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Quantitative dynamic PET with compartmental modeling has the
potential to enable multiparametric imaging and more accurate quan-
tification than static PET imaging. Conventional methods for paramet-
ric imaging commonly use a single kinetic model for all image voxels
and neglect the heterogeneity of physiologic models, which can work
well for single-organ parametric imaging but may significantly com-
promise total-body parametric imaging on a scanner with a long axial
field of view. In this paper, we evaluate the necessity of voxelwise
compartmental modeling strategies, including time delay correction
(TDC) and model selection, for total-body multiparametric imaging.
Methods: Ten subjects (5 patients with metastatic cancer and
5 healthy volunteers) were scanned on a total-body PET/CT system
after injection of 370 MBq of 18F-FDG. Dynamic data were acquired
for 60 min. Total-body parametric imaging was performed using
2 approaches. One was the conventional method that uses a single
irreversible 2-tissue-compartment model with and without TDC. The
second approach selects the best kinetic model from 3 candidate
models for individual voxels. The differences between the 2 app-
roaches were evaluated for parametric imaging of microkinetic param-
eters and the 18F-FDG net influx rate, Ki. Results: TDC had a
nonnegligible effect on kinetic quantification of various organs and
lesions. The effect was larger in lesions with a higher blood volume.
Parametric imaging of Ki with the standard 2-tissue-compartment
model introduced vascular-region artifacts, which were overcome by
the voxelwise model selection strategy. Conclusion: The time delay
and appropriate kinetic model vary in different organs and lesions.
Modeling of the time delay of the blood input function and model
selection improved total-body multiparametric imaging.

Key Words: image processing; PET; radiotracer tissue kinetics; com-
partmental modeling; parametric imaging; total-body dynamic PET

J Nucl Med 2022; 63:1274–1281
DOI: 10.2967/jnumed.121.262668

PET allows for dynamic scanning to monitor the spatiotempo-
ral distribution of a radiotracer in the living body. With tracer
kinetic modeling (e.g., compartmental models or graphical meth-
ods (1)), dynamic PET allows quantification of kinetic parameters
in regions of interest (ROIs) and voxelwise (i.e., parametric imag-
ing) (2,3). PET parametric imaging has the potential to improve
tumor contrast, derive meaningful biologic measures of tracer

transport and binding, and enable quantitative assessment of tumor
response to cancer treatment as compared with SUV (4). As the
axial length of conventional PET scanners commonly ranges from
15 to 30 cm, clinical studies using dynamic PET have typically been
limited to a restricted axial field of view that can cover only single
organs or specific tumor locations. Whole-body implementation of
parametric imaging has been pursued using conventional PET scan-
ners but is limited mainly to the simplified Patlak graphical method
(5–7), which is computationally efficient but does not explore the
full potential of kinetic modeling for multiparametric imaging.
The advent of PET scanners with an extended long axial field of

view, such as the uEXPLORER (United Imaging) (8–10), the
PennPET Explorer (11,12), and the Quadra (Siemens) (13), is pro-
viding a paradigm shift in dynamic imaging. The longest of these
has an axial field of view of 194 cm, providing not just unprece-
dented photon detection sensitivity but also simultaneous dynamic
imaging and parametric imaging of the entire body (9,14). Image-
derived input function (IDIF) can also be obtained from the left
ventricle or the aorta. Metastatic lesions that are widely separated
can now be imaged at the same time with total-body PET. The
objective of this work was to conduct a pilot clinical study to test
the feasibility of multiparametric imaging with compartmental
modeling in total-body dynamic PET.
A typical approach to PET parametric imaging is to apply a sin-

gle model to all voxels in the image (6,14,15). This approach can
be appropriate for conventional single-organ parametric imaging
but becomes insufficient for total-body parametric imaging in
which organ- and tissue-appropriate models are required. In this
work, we evaluated a voxelwise compartmental modeling strategy
for total-body PET multiparametric imaging.

MATERIALS AND METHODS

Total-Body Dynamic PET/CT Image Acquisition
Ten subjects, including 5 patients with metastatic genitourinary cancer

and 5 healthy volunteers, were recruited into this study at the University
of California (UC) Davis Medical Center. Prior Ethics Committee and
Institution Review Board approval and written informed consent were
obtained. Patients were enrolled and scanned before the initialization of
targeted therapy or immunotherapy. All subjects fasted for at least 6 h
before the study.

PET/CT imaging was performed on the uEXPLORER total-body
system at the UC Davis EXPLORER Molecular Imaging Center. Each
subject had a total-body CT scan from head to toe with arms down,
followed by a 60-min dynamic PET scan using an injection of approx-
imately 370 MBq (10 mCi) of 18F-FDG. List-mode data were acquired
and binned into 29 frames: 6 3 10 s, 2 3 30 s, 6 3 60 s, 5 3 120 s,
43 180 s, and 6 3 300 s. Each frame was reconstructed into an image
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of size 150 3 50 3 486 with 4 3 4 3 4 mm voxels using the vendor
implementation of the time-of-flight ordered-subset expectation maximi-
zation algorithm with 4 iterations and 20 subsets. Standard corrections,
including normalization, attenuation correction, dead-time correc-
tion, decay correction, random correction, and scatter correction, were
all applied (10).

Compartmental Modeling and Parametric Imaging
Lesion Selection and ROI Placement. For each scan, ROIs were

placed in various organs and on suspected lesions to extract regional
time–activity curves. Up to 5 target lesions (maximum, 2 per organ)
were identified per scan. The lesion ROIs were defined using 41% of
the SUVmax (at 60 min after injection) in each lesion (16). An addi-
tional ROI was placed in the ascending aorta using both early-frame
and late-frame images as guidance to extract an IDIF, which is denoted
by CIDIF tð Þ. Lesion were delineated using AMIDE software (17).
Compartmental Models. The commonly used irreversible 2-tissue-

compartment (2T) model (Fig. 1A) (1) was used to model the dynamic
18F-FDG PET data. The corresponding ordinary differential equation
of this 2T model is…

d

dt
Cf tð Þ
Cm tð Þ
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5

2 k21k3ð Þ 0
k3 0
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Cf tð Þ
Cm tð Þ

� �
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K1

0

� �
Cp tð Þ, (Eq. 1)

where Cp tð Þ is the 18F-FDG concentration in the plasma, Cf tð Þ is
the concentration of free 18F-FDG and Cm tð Þ is the concentration
of metabolized tracer in the tissue space at time t. The constant K1

is the rate of 18F-FDG delivery from the plasma to the tissue space
in units of mL/min/cm3 (18); k2 (min21) is the rate constant of
tracer exiting the tissue space; k3 (min21) is the rate constant of
18F-FDG being phosphorylated. This irreversible model assumes
that the dephosphorylation process is negligible (i.e., k450). The
total concentration of 18F-FDG in the extravascular space is…

Cev tð Þ5Cf tð Þ1Cm tð Þ5H t;kð Þ �Cp tð Þ, (Eq. 2)

where k5 K1, k2, k3½ �T and H t;kð Þ is the impulse response function
defined by…

H t;kð Þ5 K1k3
k21k3

1
K1k2
k21k3

e2 k21k3ð Þt: (Eq. 3)

The macro parameters Ki (net influx rate) and V0 (initial volume
of distribution) can be calculated by (5,19)…

Ki5
K1k3
k21k3

, V05
K1k2

k21k3ð Þ2 : (Eq. 4)

The total radioactivity that can be measured by PET is modeled
as the sum of the time courses of 18F-FDG in the vascular and

extravascular spaces (Fig. 1B):

CT tð Þ5 12 vbð ÞCev tð Þ1vbCb tð Þ, (Eq. 5)

where vb (mL/mL) is the fractional blood
volume and Cb tð Þ represents the whole
blood.
Modeling of Voxelwise Time Delay in

IDIF. A time delay exists between where the
IDIF is extracted and the arrival of the radio-
tracer in the tissue of interest. Within the lim-
ited axial field of view of conventional PET
scanners, the time delay effect has been com-
monly neglected because of the short dis-
tance between an IDIF and tissue ROIs,
especially if the temporal resolution is low
(e.g., 20–40 s per frame). Accounting for the
time delay has conventionally been consid-

ered necessary only for fast kinetics when relatively high temporal
sampling is used (20,21). A recent example was shown by Feng et al.
(22) for fast total-body imaging of early 18F-FDG kinetics. In our
work, whereas the dynamic scan used a standard temporal resolution
(10 s/frame), we noted the long distance between the ascending aorta
and distant lesions, as well as potentially high vascular contributions
in some lesions. Hence, the time delay effect is explicitly modeled in
the blood input to each voxel by…

CT tð Þ5 12 vbð ÞH t; kð Þ � Cp t2tdð Þ1vbCb t2tdð Þ, (Eq. 6)

with the time delay parameter td to be jointly estimated with other
kinetic parameters though the time–activity curve fitting of a
voxel. We postulate that time delay correction (TDC) has a higher
impact on kinetic quantification if the fractional blood volume, vb,
is larger in the tissue, because the increased fraction of the vascu-
lar time course in turn influences the estimate of the extravascular
time course, Cev tð Þ, as projected from Figure 1B.
Fitting Optimization and Setting. A measured time–activity

curve, �CTðtÞ, is fitted with the model time–activity curve, CT tð Þ, using
a nonlinear least-square formulation:

û5argmin
u

RSS uð Þ, RSS uð Þ5
XM
m51

wm
�CTðtmÞ2CT tmð Þ
� �2

, (Eq. 7)

where RSS uð Þ denotes the residual sum of squares of the curve fit-
ting. u is the unknown parameter set. For the irreversible 2T
model, u5 vb , K1, k2, k3, td½ �T . tm is the midpoint of the mth frame
in a total of M frames, and wm is the weight for frame m. Given
our interest in both Ki and K1, a uniform weight was used as
suggested by prior studies (23–25) (also demonstrated in Sup-
plemental Fig. 1; supplemental materials are available at http://
jnm.snmjournals.org).

The classic Levenberg–Marquardt algorithm with 50 iterations was
used to solve the optimization problem in a similar way to our other
work (26) and was implemented using C/C11 programming.
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FIGURE 1. Compartmental modeling of 18F-FDG. (A) 2T model and reduced 1T and 0T models.
(B) Graph of time courses of 18F-FDG in vascular and extravascular spaces that constitute total
tissue time–activity curve. a.u.5 arbitrary units.

TABLE 1
Models Used for Dynamic 18F-FDG PET Kinetic Modeling

Model order
Unknown

parameters (n)
Kinetic parameters
to be estimated

2T 5 vb, K1, k2, k3, td

1T 4 vb, K1, k2, td

0T 2 vb, td
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The initial values of k and vb were set to 0:01, 0:01, 0:01½ �T and 0.01,
respectively. The lower bound was zero and the upper bound was
5:0, 5:0, 1:0½ �T and 1.0, respectively. The time delay, td , was jointly
estimated by a grid search with the lower and upper bounds set to
210 and 50 s, respectively.
Voxelwise Model Selection. Conventionally for simplicity, para-

metric imaging uses a single kinetic model (e.g., the irreversible 2T
model) for all voxels. In total-body parametric imaging, a wide physio-
logic heterogeneity may exist within the field of view. In addition to the
2T model, we also considered the 1-tissue-
compartment (1T) model and zero-tissue-
compartment (0T) model (Fig. 1A; Table 1).
The 0T model is more suitable for those vox-
els containing only blood. The 1T model is
equivalent to the 2T model with k350, imply-
ing that the phosphorylation process can be
neglected when k3 is small and the data are
noisy. The 0T model is a special case of the
1T model with K150. The best model was
chosen for each voxel j from a set of candi-
date models (0T, 1T, and 2T in Table 1)
according to the minimum Akaike informa-
tion criterion (AIC),

lj5argminl AICj lð Þ, (Eq. 8)

where AICj lð Þ denotes the AIC of model
order l (l50, 1, 2) for fitting the time–
activity curve at voxel j. The AIC with
correction for a small number of frames is
calculated by (27)…

AIC5Mln RSS=Mð Þ12n

12n n11ð Þ=ðM2n21Þ,
(Eq. 9)

where RSS is calculated using Equation 7 for a
specific model and n denotes the total number
of unknown parameters in the model. A lower
AIC value indicates a better model (27).

Parametric Imaging with Kernel Smoothing. Voxelwise imple-
mentation of compartmental modeling leads to the generation of
parametric images of tracer kinetics, which usually suffer from high
noise in voxels. The kernel method (28) was applied here as postre-
construction smoothing to reduce noise in the dynamic images, a
process that is also equivalent to nonlocal means smoothing (28).
Fundamentally, it rests on deriving, for each patient dataset, a kernel
matrix built from 4 consecutive composite frames of 5, 15, 20,
and 20 min, respectively. For each voxel, k-nearest neighbors with k

TABLE 2
Subject Characteristics

Subject Age (y) Sex BMI (kg/m2)
Blood glucose
level (mg/dL) Fasting (h) Disease Initial therapy

1 78 M 24.4 101 11 Healthy NA

2 26 M 33.8 77 6 Healthy NA

3 50 M 27.2 94 12 Healthy NA

4 51 F 24.2 93 12 Healthy NA

5 62 M 29.5 92 12 Healthy NA

6 65 M 32.0 154 12 CC RCC grade 2 Partial nephrectomy

7 62 M 26.3 84 8 CC RCC grade 4 Radical nephrectomy

8 65 M 25.3 65 20 CC RCC grade 3 Radical nephrectomy

9 76 M 20.1 128 10 CC RCC grade 2 Radical nephrectomy

10 70 M 24.3 131 11 High-grade TCC Radical cystectomy

BMI 5 body mass index; NA 5 not applicable; CC RCC 5 clear cell renal cell carcinoma; TCC 5 transitional cell carcinoma.
All cancer patients had stage IV disease. Fuhrman grade was used.

B

A CDT htiWCDT oN

Scan time (min)

A
ct

iv
ity

 (
a.

u.
)

Scan time (min)

A
ct

iv
ity

 (
a.

u.
)

Lesion index

D
iff

er
en

ce
 in

 A
IC

Lesion index

K
i
(m

L/
m

in
/c

m
3 )

C

FIGURE 2. Graphs of time delay and its impact on lesion time–activity curve fitting and kinetic
quantification. (A) Fitting of liver lesion time–activity curve with no TDC and with time delay jointly
estimated. (B) AIC difference between 2T models with and without TDC for time–activity curve fitting
in 19 lesions. (C) Comparison of Ki values for individual lesions. a.u.5 arbitrary units.
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(number of nearest neighbors) 5 50 was constructed in a cubic 9 3

9 3 9 voxel space. More details of the method have been previously
published (28). The same kernel matrix was also applied to the para-
metric images for further noise suppression.

Statistical Analysis
Statistical data were analyzed mainly for demonstrating the impact

of TDC and model selection. To evaluate the effect of TDC, linear
regression analysis and a group comparison
were performed for different kinetic parame-
ters of lesions using the paired Student t test
and Wilcoxon signed-rank test. A P value of
less than 0.05 was considered statistically sig-
nificant. For assessing the impact of model
selection, artifacts in the Ki parametric images
were identified visually in blood regions. AIC
was calculated to indicate a potential overfit-
ting of the blood time–activity curves.

RESULTS

Patient Characteristics and Image Data
Table 2 lists the characteristics of the

study subjects. All dynamic scans of the 5
healthy subjects and 5 cancer patients were
successful. Nineteen lesions were identified
on the SUV images of the cancer patients.
Supplemental Figure 2 shows the dynamic
18F-FDG PET images and regional time–
activity curves for 2 patients with cancer.
The 2 patients shared a similar time–activity
curve shape for the brain and liver, but the
time–activity curves of the lesions were very
different.

Effect of Time Delay Correction (TDC)
Figure 2 shows the results of applying

TDC by joint estimation to fit lesion time–
activity curves using the 2T model. The
TDC resulted in an improvement in fitting
the lesion time–activity curve, particularly
in the early phase where the peak is. The
improved fit is further evidenced by a statisti-
cal quality evaluation using AIC in the
lesions (Fig. 2B). A lower AIC was achieved
by the TDC in most lesions. The individual
lesion Ki values by the 2 approaches are

shown in Figure 2C. Generally, Ki became higher after TDC. The per-
centage change in Ki and K1 was further plotted against the fractional
blood volume vb in Supplemental Figure 3. As vb increased, the differ-
ence in the 2 approaches became larger for both Ki and K1.
Table 3 summarizes the kinetic results estimated by the 2 app-

roaches (i.e., with and without TDC) in all lesions. The time delay
was 7 6 5 s (range, 22 to 18 s), which is significantly different
from zero as indicated by the small P value of the statistical tests.

TABLE 3
Mean and SD of Lesion Kinetic Parameters Estimated by 2T Model With and Without TDC

Parameter Without TDC With TDC P of paired t test P of paired signed-rank test

td (s) 0 7 6 5 0.0001 0.0008

vb (mL/cm3) 0.027 6 0.053 0.232 6 0.181 0.0002 0.0002

K1 (mL/min/cm3) 0.974 6 0.814 0.331 6 0.383 0.0017 0.0002

Ki (mL/min/cm3) 0.023 6 0.016 0.026 6 0.017 0.0003 0.0005

V0 (mL/cm3) 0.420 6 0.267 0.380 6 0.221 0.0161 0.0123

Paired t test and Wilcoxon signed-rank test were both used for calculating P value.
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FIGURE 3. Demonstration of parametric imaging using 2T model with and without TDC for cancer
patient. Shown are maximum-intensity-projection maps for vb, K1, and Ki.
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TDC led to a much higher vb and appreciably lower K1 estimates
(P , 0.002). Although the mean and SD of Ki in the pooled analy-
sis had only a small difference between the 2 approaches, the paired
statistical tests show TDC had a statistically significant effect (P #

0.0005) on Ki estimation, as reflected by the pairwise changes
shown in Figure 2C and Supplemental Figure 3. The impact on V0

was also statistically significant (P , 0.02).
Examples of parametric images of different kinetic parameters

are shown in Fig. 3 for 1 cancer patient. Without TDC, the vb
image did not show all the vasculature, especially in the legs,
where the time delay was large. The K1 image became clearer after
the TDC because the vasculature disappeared in this image. Fig. 4
further shows the estimated time delay map and Ki images. Lesions
were less visible with low Ki values if no TDC was implemented;
most lesions were enhanced, with a higher value after TDC.

Effect of Voxelwise Model Selection
Figure 5A shows the map of the model order (0T, 1T, and 2T)

selected for individual voxels for a cancer patient scan. Most body
parts, such as soft tissues, followed the 2T
model, whereas the lungs and skin favored
the 1T model according to AIC. Vascular
regions (e.g., the heart chambers and arter-
ies) followed the 0T model. All lesions fol-
lowed the 2T model. The parametric
image of Ki generated using a single 2T
model (Fig. 5B) contains a suggestive hot
spot of a high Ki value. It disappeared after
applying voxelwise model selection. Figure
5C demonstrates that both the 2T and the 0T
models fitted the time–activity curve well
but that the resulting Ki values were very dif-
ferent (0.018 vs. 0.0mL/min/cm3). The
AICs of different fits by the 0T, 1T, and 2T
models are compared in Figure 5D. It indi-
cates that the 0T model was best for fitting
the blood time–activity curve, whereas the
2T model overfitted the time–activity curve
and resulted in a falsely high value of Ki.
Figure 6 compares the conventional sin-

gle 2T model (with TDC) with the pro-
posed method (with model selection and
TDC) for parametric imaging of Ki at the

level of the heart in all 10 subjects. The
conventional method resulted in artificially
high Ki values in some voxels containing
primarily blood. The myocardium was also
difficult to visualize in each patient scan. In
comparison, the proposed method largely
removed those artifacts, and appropriate
model selection led to clear visualization of
the myocardium in all subjects.

Demonstration of Multiparametric
Images
With the improved voxelwise modeling

strategy, we show parametric images for a
range of kinetic parameters, including vb,
K1, Ki, and V0, for 1 cancer patient in Fig-
ure 7 and for 1 healthy subject in Supple-
mental Figure 4. The SUV images at 60

min after injection are also included. Although the Ki and SUV
images share similar information in most patients, the vb, K1, and
V0 images demonstrate very different spatial patterns in the body,
thus providing information complementary to that provided by
SUV. Supplemental Figure 5 demonstrates that parametric images
can potentially be more useful than SUV for liver tumor imaging
and brain tumor imaging.

DISCUSSION

In this paper, we have evaluated a voxelwise strategy for total-
body 18F-FDG PET parametric imaging using compartmental
modeling. TDC through joint estimation during time–activity
curve fitting was found to be significant (Fig. 2) and had a high
impact on quantification and parametric imaging of vb and K1

(Table 3; Fig. 3). The impact on Ki was of lesser extent when vb
was small but became higher as vb increased (Fig. 4; Supplemental
Figure 3). Dispersion correction was not explicitly included in this
study, but the incorporation of vb may partly account for the
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potential dispersion effect (29). The vb values of lesions estimated
in this study were relatively high (0.23 6 0.18 mL/cm3), as likely
reflects that most patients had clear cell renal cell carcinoma,
which tends to be highly vascular (30). It is also perhaps because
vb is more like a method parameter than being quantitative, given
that it also accounts for the dispersion effect.
Our study also found that the standard 2T model led to artificially

high values in the Ki image in those voxels containing primarily
blood. This effect was caused by overfitting of the time–activity
curves that better follow the 0T model or 1T model, as indicated by
the AIC comparison (Fig. 5). We addressed this problem by apply-
ing voxelwise model selection using AIC. The method led to clear

visualization of the myocardium, whereas the standard model did
not (Fig. 6). The AIC-based model selection is driven by a statistical
fit quality evaluation and cannot be overinterpreted physiologically.
For example, the choice of 1T over 2T does not indicate the nonex-
istence of phosphorylation but suggests that k3 can be neglected
when the data are noisy. As an alternative to AIC, other approaches
are also possible by applying sparsity constraints to kinetic parame-
ters or using sparse spectral analysis (31). In addition, factor analy-
sis (32) and mixture models (33) could also be advantageous
to explore in total-body parametric imaging (34).
As the first step for demonstrating a workable modeling strategy,

we considered only the irreversible 2T model. This model is
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FIGURE 6. Comparison of 18F-FDG Ki parametric images generated by conventional 2T model (with TDC) and proposed approach that includes model
selection and TDC in 5 patients with cancer (A) and 5 healthy subjects (B).
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FIGURE 7. Comparison of standard SUV image with parametric images of 18F-FDG influx rate Ki, fractional blood volume vb,
18F-FDG delivery rate K1,

and volume of distribution V0 images of cancer patient. Shown are maximum-intensity-projection maps.
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appropriate when the dephosphorylation process is negligible dur-
ing the 1-h dynamic scan time. However, the reversible 2T model
(with k4 . 0) can be more appropriate for kinetic quantification of
organs such as the liver (35) and myocardium (36). The liver and
lungs also receive dual blood supplies and require modeling of
their dual-blood input function for accurate kinetic quantification.
These aspects were not addressed in this study. Motion correction
may also further improve the quantification performance. Implemen-
tation of these more complex models in total-body parametric imag-
ing is a part of our ongoing effort.
The focus of this paper was mainly on the methodologic imple-

mentation for multiparametric imaging using compartmental model-
ing. Because of the page limit, the benefits of parametric images
have not been directly compared with the SUV images (other than
Supplemental Fig. 5) and with the parametric images determined
from the linear Patlak plot (5,14,37). In general, multiparametric
imaging with compartmental modeling not only generates Ki and V0

but can also provide other microkinetic parameters, including vb and
K1 (Fig. 7), that go beyond what the Patlak method can offer.
Exploring the potential benefits of these multiparametric images will
be reported in future work.
This study had several other limitations. The temporal sampling

rate for early dynamic scanning was relatively limited (10 s/frame)
but was a reasonable choice based on our preliminary study as
shown in Supplemental Figure 6. Within this context, the time
delay td is mainly a method parameter that is coarsely estimated.
Optimal sampling (trade-off between temporal resolution and voxel
noise level) and the effect on kinetic quantification remain to be
further investigated. In addition, the number of studied subjects
was relatively small, and the study did not have a reference or
outcome measure to evaluate the impact of kinetic quantifica-
tion. The studied cancer type was also limited to genitourinary
cancer. It will be worth evaluating the proposed kinetic modeling
strategies in other cancers. Future studies will take these aspects
into account.

CONCLUSION

We successfully conducted total-body PET multiparametric
imaging using compartmental modeling for the dynamic 18F-FDG
PET data acquired on the uEXPLORER system in both healthy
subjects and cancer patients. TDC led to improved lesion time–ac-
tivity curve fitting, physiologically more consistent vasculature in
the vb image, and a generally higher Ki in lesions, especially when
vb was large. Voxelwise model selection reduced artifacts in the Ki

parametric images and led to clearer visualization of the myocar-
dium. Both the modeling of time delay of the blood input function
and model selection are necessary for accurate total-body multi-
parametric imaging.
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KEY POINTS

QUESTION: Is it feasible to perform multiparametric imaging
with compartmental modeling in total-body dynamic PET of
cancer?

PERTINENT FINDINGS: Voxelwise modeling of the time delay of
the blood input function and model selection are necessary for
accurate total-body multiparametric imaging.

IMPLICATIONS FOR PATIENT CARE: Total-body dynamic PET
can enable single-tracer multiparametric imaging, which may be
further explored to improve tumor detection and treatment
response assessment.
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