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Digital autoradiography (DAR) is a powerful tool to quantitatively deter-
mine the distribution of a radiopharmaceutical within a tissue section
and is widely used in drug discovery and development. However, the
low image resolution and significant background noise can result in
poor correlation, even errors, between radiotracer distribution, ana-
tomic structure, and molecular expression profiles. Differing from con-
ventional optical systems, the point-spread function in DAR is
determined by properties of radioisotope decay, phosphor, and digi-
tizer. Calibration of an experimental point-spread function a priori is
difficult, prone to error, and impractical. We have developed a
content-adaptive restoration algorithm to address these problems.
Methods: We model the DAR imaging process using a mixed
Poisson–gaussian model and blindly restore the image by a penalized
maximum-likelihood expectation-maximization algorithm (PG-PEM).
PG-PEM implements a patch-based estimation algorithm with
density-based spatial clustering of applications with noise to estimate
noise parameters and uses L2 and Hessian Frebonius norms as regu-
larization functions to improve performance. Results: First, PG-PEM
outperformed other restoration algorithms at the denoising task (P ,
0.01). Next, we implemented PG-PEM on preclinical DAR images
(18F-FDG, treated mouse tumor and heart; 18F-NaF, treated mouse
femur) and clinical DAR images (bone biopsy sections from 223RaCl2-
treated castration-resistant prostate cancer patients). DAR images
restored by PG-PEM of all samples achieved a significantly higher
effective resolution and contrast-to-noise ratio and a lower SD of
background (P , 0.0001). Additionally, by comparing the registration
results between the clinical DAR images and the segmented bone
masks from the corresponding histologic images, we found that the
radiopharmaceutical distribution was significantly improved (P ,
0.0001). Conclusion: PG-PEM is able to increase resolution and con-
trast while robustly accounting for DAR noise and demonstrates the
capacity to be widely implemented to improve preclinical and clinical
DAR imaging of radiopharmaceutical distribution.
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Autoradiography is a powerful, high-resolution, and quantita-
tive molecular imaging technique used to study the tissue
distribution of radioisotopes in biologic systems and for analytic
assays (1–4). Originally, radioactivity distributions were acquired
using photographic emulsions, which are of high resolution but
require time-consuming, fickle, and variable processes. Currently,
phosphor imaging plate–based digital autoradiography (DAR) has
supplanted film because of its linear activity response, nondestruc-
tive approach, lack of a chemical-processing requirement, large
dynamic range, and considerable sensitivity (2,4,5).
Generally, DAR is performed by placing tissue samples contain-

ing radioactivity apposed to the phosphor screen, which absorbs
and stores the energy of the radioactive emissions, creating a latent
image of activity distribution (Fig. 1A). Except for very low energy
b-emitters (tritium), the phosphor layer and the specimens are typi-
cally separated by low-attenuation film to prevent contamination of
the screen itself, and exposure lasts hours to days. The phosphor
plate is raster-scanned with a small focal-spot red laser, and the
photostimulated light is collected by a photomultiplier tube to form
a digital image (Fig. 1B). The intensity of emitted light is propor-
tional to the amount of radioactivity in the tissue sample.
Suboptimal image quality in DAR limits assessment of radioli-

gand evaluation. Unlike optical microscopy systems, DAR does
not use an aperture or collimator, and the solid angle subtended at
the samples by the imaging plate is almost 2p. Therefore, the
point-spread function (PSF) results from isotropic emission and is
dependent on a combination of energy dispersion in the phosphor,
plate properties (lattice and grain size), and readout laser, and
physical properties also make the PSF isotope-dependent. Addi-
tionally, replicating relevant features of the signal for DAR acquis-
itions in a phantom is difficult. In aggregate, it is thus not practical
to calibrate the PSF beforehand.
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Apart from blurring effects caused by PSF, background signal
caused by environmental radiation is always present in the imag-
ing process. DAR noise can be attributed to multiple sources:
Poisson noise exists in the photon-counting imaging system;
gaussian noise comes from the imaging reader readout process,
phosphor sheet inhomogeneities, and grain (6). Few approaches
have been tested to overcome noise and blur-related artifacts: a
regularized iteration method after noise filtration (7) and the
modeling of noise features (8). The results from these investiga-
tions are not ideal and have not been widely adopted, in part
because several have used an emulsion film–based system (the
predecessor to phosphor storage plate technology) and noise
amplification effects. Common to these approaches are precalibra-
tion of PSF by a nonideal resolution phantom.
To model the noise in DAR systems of many isotopes, a blind

estimation approach for restoration is preferred. Recently, a
mixed-noise model has been used to denoise digital images, which
can improve the quality of images contaminated by Poisson and
gaussian noise sources (9–12). A key step in such a model is esti-
mation of noise parameters. For single-image restoration, patch-
based (9), segmentation-based (11), or Fourier-based (12) methods
have been developed, and several blind and nonblind image resto-
ration techniques for biomedical images have been advanced
(13–19). For the specific task of blind restoration, the regulariza-
tions for PSF and specimen are considered in some of these meth-
ods, providing a path forward for blind DAR estimation.
Here, a blind image restoration algorithm based on a mixed

Poisson–gaussian noise model and a penalized maximum-
likelihood expectation maximization (MLEM) algorithm, PG-
PEM, is presented. We first describe this model in the context of
the DAR imaging process along with a patch-based noise

parameter estimation method. We incorporate a penalized MLEM
algorithm to jointly estimate the restored specimen image and cor-
responding PSF. L2 and Hessian Frebonius norms are imple-
mented for PSF and specimen signal separately, to improve the
quality of the restored image. PG-PEM improves resolution,
improves contrast, and suppresses noise more effectively than con-
temporary restoration approaches, using both preclinical and clini-
cal applied diagnostic and therapeutic radiopharmaceuticals.

MATERIALS AND METHODS

Mouse Tumor, Heart, and Femur Preparation
Experiments were performed in accordance with approved proto-

cols (Institutional Animal Care and Use Committee protocol
2019006). Male C57BL/6 mice (6–10 wk old) from Jackson Labora-
tory were administered approximately 7.4 MBq (200 mCi) of either
18F-FDG or 18F-NaF, and harvested at 1 h. Tissues were embedded in
optimal-cutting-temperature medium, frozen on dry ice, and sectioned
at 8 mm by a cryostat (CM188; Leica). For all radiographic exposures,
multisensitive phosphor plates were exposed at 220�C and read as
digital light units using a Cyclone Plus (Perkin Elmer). We then used
ImageJ (20) to crop regions of interest.

Human Bone Biopsy Preparation
Bone biopsies were obtained from 7 metastatic castration-resistant

prostate cancer patients under fluoroscopic guidance after a bone
scan, 24 h after injection of 223RaCl2. The institutional review board
approved this study (Human Research Protection Office protocol
201411135), and all subjects provided written informed consent. The
biopsy sample was fixed in 4% paraformaldehyde for 24 h, transferred
to 30% sucrose for 24 h, frozen, cut, and imaged.

Staining and Imaging
Sections were stained with hematoxylin

and eosin and scanned at 310 (Nikon Eclipse
Ti2 for mouse tumor, heart, and femur slides;
Zeiss Axio Scan Z1 for human bone biopsy
slides).

Overview of Image Formation Model and
Restoration Algorithm

According to the DAR imaging process,
its physical model can be expressed as Equa-
tion 1:

Rp 5aQp1Np, Qp � P X � hð Þp1bp
� �

,

Np � N 0,s2
G

� �
,

Eq. 1

where p is the pixel index, R the raw
image, a the scaling factor corresponding
to the gain of the imaging system, X the
clean radioactive signal, h the PSF, b the
mean of background, P x½ � the Poisson
noise with mean x, and Nð0,s2

GÞ the
gaussian-distributed readout noise with
mean of 0 and SD sG. Here, we assume bp
is invariant because of the homogeneous
radiation around the tissue.

To estimate X, a careful modeling of
gaussian noise Nð0,s2

GÞ and Poisson noise
aP½b� from background b is necessary. We
implement a noise model to jointly estimate
parameters of the 2 components. This is

FIGURE 1. DAR imaging process and PG-PEM algorithmic framework. (A) Latent image genera-
tion, in which S0 and S1 are 2 point sources, detected at S9 and S99. (B) DAR image generation. (C)
PG-PEM framework: noise parameter estimation (1); PSF and specimen image estimation (2). Scale
bars: large figure, 2.3 mm; small figures, 0.54 mm. A/D = analog/digital; DBSCAN = density-based
spatial clustering of applications with noise; DLU 5 digital light unit; E = expectation; HF = hessian
Frebonius; M = maximization.
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based on the fact that Poisson distribution can be feasibly approxi-
mated by a gaussian distribution when b is greater than 3 (Supplemen-
tal Fig. 1; supplemental materials are available at http://jnm.
snmjournals.org) (21). Notably, this condition is always satisfied for
DAR imaging, and therefore, the 2 independent noise features are
summed into a new single gaussian-distributed noise (Supplemental
Note 1.1). Consequently, the raw image can be reorganized into a
Poisson-distributed signal, aP½Xp � h�, and gaussian-distributed noise,
NðmN ,s

2
NÞ, with mean of ab and variance of a2b1s2

G. Obviously,
NðmN ,s

2
NÞ describes the statistical characterization of the background

of DAR images.
Nontissue areas in DAR should have only background and noise

and be highly similar to each other. From this assumption, we propose
a patch-based estimation algorithm using density-based spatial cluster-
ing of applications with noise (Fig. 1C(1); Supplemental Note 1.2
(22); Supplemental Algorithm 1; Supplemental Fig. 2) (23) to robustly
segment background and estimate mN and sN .

The PG-PEM algorithm uses these noise parameters and the raw
image to blindly estimate X based on a penalized MLEM algorithm
(Fig. 1C(2); Supplemental Notes 1.3 and 1.4 (24, 25)). The expectation
step aims to eliminate the gaussian-distributed noise, NðmN ,s

2
NÞ, by cal-

culating the expectation of X * h, whereas the maximization step decon-
volutes the blurry image corrupted by Poisson-distributed data by jointly
estimating h and X. In practice, the blind deconvolution problem is highly
ill-posed. Through the iteration process, h tends to converge toward a
d-function because of high-frequency noise in the specimen image. To
avoid the trivial solution and considering the smooth characteristics of h,
it is regularized by L2 norm. L2 norm is linearly correlated to the power
of h. Therefore, the smaller the L2 norm is, the smaller and thus smoother
h is. During the same process, the noise of the estimated X may be ampli-
fied. Total variation is a popular approach (16,19) to suppressing such

noise by restraining the summation of the deriv-
ative of an image, according to the empiric
summary that signals are usually successive
whereas noise arises randomly. However, total
variation oversharpens boundaries between dif-
ferent regions, generating a staircase effect. To
avoid this artifact, we implemented Hessian
Frebonius norm regularization to enable
smoother transitions between different regions
and to suppress noise simultaneously
(15,17,18). Compared with total-variation regu-
larization, Hessian Frebonius is a second-order
derivative norm and forces the second-order
derivative to be sparse. The continuity between
different pixels agrees more with the character-
istics of biologic autoradiogram data. The regu-
larization strengths for h and X are controlled
by their regularization parameters lh and lX ,
respectively.

For our novel PG-PEM, initial estimates
for h and X are needed. The raw image R is
set as the initial guess of X divided by a.
h can be initialized on the basis of the imag-
ing model. Apart from even scattering, mak-
ing h circularly symmetric, the finite focal
point effect of the image reader and the mod-
ulation transfer function of the phosphor plate
have minor effects on h. However, it is
unnecessary to build a PSF model accounting
for all effects in a blind restoration frame-

work. Instead, initialization of h is based on the inverse square law
(26) when only considering the scattering (Supplemental Note 1.5;
Supplemental Fig. 3). Finally, the scaling factor a must be calibrated.
Methods previously presented for optical imaging (11,18) are insuffi-
ciently robust for DAR images because it is difficult to find enough
homogeneous regions to calibrate a. Empiric calibration is impractical
and generally infeasible because of the stochastic decay process and
short half-lives in DAR. Fortunately, the mixed Poisson–gaussian data
can be approximated as a shifted-Poisson form (18), and further, in the
deconvolution of Poisson-distributed images, results are not affected
by this scaling parameter. Thus, PG-PEM yields a calibration-free
algorithm when a is set in a proper range (Supplemental Note 1.6).
The detailed algorithmic framework and runtime analysis are summa-
rized (Supplemental Note 1.7; Supplemental Algorithm 2; Supplemen-
tal Table 1).

Quality Metrics
For experiments, the full width at half maximum, the SD of the

background (STDB), and the contrast-to-noise ratio (CNR) are set as
the accuracy metrics because of the lack of ground truth. Full width at
half maximum and STDB can evaluate the resolution and noise level
separately, whereas CNR assesses overall performance.

For DAR, it is difficult to measure full width at half maximum using
microbeads. Alternatively, we use a recently published decorrelation-
based method (Supplemental Fig. 4) (27). This method estimates not
the theoretic resolution of the imaging system but the highest frequency
with sufficiently high signal in relation to noise. We refer to the esti-
mated full width at half maximum as effective resolution.

For simulations, accuracy metrics include root-mean-square error,
signal-power–to–noise-power ratio (SNR), and structural similarity
(28), with which the estimated images can be compared with the
ground truth directly. These metrics, along with CNR, are defined in
Supplemental Note 2.

FIGURE 2. Blind restoration improves DAR. (A) Raw DAR image from mouse hindlimb after
18F-NaF PET imaging and its restoration results using modified restoration algorithms. Estimated
PSFs are inset in gray scale. (B) Log-scale transformed images from A for background appraisal.
(C) Log-scale amplitude of Fourier transform of raw and restored images from A. Scale bars:
4.95 mm (A); 0.86 mm (A1 and A2). DLU5 digital light unit.
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Statistical Analysis
Quantitative data are presented as box-and-whisker plots (center

line, median; limits, 75% and 25%; whiskers, maximum and mini-
mum). We used paired 2-sided Student t testing to compare the data of
raw and PG-PEM–restored DAR images, and we used the paired
1-way analysis of variation to compare all other data (Prism 8; Graph-
Pad Software Inc.).

RESULTS

Assessment of Image Enhancement
We benchmarked the performance of several restoration frame-

works: Richardson–Lucy (RL) (13), RL with wavelet-based residue
denoising (RD) (29), Shift–Poisson (SP) (18), PG-PEM with no
regularization for X (NP), and PG-PEM with total-variation regu-
larization (TV). For comparison, we have applied our novel back-
ground reduction and blind restoration to all approaches and tuned
h to be similar (Supplemental Notes 3.1–3.5). PG-PEM, together
with the 5 modified reference algorithms, was implemented on
both simulated images (Supplemental Note 4.1) and experimental
images. Regularization parameters are tuned (Supplemental Note
4.2; Supplemental Figs. 5–6), and comparisons on simulated data
are analyzed (Supplemental Note 4.3; Supplemental Figs. 7–11).
DAR images (n 5 10) acquired from the mouse hindlimb after

18F-NaF PET imaging were used as experimental data and to
evaluate the performance of image restoration approaches. As is
standard for short-lived diagnostic radioisotopes and required
tissue-processing, sectioning, and exposure times, the SNRs of the

raw images are low, providing a model setting for comparison.
Visual assessment and analyses (Figs. 2 and 3; Supplemental
Fig. 12) show that implementation of restoration algorithms
improved resolution and suppressed noise to varying magnitudes.
Log-scale images reveal that NP, TV, and PG-PEM have a more
homogeneous background than other methods, a result of splitting
the image components into Poisson-distributed signal and
gaussian-distributed noise. The nonhomogeneous background in
RL, RD, and SP correspond to noise and false-positive signal gen-
erated in their restoration process.
Next, we assessed the log-scale amplitude of the Fourier space.

Because h is isotropic, the resolution of DAR images should be at
least quasiisotropic. Curiously, we observed that high frequencies
tended along the horizontal direction and were highly noniso-
tropic, which corresponds to the noise. By comparing the fre-
quency maps of NP, TV, and PG-PEM, we found that the
nonisotropic components of NP have the highest energy. TV pro-
duces a broader nonisotropic frequency portion than PG-PEM and
a staircase effect. These, along with STDB and CNR, indicate that
PG-PEM is the best denoiser. Meanwhile, RL, SP, NP, TV, and
PG-PEM share similar quasiisotropic areas in the dotted black
circles (the decorrelation boundaries defined in Fig. 2C), whereas
that of RD has the lowest energy. The resolution of RD is the low-
est because wavelet-denoising processes remove fine details. With
an MLEM restoration framework (and the same regularization
strategy for PSF h), RL, SP, NP, TV, and PG-PEM share similar
resolutions. Notably, because of the lack of a regularization strat-
egy for X, the resolution of NP may be slightly higher than those
of the other methods, which can be neglected because of the
impact of noise. The effective resolution improves at least 5-fold
after restoration by PG-PEM (P , 0.0001). These data, along with
the simulation results, demonstrate that PG-PEM is the best per-
former for blind restoration of DAR images.

PG-PEM Improves DAR of Diagnostic Radiopharmaceuticals
To determine whether PG-PEM could improve the quality of

DAR images in diagnostic radiopharmaceuticals, we investigated
the distribution of the widely used metabolic tracer 18F-FDG, and
the bone-seeking 18F-NaF, in tissue samples from mouse tumor,
heart, and femur (n 5 10 per group). We used PG-PEM to restore
these data, and we calculated STDB, CNR, and effective resolu-
tion for comparison to the raw images (Fig. 4). These results
demonstrate the image quality improvement after restoration.
Notably, a nonglycolytic (prostate) tumor section, which takes up
little 18F-FDG, has an extremely low SNR. Nevertheless,
PG-PEM suppresses background noise and improves the resolu-
tion of regions of uptake (Supplemental Fig. 13). RL and SP algo-
rithms were chosen as references to restore the same DAR
images from tumors imaged with 18F-FDG (Supplemental Fig.
14). Compared with PG-PEM, the results of RL and SP, espe-
cially their background components, have more apparent noise.
The corresponding STDB and CNR reveal that PG-PEM is supe-
rior to restore DAR images under extremely low-SNR conditions,
with a P value of less than 0.0001.
We next asked whether higher-SNR images, from 18F-FDG in

the heart and 18F-NaF in the bone, could likewise be improved by
PG-PEM. From the raw cardiac images, radioisotope signal is
almost homogeneous. By contrast, the PG-PEM–restored data
have a higher resolution and improved contrast, which may better
reflect the spatial distribution of the tracer (Supplemental Figs. 13
and 15). We further compared the hematoxylin- and eosin-stained,

FIGURE 3. Quantitative assessment of different blind restoration
approaches. (A) Profiles of dashed lines in Figure 2A. (B) STDB, CNR, and
effective-resolution comparisons of approaches. *P , 0.05. **P , 0.01.
***P, 0.001. ****P, 0.0001.
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raw, and restored DAR images of the murine femur (Fig. 5;
Supplemental Fig. 16). After restoration, the endosteal and perios-
teal surfaces are clearly visualized, and the proximal head of
the femur is resolved. Because the positron range of 18F is
considerable, its DAR is blurred compared with lower-energy
b-emitters or high-linear-energy-transfer a-emitters, hindering
assessment of radiopharmaceutical distribution. Our results indi-
cate that PG-PEM can ameliorate this issue, underscoring preclini-
cal utility.

Enhanced Targeted a-Particle Radiotherapy Evaluation by
PG-PEM
Targeted delivery of a-particle–emitting radionuclides is an

emerging application for metastatic cancer treatment (30,31). Ana-
lyzing the dose distribution for a-particle therapy near the cell
scale plays a key role in predicting the treatment response and
assessing the toxicity of this targeted paradigm, especially as the
pathlength of a-particles is on the microscopic scale. Current
small-scale dosimetry methods are based predominately on ideal-
ized computational anatomic models (32,33). Although useful,
these provide limited real-world information in heterogeneous
patient populations.
We investigate a-particle emitter activity distributions from a

dataset of 10 bone biopsy slides from metastatic castration-
resistant prostate cancer patients treated with 223RaCl2 (Fig. 6;
Supplemental Fig. 17). The raw DAR images suffer from blur and
noise due to the imaging process, distorting the true radiotracer
distribution. This can cause large errors in registration and
degrades treatment response assessment and toxicity analysis.
223Ra will adsorb on the bone surface (34), and the high-activity
regions should be located here. On the basis of this knowledge,
DAR and histopathology images can be registered, and restoration
algorithms can be evaluated.
After registration (Supplemental Fig. 18), raw and restored

DAR images were fused with an anatomic bone mask (Supple-
mental Fig. 19). PG-PEM not only can improve the resolution and
remove noise in these DAR images but also results in more accu-
rate correlation with underlying anatomy. Quantitatively, line pro-
files, STDB, and CNR improve, and the effective resolution
increases by approximately 1.7-fold over raw data (Fig. 7). We
then calculated the structural similarity between the high-activity

regions of DAR images with their seg-
mented bone masks and evaluated a fusion
index, defined as the ratio of total activity
at bone surfaces (Supplemental Fig. 20).
Note that the higher the structural similar-
ity and fusion index are, the better is the
correlation between the modalities. The
evaluation results show that PG-PEM is
able to improve these two accuracy metrics
significantly (P , 0.0001). Consequently,
PG-PEM can be of great use in personal-
ized targeted a-particle radiotherapy
assessment.

DISCUSSION

Autoradiography is an important tech-
nique in drug development and evaluation
of radiolabeled compounds for imaging
and targeted therapy (35–38). In particular,
there is considerable academic, pharmaceu-
tical industry, and clinical interest in
assessing targeted a- and b-particle emit-
ters for endotherapy. Unlike external-beam
radiation delivery, systemically adminis-
tered radionuclides can irradiate all tissues
in the body, and localized distribution is
central to calculating absorbed doses and
to predicting both treatment response and
off-target toxicities. Conventional image

FIGURE 5. PG-PEM improves DAR images of 18F-NaF treated femur sections. (A) Hematoxylin-
and eosin-stained, raw, and PG-PEM–restored DAR images. (B) Zoomed-in regions of correspond-
ing boxes in A. Scale bars: 5 mm (A); 1.2 mm (B). DLU5 digital light unit.

FIGURE 4. STDB, CNR, and effective resolution assessment of
PG-PEM for preclinical DAR images. ****P, 0.0001.
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formation methods using DAR suffer from noise and other image
artifacts. In this work, we have defined and implemented a novel
PG-PEM algorithm to restore blurred and noisy DAR data.
PG-PEM is based on the DAR imaging process and a mixed

Poisson–gaussian noise model. The noise parameters are estimated
with a patch-based algorithm after a Poisson–gaussian distribution
conversion. A penalized MLEM approach is then used to jointly
estimate the specimen image and its corresponding PSF, simulta-
neously. Specifically, we used the L2 norm to regularize the PSF
in order to ensure its smoothness and avoid the trivial solution,
and we used the Hessian Frebonius norm to regularize the esti-
mated specimen image in order to ensure its continuity and sup-
press noise. Notably, this approach effectively eliminates the
staircase effect caused by TV regularization. As a consequence,
even low-SNR images are robustly restored. To the best of our
knowledge, this is the first attempt to combine MLEM with Hes-
sian norm–based regularization.
After analyzing the scaling factor a, we proved that it is free

of precalibration in PG-PEM. Subsequently, the algorithm was
quantitatively compared against alternative approaches across
multiple datasets. Because of the blind restoration framework,
PG-PEM is not a convex problem and we cannot guarantee
that it can converge to a global solution. Nevertheless, simulation
and experimental results show that PG-PEM is the lead performer,
providing improved correlation between signal and tissue features.
Interestingly, even though both SP and PG-PEM are based on

the mixed Poisson–gaussian noise model, PG-PEM has lower
noise and reduced background false-positive signal. This differ-
ence comes from the iteration process: PG-PEM first filters
gaussian-distributed noise in the expectation step and then filters
Poisson-distributed noise in the maximization step. In addition, we
have also compared the PSFs estimated from different isotopes
(223RaCl2-treated human bone biopsy sample and 18F-NaF–treated
mouse hindlimb). Clearly, the kernel size of the PSF from the hin-
dlimb is larger than that from the biopsy sample (Supplemental
Fig. 21), consistent with the physics of a/positron travel, further
validating the blind restoration approach.
Recently, convolutional neural networks have proved effective

in biomedical image restoration (39,40). However, these networks
may not be well suited for DAR restoration because of multipara-
metric factors influencing PSF, noise characteristics for each iso-
tope and tissue, and the lack of clean label data.

CONCLUSION

We have developed the PG-PEM algorithm for improved DAR
image quality. Predicated on a complete image formation model
for DAR and implementation of a signal and background segmen-
tation approach, this blind image restoration approach reduced
background noise and image blur in simulated and primary image
samples. For both high- and low-SNR datasets of diagnostic and
therapeutic radionuclides, there were significant improvements in
DAR resolution, contrast, and accuracy of localization. This
method will be widely applicable to both preclinical- and clinical-
sample autoradiograms to improve radiotracer and radiotherapy
agent evaluation.
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KEY POINTS

QUESTION: Can developments in computational imaging tools be
leveraged to improve diagnostic tracer and therapeutic radionu-
clide distribution assessment on the tissue scale?

PERTINENT FINDINGS: A combination of noise reduction along
with automated image restoration leads to significantly enhanced
DAR images. Background noise can be efficiently reduced, with
improved contrast and enhanced resolution. Particular benefits
are found for low-SNR images as demonstrated on clinical bone
biopsies from men treated with a-particle–emitting 223Ra.

IMPLICATIONS FOR PATIENT CARE: Improved understanding
of radioisotope distribution on the tissue scale is expected to ben-
efit target engagement studies for drug development and to
enable more accurate dose distribution.
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