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Trustworthiness is a core tenet of medicine. The patient–physician
relationship is evolving from a dyad to a broader ecosystem of health
care. With the emergence of artificial intelligence (AI) in medicine, the
elements of trust must be revisited. We envision a road map for the
establishment of trustworthy AI ecosystems in nuclear medicine. In
this report, AI is contextualized in the history of technologic revolu-
tions. Opportunities for AI applications in nuclear medicine related to
diagnosis, therapy, and workflow efficiency, as well as emerging chal-
lenges and critical responsibilities, are discussed. Establishing and
maintaining leadership in AI require a concerted effort to promote the
rational and safe deployment of this innovative technology by engag-
ing patients, nuclear medicine physicians, scientists, technologists,
and referring providers, among other stakeholders, while protecting
our patients and society. This strategic plan was prepared by the AI
task force of the Society of Nuclear Medicine andMolecular Imaging.
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Medicine uses science, practical wisdom, and the best avail-
able tools in the art of compassionate care. The necessity of dealing
with maladies has motivated physicians to incorporate inventions
into medical practice to decrease or eliminate patient suffering.
During the past two centuries, along with technologic revolutions,
new medical devices have become the standard of care, from the
stethoscope and electrocardiogram to cross-sectional imaging
(Fig. 1). The stethoscope, which arose out of the first industrial rev-
olution, is so pervasive that it has become the symbol of health-care
professionals today. Compared with other medical equipment, it
has the highest positive impact on the perceived trustworthiness of
the practitioner seen with it (1).
Nuclear medicine has always embraced the progress of technol-

ogy. With the emergence of AI, we will again be poised to experi-
ence a modern renaissance, similar to the one experienced after
David Kuhl’s and Roy Edwards’ groundbreaking work in the
1960s. By applying the concepts of radon transform through newly
available computing technology, they introduced volumetric cross-
sectional medical imaging with SPECT, which was subsequently
followed by the development of x-ray–based CT and PET (2).
The past decades have seen tremendous advances in information

technology and in its integration into the practice of medicine. The
application of artificial intelligence (AI) to medicine represents the
actualization of a new era. Such transformative technologies can
affect all facets of society, yielding advances in space exploration,
defense, energy, industrial processes, and finance; and even in car-
tography, transportation, and food service, among others.
The addition of AI into clinical practice in nuclear medicine poses

opportunities and challenges. The full benefits of this new technol-
ogy will continuously evolve. It is important to recognize that the
nuclear medicine community must be actively involved to ensure
safe and effective implementation. Establishing and maintaining AI
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leadership in the realm of nuclear medicine requires a comprehen-
sive strategy to promote the application of innovative technology
while protecting our patients and society, executing our professional
and ethical obligations, and promoting our values. A potential
advantage of deploying AI techniques is that nuclear medicine meth-
odologies may become more widely available, increasing the access
of patients to high-quality nuclear medicine procedures.
Nuclear medicine professional societies such as the Society of

Nuclear Medicine and Molecular Imaging (SNMMI) and others
provide leadership to ensure that we recognize the benefits of tech-
nologic advances in a manner consistent with our core values, med-
ical ethics, and society’s best interests. In July 2020, the SNMMI
formed an AI task force by bringing together experts in nuclear

medicine and AI, including physicists, com-
putational imaging scientists, physicians,
statisticians, and representatives from in-
dustry and regulatory agencies. This article
serves as both a strategic plan and a sum-
mary of the deliberations of the SNMMI AI
task force over the past year in conjunction
with other focused topics, including best
practices for development (3) and evaluation
(4) (Table 1).

OPPORTUNITIES

Quantitative Imaging and Process
Improvement
Nuclear medicine is evolving toward

even better image quality and more accu-
rate and precise quantification in the preci-
sion medicine era, most recently in the
paradigm of theranostics.

Diagnostic Imaging
AI techniques in the patient-to-image

subdomain improve acquisition, and mod-
els in the image-to-patient subdomain im-
prove decision making for interventions on
patients (Fig. 2) (3).
Image generation considerations are elab-

orated in the supplemental section “Oppor-
tunities,” part A (supplemental materials
are available at http://jnm.snmjournals.org
(5–40)); however, examples include im-
proved image reconstruction from raw data

(list-mode, sinogram); data corrections including for attenuation,
scatter, and motion; and postreconstruction image enhancement,
among others (41–43). These enhancements could impact PET and
SPECT in clinical use today. Multiple–time-point acquisitions and
PET/MRI may see improved feasibility.
Specific opportunities in image analysis are elaborated in the sup-

plemental section “Opportunities,” part B. A few examples include
image registration, organ and lesion segmentation, biomarker mea-
surements and multiomics integration, and kinetic modeling (44).
Opportunities for clinical use of AI in nuclear medicine practice

were extensively reviewed recently, including brain imaging (45),
head and neck imaging (46), lung imaging (47), cardiac imaging
(48,49), vascular imaging (49,50), bone imaging (51), prostate
imaging (52), and imaging of lymphoma (53). Neuroendocrine
tumors, other cancers (including gastrointestinal, pancreatic, hepa-
tobiliary, sarcoma, and hereditary), infection, and inflammation are
some examples of additional areas requiring further consideration.

Emerging Nuclear Imaging Approaches
New developments are also emerging such as total-body PET

(54), which presents unique data and computational challenges.
Another potential use of AI is to separate multichannel data from
single-session multiisotope dynamic PET imaging. This pragmatic
advancement could be valuable to extract greater phenotyping
information in the evaluation of tumor heterogeneity (55).

Radiopharmaceutical Therapies (RPTs)
There are several areas in which AI is expected to significantly

impact RPTs.

FIGURE 1. New technologies in medicine have coincided with each phase of industrial revolution.
First industrial revolution was mechanization, with mechanical loom invented in 1784. The stetho-
scope was invented by Ren�e Laennec in 1816 and improved by Arthur Leared (1851) and George
Philip Cammann (1852). Second industrial revolutionwas driven by advent of electricity, with the com-
mercial light bulb (patented by Thomas Edison in 1879), telegram, and modern factory production
line. Electrocardiogramwas inventedby AugustusWaller in 1887 by projecting the heartbeat captured
by Lippmann capillary electrometer onto photographic plate, allowing heartbeat to be recorded in real
time.WillemEinthoven (1895) assigned letters P,Q, R, S, andT to the theoretic waveform. Third indus-
trial revolution, known as digital revolution, brought computing technology and refined it to personal
computer. In 1960s, Kuhl and Edwards developed cross-sectional CT and implemented this in the
SPECT scanner, which was later applied to CT scanner by Sir Godfrey Hounsfield and Allan Cormack
in 1972. Fourth industrial revolution is that ofmodern day, with big data, hyperconnectivity, and neural
networks, resulting in ability to propel self-driving cars and development of AI in nuclear medicine.
CNN5 convolutional neural network; IoT5 Internet of things.

NOTEWORTHY

� An appropriate AI ecosystem can contribute to enhancing the
trustworthiness of AI tools throughout their life cycle through
close collaboration among stakeholders.

� A trustworthy medical AI system depends on the trustworthiness
of the AI system itself, as well as the trustworthiness of all people
and processes that are part of the system’s life cycle.

� By encouraging the establishment of trustworthy AI in nuclear
medicine, SNMMI aims to decrease health disparity, increase
health system efficiency, and contribute to the improved
overall health of society using AI applications in the practice
of nuclear medicine.
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AI-Driven Theranostic Drug Discovery and Labeling. The use
of AI for molecular discovery has been explored to select the most
promising leads to design suitable theranostics for the target in
question. For example, machine learning models could be trained
using parameters from past theranostic successes and failures (e.g.,
partition coefficient, dissociation constant, and binding potential)
to establish which best predict a given outcome (e.g., specific
binding, blood–brain barrier penetration, and tumor-to-muscle
ratio). New AI approaches are revolutionizing our understanding
of protein–ligand interactions (56). New hit molecules (e.g., from
the literature or high-throughput screens) can then serve as the test
set in such AI models to speed up hit-to-lead optimization. Subse-
quently, with lead molecules identified, AI could also predict opti-
mal labeling precursors and synthesis routes to facilitate fast and
efficient development of theranostic agents (57,58). By defining
parameters from existing synthetic datasets (e.g., solvents, addi-
tives, functional groups, and nuclear magnetic resonance shifts),
models can be trained to predict radiochemical yield for a given
substrate using different precursors and radiosynthetic methods.
Subjecting new lead candidates as test sets in the models will
enable rapid identification of appropriate precursors and labeling
strategies for new theranostics, minimizing resource-intensive
manual synthetic development.
Precision Dosimetry. The field of radiopharmaceutical dosimetry

is progressing rapidly. After administration of radiopharmaceuticals,
dynamic and complex pharmacokinetics results in time-variable

biodistribution. Interaction of ionizing particles arising from the
injected agent with the target and normal tissue results in energy
deposition. Quantification of this deposited energy and its biologic
effect is the essence of dosimetry, with opportunities to link the
deposited energy to its biologic effect on diseased and normal tissues
(Fig. 3).
In dosimetry, SPECT serves as a posttreatment quantitative

measuring device. One challenge is the difficulty for patients to
remain flat and motionless on the scanning table for the required
time. AI-based image reconstruction or enhancement methods can
reduce the required SPECT scanning time for patients while main-
taining or enhancing the accuracy of quantification (59) and enable
attenuation correction in SPECT (60).
Multiple steps in dosimetry potentially can be enhanced by AI

methods, including multimodality and multiple–time-point image
registration, segmentation of organs and tumors, time–activity
curve fitting, time-integrated activity estimation, conversion of
time-integrated activity into absorbed dose, linking macroscale
dosimetry to microscale dosimetry, and arriving at comprehensive
patient dose profiling (61).
Predictive Dosimetry and Digital Twins. Existing models can

perform dosimetry before (e.g., 131I-metaiodobenzylguanidine) or
after treatment. Personalized RPTs require predictive dosimetry for
optimal dose prescription in which AI can play a role. Pretherapy
(static or dynamic) PET scans could model radiopharmaceutical
pharmacokinetics and absorbed doses in tumors and normal organs.

TABLE 1
Opportunities and Challenges Ahead for Nuclear Medicine Toward Achieving Trustworthy AI

Category Domain Subdomain

Opportunities Diagnostic imaging Emerging nuclear imaging approaches

RPTs AI-driven theranostic drug discovery and labeling

Precision dosimetry

Predictive dosimetry and digital twins

Clinical workflow: increasing throughput
while maintaining excellence

Challenges Development of AI applications/medical
devices

Data

Optimal network architecture

Measurement and communication of uncertainty

Clinically impactful use cases

Team science

Evaluation (verification of performance) Performance profiling through task-based
evaluations

Guidelines for validation

Multicenter clinical trial network

Ethical, regulatory, and legal
ambiguities

Ethical aspects

Regulatory and legal aspects

Implementation of clinical AI solutions
and postimplementation monitoring

AI platform

Barriers of dissemination and implementation of AI
technology in medicine

Postdeployment: change management and
performance

Trust and trustworthiness
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Furthermore, it is possible to additionally use intratherapy scans
(e.g., single–time-point SPECT in the first cycle of RPTs) to better
anticipate and adjust doses in subsequent cycles.
Overall, a vision of the future involves accurate and rapid evalu-

ation of different RPT approaches (e.g., varying the injected

radioactivity dose and rate, site of injec-
tion, and injection interval and coupling
with other therapies) using the concept of
the theranostic digital twin. The theranostic
digital twin can aid nuclear medicine phy-
sicians in complex decision-making pro-
cesses. It enables experimentation (in the
digital world) with different treatment sce-
narios, thus optimizing delivered therapies.
The opportunities discussed in the RPT

section above are further described in the
supplemental section “Opportunities,” part C.

Clinical Workflow: Increase Throughput
While Maintaining Excellence
AI may impact operations in nuclear

medicine, such as patient scheduling and
resource use (62), predictive maintenance
of devices to minimize unexpected down-
times, monitoring of quality control mea-
surement results to discover hidden patterns
and indicate potential for improvement, and
monitoring of the performance of devices
in real time to capture errors and detect
aberrancies (62,63). These processes will
make the practice of nuclear medicine safer,
more reliable, and more valuable.
Triage of urgent findings and augmenta-

tion of time-consuming tasks could improve the report turnaround
time for the most critical cases and increase the efficiency of
nuclear medicine physicians, allowing them to more effectively
care for patients. It is important to ensure that AI systems in
nuclear medicine are sustainable through developing new current

FIGURE 3. Dosimetry as major frontier supported by AI toward personalization of therapy: various contributions by AI to image acquisition, generation,
and processing, followed by automated dose calculations, can enable routine deployment and clinical decision support. TIAM5 Time Integrated Activity
Map.

FIGURE 2. From patient to image creation and back to physician, there are opportunities for AI
systems to act at nearly any step in medical imaging pipeline to improve our ability to care for
patients and understand disease (3).
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procedural terminology codes and assigning appropriate relative
value units for the technical and professional components. It is
also possible that increased efficiencies in interpretation (more
cases read accurately per unit time) may allow AI to be deployed
into clinical workflows in an overall cost-effective manner.

AI ECOSYSTEM

Actualization of Opportunities and Contextualization
of Challenges
Although early nuclear medicine AI systems are already emerg-

ing, many opportunities remain in which the continuous propaga-
tion of AI technology could augment our precision patient care
and practice efficiencies. The environment in which AI develop-
ment, evaluation, implementation, and dissemination occurs needs
a sustainable ecosystem to enable progress, while appropriately
mitigating concerns of stakeholders.
The total life cycle of AI systems, from concept to appropriation

of training data, model development and prototyping, production
testing, validation and evaluation, implementation and deployment,
and postdeployment surveillance, occurs within a framework that
we call the AI ecosystem (Fig. 4). An appropriate AI ecosystem can
contribute to enhancing the trustworthiness of AI tools throughout
their life cycle through close collaboration among stakeholders.

CHALLENGES FOR DEVELOPMENT, VALIDATION,
DEPLOYMENT, AND IMPLEMENTATION

Development of AI Applications and Medical Devices
Five challenges that should be addressed include availability of

curated data, optimization of network architecture, measurement and
communication of uncertainty, identification of clinically impactful
use cases, and improvements in team science approaches (supple-
mental section “Development Challenges”).

Evaluation (Verification of Performance)
Theories on appropriate evaluation of AI software are a broad and

active area of current investigation. Establishing clear and consistent
guidelines for performance profiling remains challenging. Most cur-
rent verification studies evaluate AI methods on the basis of metrics
that are agnostic to performance on clinical tasks (64). Although such
evaluation may help demonstrate promise, there is an important need
for further testing on specific clinical tasks before the algorithms can
be implemented. Failure-mode profiling is among the most important
challenges (supplemental section “Evaluation Challenges”).

Ethical, Regulatory, and Legal Ambiguities
Major ethical concerns include informed consent for data use,

replication of historical bias and unfairness embedded in training
data, unintended consequences of AI device agency, the inherent
opaqueness of some algorithms, concerns about the impact of AI
on health-care disparities, and trustworthiness (supplemental sec-
tion “Ethical, Regulatory, and Legal Ambiguities”). AI in nuclear
medicine has a limited legal precedent (65).

Implementation of Clinical AI Solutions and
Postdeployment Monitoring
The lack of an AI platform integrating AI applications in the nuclear

medicine workflow is among the most critical challenges of imple-
mentation (66). Barriers of dissemination can be categorized at the
individual level (health-care providers), at the institutional level (orga-
nization culture), and at the societal level (67). Deployment is not the
end of the implementation process (supplemental section “Implemen-
tation of Clinical AI Solutions and Post-Deployment Monitoring”).

TRUST AND TRUSTWORTHINESS

In medicine, trust is the essence, not a pleasance.
Successful solutions to the above-mentioned challenges are neces-

sary but not sufficient for the sustainability of AI ecosystems in
medicine. Well-developed and validated AI
devices with supportive regulatory context,
appropriate reimbursement, and successful
primary implementation may still fail if
physicians, patients, and society lose trust
because of lack of transparency and other
critical elements of trustworthiness such as
perceived inattention to health disparity or
racial injustice. In a recent survey, Mar-
tinho et al. (68) found significant perceived
mistrust among health-care providers with
regard to AI systems and the AI industry
while realizing the importance and benefits
of this new technology. Responders also
emphasized the importance of ethical use,
and the need for physician-in-the-loop in-
teractions with AI systems, among the other
factors. There is a need for a comprehen-
sive analysis of the AI ecosystem to define
and clarify the core elements of trustworthi-
ness in order to realize the benefits of AI in
clinical practice.

RESPONSIBILITIES: TOWARD
TRUSTWORTHY AI

When the safety, well-being, and rights
of our patients are at stake, SNMMI should

FIGURE 4. AI ecosystem is a complex environment in which AI system development occurs. The
ecosystem connects stakeholders from industry to regulatory agencies, physicians, patients, health
systems, and payers. Proposed SNMMI AI Center of Excellence can serve as an honest broker to
empower the AI ecosystem from a neutral standpoint with focus on solutions. ACE 5 SNMMI AI
Center of Excellence; RIS5 radiology information system.

192 THE JOURNAL OF NUCLEAR MEDICINE � Vol. 64 � No. 2 � February 2023



be committed to support principles that are future-proof and inno-
vation-friendly.
The willingness of physicians and patients to depend on a speci-

fic tool in a risky situation is the measure of the trustworthiness of
that tool (69). In the case of AI systems, that willingness is based
on a set of specific beliefs about the reliability, predictability, and
robustness of the tool, as well as the integrity, competency, and
benevolence of the people or processes involved in the AI sys-
tem’s life cycle (development, evaluation/validation, deployment/
implementation, and use).
A trustworthy medical AI system depends on the trustworthiness

of the AI system itself, as well as the trustworthiness of all people
and processes that are part of the system’s life cycle (Fig. 5).
Trustworthy medical AI systems require a societal and profes-

sional commitment to the ethical AI framework, which includes 4
principles rooted in the fundamentals of medical ethics: respect for
patients’ and physicians’ autonomy, prevention of harm, benefi-
cence to maximize the well-being of patients and society, and fair-
ness. These principles should be observed in various phases of the
AI system life cycle.
In what follows, we outline 12 key elements that need to be

consistently present in AI systems.

12 Key Elements of Trustworthy AI Systems
Human Agency. AI systems should empower physicians and

patients, allowing them to make better-informed decisions and fos-
ter their autonomy (70). Effects of the AI algorithms on human
independence should be considered. It should be clear to patients
and physicians the extent to which AI is involved in patient care
and the extent of physician oversight. There must be checks to
avoid automation bias, which is the propensity of humans to value
and overly rely on observations and analyses from computers over
those of human beings (71).
Oversight. There must be sufficient oversight of AI decision

making, which can be achieved through human-in-the-loop and
human-in-command approaches (72). AI systems that are involved
in higher-risk tasks (e.g., those that drive clinical management and
diagnose or treat disease) must be closely monitored through post-
market surveillance by independent professional credentialing

organizations analogous to certification and
recertification of medical professionals. Peer
review processes in practices can be adapted
to consider the combined physician–AI
decision-making process.
Technical Robustness. AI systems must

perform in a dependable manner (sufficient
accuracy, reliability, and reproducibility)
(73). This performance should be resilient
to the breadth of clinical circumstances re-
lated to their prescribed use (generalizabil-
ity). The AI tool should explicitly convey a
degree of certainty about its output (confi-
dence score) and have a mechanism in place
to monitor the accuracy of outputs as part
of a continuous quality assurance program.
Failure modes of the algorithm should be
well-characterized, documented, and under-
stood by users.
Safety and Accountability. According to

the concepts of safety-critical systems (74),
AI systems should prioritize safety above

other design considerations (e.g., potential gains in efficiency, eco-
nomics, or performance). When adverse events occur, mechanisms
should be in place for ensuring accountability and redress. Ven-
dors must be accountable for the claims made of their AI systems.
Physicians must be accountable for the way in which AI systems
are implemented and used in the care of patients. The ability to
independently audit the root cause of a failure in an AI system is
important. Protection must be provided for individuals or groups
reporting legitimate concerns in accordance with the principles of
risk management.
Security and Data Governance. AI systems must include mech-

anisms to minimize harm, as well as to prevent it whenever possi-
ble. They must comply with all required cybersecurity standards.
There should be an assessment of vulnerabilities such as data poi-
soning, model evasion, and model inversion. Assurances should
be made to mitigate potential vulnerabilities and avoid misuse,
inappropriate use, or malicious use (such as a deep fake) (75).
Predetermined Change Control Plan. AI tools can be highly

iterative and adaptive, which may lead to rapid continual product
improvement. The plan should include types of anticipated mod-
ifications (software-as-a-medical-device prespecifications). There
must be a clear and well-documented methodology (algorithm
change protocol) to evaluate the robustness and safety of the
updated AI system. The algorithm change protocol should include
guidelines for data management, retraining, performance evalua-
tion, and update procedures. Vendors should maintain a culture of
quality and organizational excellence.
Diversity, Bias Awareness, Nondiscrimination, and Fairness. AI

systems can be affected by input data maladies (incomplete data,
inadvertent historically biased data), algorithm design insufficiencies,
or suboptimal performance assessment or monitoring strategies.
These issues may result in biases leading to unintended prejudice
and cause harm to patients. Discriminatory bias should be removed
from AI systems in the development phase when possible (67).
AI system performance should be evaluated in a wide spectrum

of diseases and in patients with a particular condition regardless of
extraneous personal characteristics. No particular group of patients
should be systematically excluded from AI device development.
Patients who are underrepresented or have rare diseases should not

FIGURE 5. Twelve core concepts critical to trustworthy AI ecosystems.
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be excluded from AI system development or evaluation—though
such datasets will be sparse and most likely could be used in the
evaluation of AI methods developed only in larger populations
(for generalizability). Appropriate validation testing on standard-
ized sets that incorporate patient diversity, including rare or
unusual presentations of disease, are critical to evaluate the pres-
ence of bias in results regardless of the training data used (76).
AI systems should be user-centric and developed with an aware-

ness of the practical limitations of the physician work environment.
Accessibility features should be provided to those individuals with
disabilities to the extent necessary according to universal design
principles.
Stakeholder Participation. Throughout the life cycle of an AI

system, all stakeholders who may directly or indirectly be affected
should actively participate to help, advise, and oversee the devel-
opers and industry. Participation of patients, physicians, and all
relevant providers, health-care systems, payors, regulatory agen-
cies, and professional societies is imperative. This inclusive and
transparent engagement is essential for a trustworthy AI ecosys-
tem. Regular clinical feedback is needed to establish longer-term
mechanisms for active engagement.
Transparency and Explainability. Vendors should openly com-

municate how an AI system is validated for the labeled claim (pur-
pose, criteria, and limitations) by describing the clinical task for
which the algorithm was evaluated; the composition of the patient
population used for validation; the image acquisition, reconstruc-
tion, and analysis protocols; and the figure of merit used for the
evaluation (4,73). There must be appropriate training material and
disclaimers for health-care professionals on how to adequately use
the system. It should be clear which information is communicated
from the AI system and which information is communicated by a
health-care professional. AI systems should incorporate mecha-
nisms to log and review which data, AI model, or rules were used
to generate certain outputs (auditability and traceability). The
effect of the input data on the AI system’s output should be con-
veyed in a manner whereby their relationship can be understood
by physicians and, ideally, patients (explainability) in order to
allow a mechanism to critically evaluate and contest the AI system
outputs. For diagnostic applications, the AI system should commu-
nicate the degree of confidence (uncertainty) together with its deci-
sion. To the extent possible, in high-stakes tasks the use of black
box AI systems without proper emphasis on transparency should
be avoided (77).
Sustainability of Societal Well-Being. It is important to ack-

nowledge that exposure to AI could negatively impact social rela-
tionships and attachment within the health-care system (social
agency) (78). AI systems should be implemented in a manner that
enhances the physician–patient relationship. AI systems should not
interfere with human deliberation or deteriorate social interactions.
The societal and environmental impact of an AI tool should be care-
fully considered to ensure sustainability. Health-care workers who
are impacted by the implementation of AI systems should be given
an opportunity to provide feedback and contribute to its implemen-
tation plan. Professional societies and training programs should
take steps to ensure that AI systems do not result in deskilling of
professionals, such as by providing opportunities for reskilling and
upskilling. A new set of skills, including physician oversight and
interaction with AI tools, will evolve and must be refined.
Privacy. AI systems should have appropriate processes in place

to maintain the security and privacy of patient data. The amount of
personal data used should be minimized (data minimization).

There should be a statement on measures used to achieve privacy
by design, such as encryption, pseudoanonymization, aggregation,
and anonymization. Systems should be aligned with standards and
protocols for data management and governance.
Fairness and Supportive Context of Implementation. Early

development efforts can pose more risk to developers and consu-
mers. To address liability concerns, there have been successful
programs in other industries to encourage adoption of new tech-
nology and support consumer protection, such as for vaccines and
autonomous vehicles (65).

STRATEGIES FOR SUCCESS

Part 1: SNMMI Initiatives
In July 2022, SNMMI created an AI task force to strategically

assess the emergence of AI in nuclear medicine (supplemental sec-
tion “SNMMI Initiatives”). An area of important focus was to des-
ignate working groups, such as the AI and dosimetry working
group for predictive dosimetry and treatment planning.

Part 2: SNMMI Action Plan
The AI task force recommends the establishment of an SNMMI

AI Center of Excellence to facilitate a sustainable AI ecosystem
(supplemental section “SNMMI Action Plan”). A nuclear medi-
cine imaging archive will address the need for meaningful data
access. A coalition on trustworthy AI in medicine and society will
address the need for an AI bill of rights (79).

Part 3: SNMMI Recommendations
Recommendations for the future are also provided in the supple-

mental section “SNMMI Recommendations.”

CONCLUSION

There are immense and exciting opportunities for AI to benefit
the practice of nuclear medicine. Meanwhile, there are challenges
that must and can be addressed head-on. As current challenges are
addressed and new AI solutions emerge, SNMMI and the nuclear
medicine community have the responsibility to ensure the trust-
worthiness of these tools in the care of patients.
We can all benefit from efforts to ensure fairness, inclusion, and

lack of bias in the entire life cycle of AI algorithms in different
settings.
There are 3 levels of facilitation that can support and enable the

appropriate environment for trustworthy AI. First, our community
must establish guidelines, such as those referenced in this article,
to promote the natural development of trustworthy AI. Second, we
can facilitate trustworthy AI through an SNMMI AI Center of
Excellence. Third, we can make trustworthy AI occur through
active engagement and communicative actions.
By encouraging the establishment of trustworthy AI in nuclear

medicine, SNMMI aims to decrease health disparity, increase
health system efficiency, and contribute to the improved overall
health of society using AI applications in the practice of nuclear
medicine.
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