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Single–Time-Point Tumor Dosimetry Assuming
Normal Distribution of Tumor Kinetics

TOTHEEDITOR:An excellent recent review by Sgouros et al. on
the multifaceted complexities of tumor dose–response was highly
informative (1). However, it did not address a practical aspect—
how to routinely implement tumor dosimetry in the context of
today’s stifling economic mantra of “cheaper, better, faster.” The
fine balancing act between clinical needs and health-care economics
is an everyday challenge in any busy clinic. But there is hope, in the
form of single–time-point dosimetry as a compromise for resource-
intensive multiple–time-point imaging.
Previous work by H€anscheid et al. on single–time-point dosime-

try works well for normal organs, but its application to metastases is
questionable because of widely heterogeneous tumor biology (2).
Tumors are, by definition, inherently abnormal. Therefore, the effec-
tive half-life (Teff) of any tumor type will have a wide spread of val-
ues. This means that a single average Teff defined for a tumor type
might not be sufficiently personalized to an individual patient.
An alternative framework for single–time-point tumor dosimetry

is proposed here to complement that by H€anscheid et al. (2). It
assumes a normal distribution of tumor Teff around its mean and
uses 61 SD to rationalize tumor Teff values for faint (poor), mild
(weak), moderate (good), and intense (excellent) tumor avidity.
Whichever method of single–time-point tumor dosimetry the user

eventually chooses will depend on whether each method’s assump-
tions are reasonably valid for the patient at hand.
To illustrate this alternativemethod, let us consider 131I-avid bone

metastases from differentiated thyroid cancer. For this exercise, it is
necessary to quote preliminary data. From a very small dataset of
8 bone metastases by 2 studies (6 lesions) and 2 lesions from our
own data, the mean tumor Teff in

131I-avid bone metastasis prepared
by thyroid hormone withdrawal was approximately 4.07 6 2.52 d
(3,4). Its wide SD reflects the highly heterogeneous biology of
metastases.
Next, we invoke the central-limit theorem to assume a normal dis-

tribution of tumor Teff around itsmean. This assumption is obviously
false in the current example of only 8 lesions but will eventually
trend closer to the truth with future additional data. Within this nor-
mal distribution framework, bone metastases that are visually
assessed to have faint 131I avidity will be to the left of 21 SD
(Teff,,1.55 d),mild aviditywill be at21 SD (Teff, 1.55 d),moderate
avidity will be at themean (Teff, 4.07 d), and intense avidity will be at
11 SD (Teff, 6.59 d). The visual classification of

131I avidity may be
referenced to the liver, analogous to the Krenning score (5).
Lesion mass is measured by sectional volumetry. Lesion activity

at time t (d) after administration of 131I is measured by calibrated
scintigraphy. Finally, the tumor-absorbed dose (Gy) may be calcu-
lated by the method described by Jentzen et al., which assumes a lin-
ear initial time–activity concentration rate and a time to peak tumor
uptake of 8 h, followed bymonoexponential clearance in accordance
with tumor Teff (6). This alternative method of single–time-point
dosimetry could also be applied to 131I-avid soft-tissue metastases,
with preliminary data suggesting that the mean tumor Teff prepared
by thyroid hormonewithdrawal could be approximately 2.556 0.35
d (7,8).
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