Antibody-Guided Molecular Imaging of *Aspergillus* Lung Infections in Leukemia Patients

Johannes Schwenck*1, Andreas Maurer*1, Nicolas Beziere1, Francesco Fiz1, Frederic Boschetti2, Susanne Geistlich3, Dominik Seyfried1, Matthias Gunzer4, Gerald Reischl1, Jöri Wehrmuller3, Walter Ehrlichmann1, Marius Horger1, Sergios Gatidis1, Genna Davies5, Wichard Vogel1, Christian la Fougere41, Bernd Pichler*1, and Christopher Thornton*5

1University Hospital of Tübingen, Tübingen, Germany; 2Chematech, Dijon, France; 3Paul Scherrer Institute, Villigen, Switzerland; 4University of Duisburg–Essen, Essen, Germany; and 5University of Exeter, Exeter, United Kingdom

Invasive pulmonary aspergillosis (IPA) caused by the fungus *Aspergillus fumigatus* (Fig. 1A) is a life-threatening lung disease of acute myeloid leukemia patients, with the diagnosis currently being reliant on invasive, slow, or nonspecific procedures, including chest CT (1). Here, we showcase the (to our knowledge) first-time use in humans of an *Aspergillus*-specific radiotracer (2,3) administered to acute myeloid leukemia patients diagnosed with no IPA or with IPA according to consensus definitions of the disease. The subjects underwent ⁶⁴Cu-NODAGA-hJF5-PET/MRI on a compassionate-use basis according to the German Medicinal Products Act (Arzneimittelgesetz §13.2b). Scientific analysis was approved by the institutional review board (approval 206/2020BO2). Written informed consent was obtained from all patients.

Uptake of the tracer in pulmonary lesions was determined using PET/MRI 15–18 h after intravenous injection with 196–287 MBq (Figs. 1B and 1C). In patient 1, no tracer uptake (SUVmax, 2.5; SUVmean, 1.1; SUVpeak, 0.4) was observed in the lung lesion (arrowheads). In patient 2, diagnosed with IPA, enhanced tracer uptake was observed in the pulmonary lesion of the right lower lobe (arrowheads). CT scans were acquired 1 wk before PET/MRI. (C) Chemical structure is shown for *Aspergillus*-specific radiotracer ⁶⁴Cu-NODAGA-hJF5. (D) Maximum-intensity projection of ⁶⁴Cu-NODAGA-hJF5 in patient 2 shows pulmonary lesion (arrowheads).
size [CT], 1.3 × 1.2 × 1.6 cm) above background levels (SUV\textsubscript{mean} liver, 5.9; SUV\textsubscript{mean} blood pool, 6.5; SUV\textsubscript{mean} lung, 0.9) was observed in the lung lesion, concordant with no IPA. Patient 2, diagnosed with IPA, showed pronounced uptake of the tracer in the pulmonary lesion of the right lower lobe (SUV\textsubscript{max} 5.94; size [CT], 6.2 × 4.0 × 4.1 cm; SUV\textsubscript{mean} liver, 6.1; SUV\textsubscript{mean} blood pool, 7.0; SUV\textsubscript{mean} lung, 0.8; maximum-intensity projection, Fig. 1D). This first-in-humans study shows the potential of antibody-guided PET for noninvasive IPA detection.

DISCLOSURE

Christopher Thornton is the director of ISCA Diagnostics Limited. No other potential conflict of interest relevant to this article was reported.

ACKNOWLEDGMENT

We thank the Werner Siemens Foundation and EU 7th Framework Programme (grant 602820) for funding.

REFERENCES

