVmax of
the selected lymph node was assessed by manually drawing a region of
interest around the respective lymph node. A lymph node SUVmax ratio

was calculated, with the blood pool SUVmax of
the ascending aorta as the denominator. Consid-
ering all criteria together, each reader then made
a final evaluation of the lymph node status,
although an absolute number of positive find-
ings did not have to be present to evaluate the
lymph node as benign or malignant.

Reference Standard
In all participants, the histopathologic find-

ings for the axillary lymph nodes served as
the reference standard. If available, sentinel
lymph node biopsy or axillary dissection was
used. Otherwise, histopathologic results were
derived from pretherapeutic ultrasound-
guided core-needle biopsy of the suggestive
lymph node. If no sufficient pretherapeutic
sampling of lymph nodes was available, sen-
tinel lymph node excision or axillary dissec-
tion after neoadjuvant systemic therapy was
used as the reference standard. In these cases,

276 participants with primary breast cancer
1) newly diagnosed, therapy-naive T2 tumor or higher T-stage or
2) newly diagnosed, therapy-naive triple-negative tumor of any size or
3) newly diagnosed, therapy-naive tumor with a high-risk molecular 

profile (Ki67 > 14%, G3 or Her2neu-overexpression)

21 participants excluded because 
of missing histopathological 
workup of axillary lymph nodes

255 participants included in the study

FIGURE 1. Flowchart of included and excluded participants. G3 5

grade 3; Her2neu5 human epidermal growth factor receptor type 2.

FIGURE 2. Examples of morphologic and metabolic features for assessment of axillary lymph
nodes in axial T1-weighted, volume-interpolated breath-hold examination, fat-saturated, contrast-
enhanced images. Enlarged lymph node has short-axis diameter of 31 mm. Lymph node with
increased 18F-FDG uptake has SUVmax of 13.1.
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additional histopathologic preparations were evaluated, using focal
fibrosis or focal necrosis as retrospective indicators of previously via-
ble lymph node metastasis (15,16).

Model Development
Predictive models were developed for MRI and PET/MRI sepa-

rately using random forest classifiers. For each modality, a random
forest classifier was trained using the imaging features derived from
the reader assessment as input features and the dichotomous reference
standard (benign or malignant) as output.

To further optimize the classification of the models for sensitivity
and minimize false-negatives (to identify a rule-out criterion), an
adjusted random forest model was developed by adjusting the classifi-
cation threshold of a trained random forest model on an independent
validation set that was split from the training sample beforehand

(80:20 stratified split) so that sensitivities of more than 0.95 were
achieved on this validation set.

To additionally create more clinically interpretable classifiers, sim-
ple decision-tree classifiers with a maximum depth of 3 were addition-
ally built using Gini impurity as the optimization criterion.

The model was developed using the scikit-learn library (version
0.24.2) in Python 3.9.

Statistics
For statistical analyses, SPSS Statistics (version 21; IBM) was used.

Demographic participant data were reported using descriptive statistics.
The Cohen k was used to calculate interrater reliability between the 2
readers regarding prediction of lymph node status (metastatic vs. non-
metastatic) on MRI and PET/MRI. The diagnostic performance of the
radiologists and machine-learning models for lymph node status on

TABLE 1
Participant Demographics and Tumor Characteristics

Parameter Training sample Testing sample P

Total participants 255 48

Mean age (6SD) 51.2 6 11.9 y 52.2 6 12.2 y 0.689

Lymph node status (reference standard)

Negative 154 (60.4%) 26 (54.2%) 0.420

Positive 101 (39.6%) 22 (45.8%)

Menopause status

Premenopausal 111 (43.5%) 18 (37.5%) 0.737

Perimenopausal 25 (9.8%) 5 (10.4%)

Postmenopausal 119 (46.7%) 25 (52.1%)

Ki-67

Positive . 14% 226 (88.6%) 41 (85.4%) 0.528

Negative , 14% 29 (11.4%) 7 (14.6%)

Progesterone status

Positive 169 (66.3%) 29 (60.4%) 0.433

Negative 86 (33.7%) 19 (39.6%)

Estrogen status

Positive 187 (73.3%) 28 (58.3%) ,0.01

Negative 68 (26.7%) 20 (41.7%)

HER2neu expression

0 97 (38.0%) 23 (47.9%) 0.479

11 73 (28.6%) 14 (29.2%)

21 34 (13.3%) 5 (10.4%)

31 51 (20.0%) 6 (12.5%)

Tumor grade

1 10 (3.9%) 4 (8.3%) 0.025

2 137 (53.7%) 16 (33.3%)

3 108 (42.4%) 28 (58.3%)

Histology

No special type 222 (87.1%) 42 (87.5%) , 0.01

Lobular invasive 25 (9.8%) 0 (0%)

Other 8 (3.1%) 6 (12.5%)

HER2neu 5 human epidermal growth factor receptor type 2.
Data are number and percentage, except for age.
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MRI and PET/MRI was assessed by determining sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV), accu-
racy, and ROC AUC. A McNemar test was used to compare the diag-
nostic performance of the radiologists with that of the machine-learning
models. A Pearson x2 test was used to compare the tumor characteris-
tics between the training and validation samples. Statistical significance
was defined as a P value of less than 0.05.

RESULTS

Participant Demographics and Reference Standard
In this study, 255 female participants (mean age, 51.2 6 11.9 y)

from 2 centers were included for the training sample (Fig. 1).
According to the reference standard, 101 of the 255 (39.6%) were
node-positive and 154 (60.4%) were node-negative.
For the testing sample, 48 female participants (mean age,

52.2 6 12.2 y) from a third center were evaluated. According to
the reference standard, 26 of the 48 (54.2%) were node-negative
and 22 (45.8%) were node-positive. The demographics and tumor
characteristics of all participants are in Table 1.

Radiologist Performance
On the basis of MRI data, the radiologist was able to determine

the correct lymph node status in 218 of 255 participants (85.5%)
in the training set. This yielded a diagnostic performance indicated
by sensitivity, specificity, PPV, NPV, and accuracy of 74.3%,
92.9%, 87.2%, 84.6%, and 85.5%, respectively, for the training
sample (Supplemental Table 1; supplemental materials are avail-
able at http://jnm.snmjournals.org). Corresponding results for radi-
ologist performance (identical results for both readers) based on
MRI in the testing sample were 84.6%, 90.9%, 91.7%, 83.3%, and
87.5% (Table 2).
When taking PET/MRI into account, the radiologist was able to

determine the correct lymph node status in 221 of 255 participants
(86.7%), and sensitivity, specificity, PPV, NPV, and accuracy
were 84.0%, 88.4%, 82.4%, 89.5%, and 86.7%, respectively, for
the training sample (Supplemental Table 1). In the testing sample,

radiologist performance on PET/MRI data was 92.3%, 86.4%,
88.9%, 90.5%, and 89.6%, respectively (Table 2).
With regard to the individual features, there were isolated dif-

ferences in the subjective evaluation of lymph nodes by the raters
(irregular margin, k 5 0.919; inhomogeneous cortex, k 5 0.879;
perifocal edema, k 5 0.776; absence of fatty hilum, k 5 0.865;
contrast medium enhancement, k 5 0.947; absent intact nodal bor-
der, 0.957; all P , 0.001), but together these led to an equal evalu-
ation of lymph node status, so that the interrater reliability with
regard to lymph node status was excellent (k 5 1.0, P , 0.001).

TABLE 2
Diagnostic Performance of MRI and PET/MRI in Assessment of Lymph Node Status of Radiologists and Random Forest

Classifier Within Testing Sample

Assessor MRI PET/MRI

Radiologists

Sensitivity 84.6 (65.1–95.6) 92.3 (74.9–99.1)

Specificity 90.9 (70.8–98.9) 86.4 (65.1–97.1)

PPV 91.7 (74.4–97.7) 88.9 (73.5–96.8)

NPV 83.3 (66.8–92.6) 90.5 (71.3–97.3)

Accuracy 87.5 (74.8–95.3) 89.6 (77.3–96.5)

Random forest algorithm

Sensitivity 88.5 (69.9–97.6) 88.5 (69.9–97.6) (reader 1), 88.5 (69.9–97.6) (reader 2)

Specificity 86.4 (65.1–97.1) 86.4 (65.1–97.1) (reader 1), 81.8 (59.7–94.8) (reader 2)

PPV 88.5 (72.6–95.7) 88.5 (72.6–95.7) (reader 1), 85.2 (70.1–93.4) (reader 2)

NPV 86.4 (68.3–94.9) 86.4 (68.3–94.9) (reader 1), 85.7 (67.0–94.7) (reader 2)

Accuracy 87.5 (74.8–96.3) 87.5 (74.8–96.3) (reader 1), 85.4 (72.2–93.9) (reader 2)

Data are percentages, with 95% CIs in parentheses.

FIGURE 3. ROC AUC for random forest model performance on testing
data and for prediction of lymph node status by radiologists on MRI and
PET/MRI. LN5 lymph node.
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Random Forest Algorithm Performance
The trained random forest classifiers yielded an accuracy of

88.3% for MRI and of 99.2% for PET/MRI on the training data,
which is indicative of a very good model fit to the training data
(Supplemental Table 1). When applied to the independent datasets
of the testing sample, the respective random forest classifier was
able to determine the correct lymph node status in 42 of 48 partici-
pants (87.5%) (23 true-positive and 19 true-negative) for MRI fea-
tures, whereas 3 participants were rated false-positive and 3
participants false-negative (both readers, Table 2). The perfor-
mance was unchanged when applying the PET/MRI-based random
forest classifier to the testing sample, with 42 of 48 correct classifi-
cations (87.5%) (23 true-positive and 19 true-negative), whereas 3
participants were rated false-positive and 3 participants false-
negative on the basis of the lymph node assessment of reader 1.
On the basis of the lymph node assessment of reader 2, there were
41 of 48 correct classifications (85.4%) (23 true-positive and 18
true-negative), whereas 4 participants were rated false-positive and
3 participants false-negative. Sensitivity, specificity, PPV, and
NPV for both classifiers on PET/MRI were 88.5%, 86.4%, 88.5%,
and 86.4%, respectively, for reader 1 and 88.5%, 81.8%, 85.2%,
85.7%, 85.4%, respectively, for reader 2 (Table 2).

Comparison of Radiologist Performance
and Random Forest Algorithm
In the testing sample, the highest ROC

AUC was achieved by the random forest
classifier based on PET/MRI data, with a
value of 91.2% (95% CI, 82.8%–99.6%),
followed by an ROC AUC of 89.5% (95%
CI, 80.4%–98.7%) by the random forest
classifier based on MRI data (Fig. 3).
There were no significant differences in

the assessment of lymph node status between
the radiologists and the random forest classi-

fier, either for MRI features (P 5 0.67) or for PET/MRI features
(P5 0.68).

Feature Importance
The most important feature in MRI was size, followed by intact

nodal border and irregular margin, whereas the most important features
for predicting the nodal status in PET/MRI were tracer uptake as indi-
cated by the ratio of the SUVmax of the lymph node to the SUVmax of
the ascending aorta, followed by size and intact nodal border (Fig. 4).

Decision Threshold Adjustment
To minimize the classifier’s false-negatives with regard to clini-

cal need, we adjusted the decision threshold of the random forest
classifier on PET/MRI data as a trade-off between precision (i.e.,
PPV) and recall (i.e., sensitivity). The default decision threshold in
the random forest classifier was 0.5. Figure 5 shows precision and
recall as a function of decision values in the internal validation
sample. The optimal decision threshold for this purpose was
obtained at 0.19. A sensitivity (recall) of 96.2% was achieved, with
only 1 false-negative in the test sample, whereas specificity, PPV,
NPV, and accuracy were 68.2%, 78.1%, 93.8%, and 83.3%, respec-
tively, at this threshold. Applying these results to everyday routines
in our cohort would mean that it would be possible to save 68.2%
(15/22) of the women from an unnecessary biopsy, although 3.8%
(1/26) of the affected women would be missed (Tables 3 and 4).

Decision Tree for Clinical Decision Support
The decision tree classifier for distinguishing benign from

malignant lymph nodes achieved an accuracy of 89.6% and an
ROC AUC of 87.6% (95% CI, 77.6%–97.5%) for MRI in the test-
ing sample and an accuracy of 89.6% and ROC AUC of 89.0%
(95% CI, 79.7%–98.4%) for PET/MRI data in the testing sample.
These decision trees can support clinical decision making based

on 3 simple imaging features each (Fig. 6A). For MRI, the root
node indicative of the most important feature is size, which is con-
sistent with the feature importance from random forests. Here, a
short-axis diameter of at least 7.5 mm serves as a cutoff for highly
suggestive lymph nodes. ROC AUC evaluation of this feature alone
shows a sensitivity of 71.6% and specificity of 86.4% (J 5 0.580)

FIGURE 5. Precision and recall scores as function of decision threshold
on internal validation sample. x represents threshold values, and y is score
of precision or recall. Adjusted decision threshold for optimized sensitivity
is indicated by dashed line.

FIGURE 4. Importance of different morphologic and metabolic features of lymph nodes.

TABLE 3
Confusion Matrix for Adjusted Threshold

Actual

Predicted

Negative Positive

Negative 15 7

Positive 1 25
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for this cutoff. A cutoff of 12.5 mm led to a specificity of 100%
but a sensitivity of 34.3% (J 5 0.343) (Fig. 6B). The decision tree
and these cutoffs were determined from the training data. The com-
bination of an 18F-FDG uptake more than 1.3-fold that in the aorta
ascendens and a short-axis diameter of 7.5 mm is sufficient to char-
acterize a lymph node as malignant.
The confusion matrices and performance metrics for the decision

trees are shown in Tables 5 and 6. The performance of the decision
trees on the training data is shown in Supplemental Table 2. Sup-
plemental Table 3 shows the detection rates for lymph nodes on
18F-FDG PET/MRI per nodal stage (cN0–cN3c).

DISCUSSION

Our study demonstrated that lymph node metastases in patients
with newly diagnosed breast cancer can be diagnosed using simple

imaging features from MRI and PET/MRI, both by radiologists and
by machine-learning–based prediction models, with comparably high
accuracies. However, our results indicate that a machine-learning–
based prediction model can be advantageous in a clinical setting
because it provides the opportunity for decision threshold adjust-
ments. Compared with the current gold standard, in which every clin-
ically node-negative patient would undergo sentinel lymph node
biopsy, use of the random forest classifier on PET/MRI data would
make it possible to prevent unnecessary biopsy in 68.2% of the
women, although 3.8% of the women would be missed. This ability
is important for such a model to be suitable for the clinical setting, in
which diagnostic imaging might potentially omit invasive procedures
such as lymph node biopsy when false-negatives can reliably be
reduced. Furthermore, we derived a decision tree for clinical decision
support based on simple imaging features from MRI and PET/MRI,
which can assist clinicians in the diagnostic workup with regard to
lymph node involvement in breast cancer. Although application of
the model evaluated here does not, per se, save time in the evaluation

of lymph node criteria, the clear cascade of
the 3 easily assessable imaging features can
be helpful for the radiologist when classify-
ing axillary lymph nodes in daily routine.
Different machine-learning algorithms

for the detection of axillary lymph node
metastases have previously been shown to
provide diagnostic performance compara-
ble to or better than that of experienced
physicians in other specialties (17), but
only a few applications have been intro-
duced into everyday routine.
This study further rated the relevance of

various imaging features of lymph nodes.
Although the size of a lymph node, as charac-
terized by the short-axis diameter, is a gener-
ally accepted criterion for assessing metastatic
status (8), diagnostic accuracy can be in-
creased by adding factors such as contour and
signal intensity. Nevertheless, the feature
importance of the random forest classifier and
the good performance of the simple decision
tree classifier indicate that only a few features
are necessary to predict lymph node malig-
nancy with high accuracy. Our findings are in
line with those of Ram�ırez-Galv�an et al. (18),
who found lymph node size to be the most
important morphologic feature. However,
according to our investigation, a short-axis
diameter of at least 7.5 mm seems to be most

FIGURE 6. (A) Decision tree for predicting lymph node status in MRI and PET/MRI. (B) ROC AUC
for size and for SUVmax ratio of lymph node to mediastinal blood pool for prediction of lymph node
status. Ao5 aorta; LN5 lymph node.

TABLE 4
Performance Metrics for Adjusted Threshold

Metric Data

Sensitivity 96.2% (80.4%–99.9%)

Specificity 68.2% (45.1%–86.1%)

PPV 78.1% (65.9%–86.9%)

NPV 93.8% (68.2%–99.1%)

Accuracy 83.3% (69.8%–92.5%)

Data in parentheses are ranges.

TABLE 5
Confusion Matrices for Decision Trees

Actual

Predicted

MRI PET/MRI

Negative Positive Negative Positive

Negative 20 2 21 1

Positive 3 23 4 22
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suitable for prediction of axillary lymph node involvement by breast
cancer, whereas a diameter of at least 12.5 mm can be seen even as
evidence of malignancy (Fig. 6B).
As with other cancer entities, there is no consensus about uptake

thresholds in breast cancer to define a lymph node as benign or malig-
nant (19), but an SUVmax threshold of 1.8–2.0 has reported to be a help-
ful criterion to diagnose malignancy (20,21). Our study demonstrated
that uptake in the lymph node below that in the mediastinal blood pool
is a reliable feature of benignity, whereas uptake at least 1.3 times that
in the mediastinal blood pool should be considered malignant.
Using the adjusted threshold of the random forest classifier, the

rate of false-negatives might be substantially decreased to a range
that would be acceptable for clinical purposes. The single partici-
pant missed by our machine-learning algorithm after adjustment of
the threshold had a histopathologically proven micrometastasis
(1 mm). The clinical impact of micrometastases does not appear to
be comparable to that of macrometastases, with micrometastasis
outcome being comparable to that of node-negative patients (22).
Thus, machine-learning algorithms may be expected to play a cru-
cial role in reducing invasive procedures in the future.
This study had some limitations. Because only therapy-naïve

patients were examined at baseline staging, no general statements
can be made on regressively altered lymph nodes after therapy or on
response to therapy. The reference standard was in part based on
posttherapeutic specimens from axillary nodes and different methods
of sample acquisition, including axillary dissection and ultrasound-
guided biopsy. These differences may have had an impact on defini-
tion of the reference standard. The imaging features used as input for
the machine-learning–based prediction models still rely on subjective
assessments of radiologists. Nevertheless, we could show that these
imaging features are easy assessable and have a high interrater reli-
ability. In addition, the size of the validation cohort was only moder-
ate; further studies with a larger population are needed.

CONCLUSION

This study showed, first, that a random forest classifier based on
simple imaging features provides diagnostic performance comparable

to that of an experienced radiologist; second, that 18F-FDG PET
uptake and lymph node size assessed on MRI are the most informa-
tive features in determining the metastatic status of an axillary lymph
node; third, that a combination of 3 features can be helpful for differ-
entiating between malignant and benign axillary lymph nodes in
newly diagnosed breast cancer in daily routine; and fourth, that—
accepting a low specificity—a sensitivity of more than 95% can be
achieved with an adjusted random forest classifier on 18F-FDG
PET/MRI data, which can exclude lymph node involvement with
high confidence and might play a central role in reducing invasive
procedures in the future. Thus, the combination of the 3 imaging fea-
tures, in particular, may be applied for daily use by the radiologist, as
these can be determined and evaluated quickly and reliably, although
the decision tree should not be the only basis for therapy planning.
For therapy decision making, the adjusted random forest model is
more reliable for differentiation between malignant and benign
lymph nodes because of its higher sensitivity. Nevertheless, the
adjusted random forest model needs to be confirmed in large, pro-
spective studies to minimize the number of unnecessary invasive pro-
cedures and, if successful, will then have great impact.
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KEY POINTS

QUESTION: Can machine-learning prediction models perform
comparably to experienced radiologists in determining nodal
status on PET/MRI examinations of patients with newly diagnosed
breast cancer?

PERTINENT FINDINGS: Machine learning performed comparably
to experienced radiologists in identifying axillary lymph node
metastases on PET/MRI in patients with primary breast cancer.
The most important lymph node feature was tracer uptake,
followed by lymph node size. A combination of 3 features was
helpful for differentiation between malignant and benign axillary
lymph nodes in newly diagnosed breast cancer, leading to an
easily applicable decision tree in everyday clinical routine.

IMPLICATIONS FOR PATIENT CARE: With the help of machine
learning, axillary lymph node metastases can reliably be excluded
on PET/MRI, sparing 68.2% of the patients an invasive procedure
such as sentinel lymph node biopsy.
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