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Attenuation correction remains a challenge in pelvic PET/MRI. In addi-
tion to the segmentation/model-based approaches, deep learning
methods have shown promise in synthesizing accurate pelvic attenua-
tion maps (m-maps). However, these methods often misclassify air
pockets in the digestive tract, potentially introducing bias in the recon-
structed PET images. The aims of this work were to develop deep
learning–based methods to automatically segment air pockets and
generate pseudo-CT images fromCAIPIRINHA-acceleratedMRDixon
images. Methods: A convolutional neural network (CNN) was trained
to segment air pockets using 3-dimensional CAIPIRINHA-accelerated
MR Dixon datasets from 35 subjects and was evaluated against semi-
automated segmentations. A separate CNN was trained to synthesize
pseudo-CT m-maps from the Dixon images. Its accuracy was evalu-
ated by comparing the deep learning–, model-, and CT-based
m-maps using data from 30 of the subjects. Finally, the impact of dif-
ferent m-maps and air pocket segmentation methods on the PET
quantification was investigated. Results: Air pockets segmented
using the CNN agreed well with semiautomated segmentations, with
a mean Dice similarity coefficient of 0.75. The volumetric similarity
score between 2 segmentations was 0.856 0.14. The mean absolute
relative changes with respect to the CT-based m-maps were 2.6%
and 5.1% in the whole pelvis for the deep learning–based and model-
based m-maps, respectively. The average relative change between PET
images reconstructed with deep learning–based and CT-based
m-maps was 2.6%.Conclusion:We developed a deep learning–based
method to automatically segment air pockets from CAIPIRINHA-
accelerated Dixon images, with accuracy comparable to that of semi-
automatic segmentations. The m-maps synthesized using a deep
learning–based method from CAIPIRINHA-accelerated Dixon images
were more accurate than those generated with the model-based
approach available on integrated PET/MRI scanners.
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Accurately accounting for annihilation photon attenuation is
essential for quantitative PET. In integrated PET/CT scanners, CT
data are scaled to generate attenuation maps (m-mapCT) that are
used for PET attenuation correction. In integrated PET/MRI scan-
ners, attenuation correction has been a challenge, as MRI does not
directly provide information about tissue attenuation properties
(1). The method initially implemented on one of the commercially
available PET/MRI scanners, the Biograph mMR scanner (Sie-
mens Healthineers), segmented the Dixon MR images into 4 com-
partments (i.e., background, lung, fat, and soft tissue) and assigned
known linear attenuation coefficients to each of these classes to
generate 4-compartment segmented m-maps (m-mapMR4C) (2).
Because properly accounting for bone tissue attenuation is impor-
tant, particularly in the pelvis, a model-based approach was subse-
quently developed to add bone tissue to the m-mapMR4C. This
whole-body 5-compartment model-based m-map (m-mapMR5C)
generation approach uses a database of aligned MR images and
bone segmentations for major body bones and involves coregistra-
tion of the subject’s MR image to the MRI model (3,4). The cur-
rent method implemented on the Biograph mMR (software
version VE11P) leverages the CAIPIRINHA (Controlled Aliasing
in Parallel Imaging Results in Higher Acceleration)–accelerated
Dixon 3-dimensional volumetric interpolated breath-hold exami-
nation sequence to acquire diagnostic-quality images with
improved spatial resolution within the typical 18-s acquisition. In
addition to providing diagnostic-quality images, this sequence was
previously shown to improve the accuracy of the m-mapMR4C (5).
Although the 5-compartment approach reduces the bias in the

PET data quantification compared with the 4-compartment
approach, it has several limitations when imaging the pelvis, the
main focus in this work. First, air pockets (i.e., digestive tract gas)
are difficult to identify and segment on the basis of the MRI data,
leading to biased PET data quantification. Second, this attenuation
correction method is prone to registration errors and does not
account for the intra- and intersubject variability in bone density.
Deep learning–based methods are being rapidly adopted in the

medical imaging field, with many applications in image segmenta-
tion (6–8), image registration (9,10), and image classification
(11,12), among others. Such approaches that use convolutional
neural networks (CNNs) and generative adversarial networks have
also been implemented in PET and PET/MRI for various purposes,
including synthesis of CT images for PET attenuation correction
(or radiotherapy planning) (13–15). In the context of pelvic
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attenuation correction, deep learning–based methods have been
applied to create synthetic CT images using Dixon MR and
proton-density–weighted zero-echo time (16), standard Dixon
(17,18), and T1-weighted LAVA Flex (GE Healthcare) water-only
and T2-weighted MR images (19). All these studies reported
improvements in the accuracy of m-maps and reductions in bias in
the reconstructed PET images, compared with those obtained
using the standard segmentation-based m-maps.
Previously proposed deep learning–based methods cannot syn-

thesize accurate pseudo-CT images from pelvic MR images in the
presence of air pockets, as they have an intensity similar to that of
bone structures in the standard MR images. Furthermore, perfectly
matched CT and MR images required for training of CNNs are not
available since these images are acquired on separate scanners at
different times. Therefore, the locations and sizes of the air pock-
ets change between the 2 scans, leading to errors in both MRI–CT
coregistration and image synthesis tasks. As an initial solution,
Torrado-Carvajal et al. (17) filled the air pockets with values cor-
responding to soft tissue in the estimated m-map images. Leynes
et al. (16) filled the air pockets in the CT images with soft-tissue
Hounsfield units (HUs) before training the CNN model. They
reported artifacts in their pseudo-CT images due to assignment of
bone HUs to air pockets. Both groups excluded the air pocket vox-
els from the PET data bias analyses. Alternatively, Bradshaw et al.
(19) used a technique that involved an intensity-based threshold,
morphologic closing, and manual adjustments to localize air pock-
ets and place them on m-maps.
In this work, we trained and evaluated CNNs to automatically

segment air pockets from Dixon MR images and assessed the
quantitative impact on the reconstructed PET images. Further-
more, we used the higher-quality CAIPIRINHA-accelerated Dixon
images within a deep-learning framework to generate pelvic
pseudo-CT maps, compared them with the m-mapMR5C and
m-mapCT, and evaluated the impact of using these m-maps on
PET data quantification. Consideration of bowel gas positioning
during the PET data acquisition will likely significantly impact
accurate assessment of pelvic lesion uptake and have potential
impactful clinical ramifications in both staging and longitudinal
treatment assessment. Although outside the scope of the current
study, our work therefore provides the technical foundation for
future prospective studies to assess the impact of the proposed
techniques.

MATERIALS AND METHODS

This retrospective study included data from 30 oncologic patients
(age, 57 6 10 y; 19 women and 11 men; weight, 69 6 15 kg) who
underwent successive, same-day PET/CT (as part of standard care)
and PET/MRI (research) examinations. CAIPIRINHA-accelerated
MRI Dixon data acquired from 5 additional subjects (age, 57 6 5 y;
3 women and 2 men; weight, 72 6 8 kg) were also included in this
study and used only in the development and evaluation of the air
pocket segmentation method. All patients gave written informed con-
sent, and the local Institutional Review Board approved the study.

PET/MRI Data. Simultaneous PET/MRI data were acquired using
the Biograph mMR scanner. Whole-body 18F-FDG PET data were
acquired at 4 bed positions (injected dose, 568 6 78 MBq) for 20 min
approximately 2 h after radiotracer administration. Whole-body MRI
data were acquired at 4 bed positions using the CAIPIRINHA-
accelerated Dixon 3-dimensional volumetric interpolated breath-hold
examination sequence (repetition time, 3.96ms; first echo time,
1.23ms; second echo time, 2.46ms; flip angle, 9�; scan duration, 18 s)

approximately 10 min after injection of a gadolinium-based MRI con-
trast agent (gadoterate meglumine [Dotarem; Guerbet]). This sequence
provides in-phase and opposed-phase water and fat T1-weighted
images that are typically used in the model-based m-map estimation
method. MR images were reconstructed with a voxel size of 2.1 3 2.6
3 2.1 mm.
CT Data. Low-dose CT data were acquired as part of the PET/CT

acquisitions using Discovery 710 (GE Healthcare) (n 5 26) and Biog-
raph 64 (Siemens Healthineers) (n 5 4) PET/CT scanners (voltage,
120 kV; tube current, 150 mA). The CT images were reconstructed
with a voxel size of 0.98 3 0.98 3 5 mm. The CT data obtained from
the 2 scanners were considered equivalent for the purpose of
this study.
Image Processing. MR images were first corrected for low-

frequency intensity nonuniformity using N4 bias correction (20). The
scanner bed was removed from the whole-body CT images using
intensity thresholding and morphologic operations. Subsequently, the
pelvic region was manually cropped from the whole-body images. CT/
MRI pairs were coregistered using affine and nonrigid transformations
using NiftyReg (21). Finally, the images were resampled to generate a
volume with 256 3 256 3 n voxels. The voxel size of each volume
was approximately 2.0 3 1.6 3 2.0 mm.

Air Pocket Segmentation
Air pockets present in the CT images were segmented using an

image-thresholding algorithm (HUs , 2700). Air pockets in the MR
images were segmented using a region-growing algorithm imple-
mented in ITK SNAP software (22). This semiautomatic procedure
required manual placement of seeds on air pockets and editing of the

FIGURE 1. Overview of methodology. OSEM5 ordered-subsets expec-
tation maximization.
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resulting segmentations by experienced radi-
ologists. These air pockets were used to train
a CNN. A UNet (6,23) architecture with
residual units, consisting of 4 down-sampling
and 4 up-sampling layers, with rectified lin-
ear units used as the activation function, was
chosen for this task. Three-dimensional MRI
Dixon in-phase volumes were used as input
data. The acquired images were resampled to
an isotropic volume with a voxel size of
1mm3, and multiple patches with a fixed
matrix size of 96 3 96 3 96 voxels were
extracted. To avoid overfitting during the
training, data were augmented by applying
610% image scaling and a random rotation
with a 610� angle. The MRI volumes were
normalized to zero mean and unity variance.
The network was trained and evaluated on a
dataset of 35 subjects using a 5-fold cross-
validation, where for each fold, the data were
split into 80% training data (28 subjects) and
20% validation/testing data (7 subjects). The
Dice similarity coefficient (DSC) was used as
the loss function, and the network was trained
using an Nvidia Tesla V100 graphics proc-
essing unit.

The accuracy of the segmentation network
was evaluated by computing segmented air
pocket volumes, DSC, and Hausdorff dis-
tance (24) at the 95th percentile between the
segmentations obtained using the CNN and
the semiautomatic methods. The DSC and
Hausdorff distance are 2 metrics commonly
used in evaluating image segmentation meth-
ods and are measures of similarity and largest
segmentation error between 2 segmented
regions. Volumetric similarity (25) was also
computed using Equation 1:

Volumetric similarity512
j V2Vref j
V1Vref

Eq. 1

where V is the test volume and Vref is the
volume of semiautomatically segmented
air pockets.

Pelvic Attenuation Map Synthesis
A separate network also based on the

UNet (6) architecture was trained to synthe-
size pseudo-CT images from the 4 Dixon
2-dimensional axial images (17). Mean abso-
lute error was used as the loss function. Dur-
ing the training, data were augmented by
applying random displacements of 5 voxels
and a random flip in the slices. The Dixon
volumes were normalized to have zero mean
and unity variance. A 5-fold cross-validation
was performed where data were split to 80%
training data (24 subjects) and 20% valida-
tion/testing data (6 subjects).

The HUs of the output pseudo-CT images
were scaled to obtain the m-maps (26). Vox-
els belonging to air pockets were assigned a

FIGURE 2. Air pocket segmentation for representative subject (subject 21). Axial, coronal, and sag-
ittal views of Dixon in-phase MRI are shown with semiautomatic segmentations of air pockets (red)
and segmentation predicted by CNN (blue).

B

A

FIGURE 3. (A) DSCs between CNN-predicted and semiautomatic segmentations for 35 subjects.
Horizontal line represents mean coefficient. (B) Volume of air in segmented regions obtained using
semiautomatic and CNN approaches.
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linear attenuation coefficient of zero. m-mapMR5C and m-mapCT were
also generated. All m-maps were smoothed using a gaussian filter of
4mm in full width at half maximum to match the resolution of the
PET images. The percentage absolute and nonabsolute relative change
(RC) were computed using Equation 2:

RC %ð Þ5100
j I2Iref j

Iref
Eq. 2

where I is the test image and Iref is the reference image. CT-based
m-maps with CNN-derived air pockets were used as the reference
image. Absolute and nonabsolute RCs were evaluated voxelwise
in the whole pelvis and within 3 regions of interest (ROIs): bone,
fat-based soft tissue, and water-based soft tissue. These ROIs were
segmented using a thresholding algorithm on the ground truth

m-mapCT. Bones were obtained by exclud-
ing voxels with linear attenuation coeffi-
cients of less than 0.105 cm21 and applying
a flood-fill operation to capture the bone
marrow. A water-based soft-tissue ROI was
obtained by keeping only nonbone voxels
within the 0.090–0.105 cm21 range, and a
fat-based soft-tissue ROI was obtained by
selecting only voxels with linear attenuation
coefficients in the 0.080–0.090 cm21 range.

Impact on PET Data Quantification
To evaluate the effects of using different

m-map generation methods on PET images,
PET image reconstruction was performed
using, first, a model-based m-map with no
added air pockets, as generated and used on
the BiographmMR scanner (m-mapMR5C), and,
second,MRI andCT-basedm-mapswithCNN-
predicted air pockets from MR Dixon images
(m-mapMR5C-CNNAIR, m-mapMRDL-CNNAIR, and
m-mapCT-CNNAIR, respectively) (Fig. 1).

The PET images were reconstructed with
the Siemens e7-tools (version VE11P) using
the ordered-subsets expectation maximization
algorithm (3 iterations and 21 subsets), with a
voxel size of 2.132.132.0mm, and smoothed
using a postreconstruction gaussian filter with
a full width at half maximum of 4mm. Abso-
lute and nonabsolute percentage RCs between
the PET images attenuation-corrected using
the m-maps generated with the different meth-
ods were computed and reported for the whole
pelvis and the ROIs listed above. To further
study the effects of misclassified air pockets
on the PET estimates in adjacent structures, a
fourth ROI was obtained by dilating the semi-
automatically segmented air pocket masks in
all directions by 3 cm and subtracting the air
pocket voxels from the dilated region.

RESULTS

Example Dixon in-phase MR images
with air pockets semiautomatically seg-
mented and predicted by the CNN algo-
rithm are shown in Figure 2. The proposed
method was able to segment both large-

and small-volume air pockets and to distinguish between air pock-
ets and other structures with low signal intensity on MR Dixon
in-phase images, particularly bladder and bones, achieving a DSC
of 0.75 6 0.15, averaged across the testing/validation folds (Fig.
3A). Segmented air pocket volumes for each subject are shown in
Figure 3B. The volumetric similarity between the 2 segmentations
was 0.85 6 0.14. Overall, there was no statistically significant dif-
ference between the air pocket volumes obtained using the 2 meth-
ods (paired t test, P 5 0.30). Subject 30 had a significantly lower
DSC and volumetric similarity than other subjects. This subject
had one of the smallest volumes of air pockets, and the CNN mis-
classified the bladder as air, causing a large difference in seg-
mented volumes (Supplemental Fig. 1; supplemental materials
are available at http://jnm.snmjournals.org). The average 95th

FIGURE 4. CT- and MRI-derived attenuation maps for representative subject (upper panels).
CT-derived attenuation map with air pockets predicted by CNN was used as reference to compute
corresponding RCmaps shown in lower panels.
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percentile Hausdorff distance between segmentations obtained
with each method was 51.0 6 52.4 mm.
The m-maps generated using model-based methods without

(m-mapMR5C) and with (m-mapMR5C-CNNAIR) added air pockets,
CT (m-mapCT-CNNAIR), and the deep learning–based method
(m-mapMRDL-CNNAIR) are shown in Figure 4 for a representative
subject. Qualitatively, the deep learning–based method appears to
distinguish fat- and water-based soft tissue more accurately than
the model-based method. Better representation of bone structures
was also seen in m-maps generated using the proposed method.
As shown in Table 1, the quantitative assessment confirmed

these findings, m-mapMRDL-CNNAIR being more similar to
m-mapCT-CNNAIR than was m-mapMR5C-CNNAIR, with lower global
and regional RCs. When all the voxels in the pelvis were com-
pared, absolute RC was decreased from 5.1% to 2.6% when
m-maps were generated using the deep learning–based method
rather than the 5-compartment model–based method. This differ-
ence was statistically significant (P , 0.001). The largest improve-
ment was seen in the fat soft tissue, where the absolute RC was
reduced by a factor of 2.6. The difference between absolute and
nonabsolute RCs was statistically significant in fat-based soft-tis-
sue ROIs and water-based soft-tissue ROIs. Although there were
no significant group differences in the RCs obtained in the bones,
the 5-compartment model-based approach failed to assign bone
linear attenuation coefficients in most bones in 2 subjects (Supple-
mental Fig. 2).
PET images obtained using each m-map and air pocket segmen-

tation method and the corresponding RC maps with respect to
PETCT-CNNAIR are shown for a representative subject in Figure 5.
PETMRDL-CNNAIR had lower global RCs than did PETMR5C-CNNAIR.
It can also be seen that PETMR5C had an area under the bladder
with significantly increased 18F-FDG uptake, compared with the
other PET reconstructions. This area corresponds to an air pocket
misclassified as soft tissue in the m-mapMR5C.
Averaged across all subjects, PETMR5C and PETMR5C-CNNAIR had

larger nonabsolute and absolute RCs than did PETMRDL-CNNAIR,
compared with PETCT-CNNAIR, both globally and regionally. Glob-
ally, the mean absolute RCs decreased from 7.1% to 4.9% and to
2.6% for PETMR5C, PETMR5C-CNNAIR, and PETDL-CNNAIR, respec-
tively. As seen in Figure 6, improvements were also observed in all

ROIs. PETMR5C had an RC of 20% and 12% in bone regions for the
2 subjects for whom model-based m-maps did not include major
bone structures.
In the ROI surrounding air pockets, PETDL-CNNAIR had an abso-

lute RC of 3.0% 6 1.4% (range, 0.1%–6.2%), whereas PETMR5C

had an average absolute RC of 11.0% 6 6.5% (range, 0.7%–
31.6%). In this ROI, PETMR5C images of 2 subjects had an abso-
lute RC greater than 22%, as their m-maps had large volumes of
misclassified air pockets near the bladder.

DISCUSSION

Previous studies have highlighted the important role that PET
(combined with both CT and MRI) plays in staging pelvic malig-
nancies, planning chemoradiation, and assessing therapeutic
response using multiple different tracers. With the recent Food
and Drug Administration approval of PSMA-targeting agents, the
clinical need for a reliable depiction of pelvic uptake using PET/
MRI will only increase. In addition, PET/MRI is actively being
explored for evaluation of inflammatory bowel disease (27). For
all these applications, an accurate estimation of uptake will likely
impact prognosis, choice of therapy, and treatment response
assessment, therefore motivating our current study. First, misclas-
sifying the air pockets as soft tissue could lead to false-positives
due to overestimation of PET activity in these voxels. Second,
lesions with increased uptake near air pockets could be missed
because of the decreased lesion-to-background contrast. Third, the
bias introduced in adjacently located lesions could impact the
assessment of longitudinal changes. Finally, from a methodologic
perspective, completely separating the air pocket segmentation
from the pelvic attenuation map generation tasks when using deep
learning approaches might increase the performance of the latter
techniques because the related anatomic mismatches between the
MR and CT images used for training could be eliminated (i.e., by
filling the air pockets with soft tissue in both datasets).
The first aim of this work was to develop a deep learning–based

approach to automatically segment air pockets in the pelvic region
from high-resolution CAIPIRINHA-accelerated Dixon MR
images. Semiautomatic segmentation of air pockets is a laborious
and subjective process, especially when additional manual editing
is required. The proposed CNN trained using semiautomatically

TABLE 1
Average Regional Nonabsolute and Absolute RCs Between Model-Based and Deep Learning–Based m-Maps, Compared

with CT-Based m-Maps

Region Parameter m-mapMR5C-CNNAIR m-mapMRDL-CNNAIR P*

Pelvis RC 2.956 2.06 20.136 0.96 ,0.001

Absolute RC 5.106 1.41 2.606 0.63 ,0.001

Bones RC 23.216 3.41 23.076 2.79 0.81

Absolute RC 5.316 2.45 4.546 1.91 0.08

Fat-based soft tissue RC 6.206 2.46 1.286 0.79 ,0.001

Absolute RC 6.766 2.17 2.576 0.69 ,0.001

Water-based soft tissue RC 1.206 2.44 20.776 0.96 ,0.001

Absolute RC 3.206 1.50 2.026 0.60 ,0.001

*Paired t test.
Data are percentages.
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segmented air pockets was able to accurately predict air pockets in
new datasets with an average DSC of 0.75, suggesting it could be
used to minimize this source of bias in the reconstructed PET
images. Our results also showed that misclassifying air pockets as
soft tissue can introduce bias in the reconstructed PET images,
particularly in the adjacent structures, which could interfere with
clinical interpretations (28).
High-resolution CAIPIRINHA-accelerated Dixon in-phase

images were used in the delineation of air pockets to provide
ground-truth data. However, these images contain a similar signal in
air pockets and in some other structures such as bones, spinal cord,
and some ligaments. Moreover, some of the subjects had a high
number of small air pockets trapped between feces that were missed
in the semiautomatic segmentation step but correctly identified by
the CNN. Furthermore, CAIPIRINHA-accelerated Dixon in-phase
images were acquired approximately 10 min after administration of

gadolinium-based contrast agent, which
caused the bladder to be separated into
bright and dark areas, the latter being incor-
rectly classified as large air pockets in some
subjects by the CNN. Acquisition of
CAIPIRINHA-accelerated Dixon images
before contrast agent administration will
eliminate this issue and can potentially
improve the performance of the air pocket
segmentation method. Although these infre-
quent outliers could be corrected during the
quality control step, the performance of the
proposed method would likely increase if a
larger number of datasets were available for
training. In principle, this could be explored
in future studies using only MR data. The
segmentation method proposed could be
combined with any pelvic m-map generation
approach to create maps that accurately
reflect the physiologic state during the PET
data acquisition.
Finally, although PET and MR images

were acquired in a single scan using an
integrated PET/MRI scanner, air pockets
could have moved during the data acquisi-
tion because of peristalsis. In this study, we
segmented the air pockets from a single
CAIPIRINHA-accelerated Dixon acquisi-
tion and used the resulting m-maps to
attenuation-correct the PET data collected
over a longer duration. One way to address
this potential issue could be to repeat the
CAIPIRINHA-accelerated Dixon acquisi-
tions to detect potential air pocket move-
ments over the course of the PET/MRI scan.
A second aim of this work was to train

and test a separate CNN to generate more
accurate pelvic m-maps than those generated
using the approach currently available on the
Biograph mMR scanner (m-mapMR5C). Qual-
itative and quantitative analyses indicate
that a CNN trained with CAIPIRINHA-
accelerated Dixon MR images is able to
generate m-maps with a better resemblance
to m-mapCT than m-mapMR5C. We noticed

that the overall absolute RC in the pelvis was reduced by a factor of
2, which was an improvement similar to that reported by Leynes
et al. (16), Torrado-Carvajal et al. (17), and Pozaruk et al. (18).
Compared with previous findings, we observed reduced differences
in bony regions between the deep learning–based and model-based
m-maps. This reduction was due to the fact that the bone tissue is no
longer misclassified as soft tissue in the m-mapMR5C generated using
the most recent method available on the Biograph mMR scanner.
The proposed image synthesis method uses a supervised CNN

to perform a voxel-to-voxel regression of MRI intensities to CT
HUs. This approach assumes perfect registration between the MR
and CT images, which is hard to achieve. Our MRI and CT data
were acquired on different scanners with differences in patient
positioning, particularly in thigh flexion and rotation. Although we
have used a combination of affine and nonrigid transformations to
coregister the MRI and CT data of the training and validation

FIGURE 5. PET images reconstructed using CT- and MRI-based attenuation correction
approaches (upper panels). RCmaps for reconstructions performed using each method with respect
to CT-based approach are shown in lower panels. Arrow indicates air pocket region that was incor-
rectly assigned to soft-tissue linear attenuation coefficients in m-mapMR5C.
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datasets, some registration errors might still be present. Unsuper-
vised learning techniques, such as the CycleGAN network incor-
porating cycle consistency loss function (29–31), can be used to
alleviate the need for perfect alignment of MRI–CT pairs. How-
ever, these methods require access to larger pools of data for train-
ing, and they have to be properly validated for attenuation
correction of PET data.

CONCLUSION

We developed a deep learning–based method to automatically
segment air pockets from CAIPIRINHA-accelerated MR Dixon
images. We also showed that a deep learning–based method can
be used to synthesize m-maps more similar to reference CT based
m-maps than the ones generated with the 5-compartment model-
based approach as implemented commercially. Although our
results suggest that this method might improve the CIs in studies

requiring the use of quantitative PET met-
rics, additional studies on patients with
pathologic changes are required to demon-
strate its clinical utility.
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KEY POINTS

QUESTION: Can we use CAIPIRINHA-
accelerated Dixon MR images to auto-
matically segment air pockets in the
pelvic area and synthesize accurate
pseudo-CT images for attenuation cor-
rection of PET data?

PERTINENT FINDINGS: A convolutional
network to segment air pockets was
trained and evaluated using
CAIPIRINHA-accelerated Dixon images
of 35 subjects. A separate network to
synthesize pseudo-CT images was
trained and tested using the Dixon
images of 30 subjects who underwent
sequential PET/CT and PET/MRI exami-
nations. In a region surrounding the air
pockets, an improvement by a factor of
3.7 was observed when PET images
were reconstructed using deep
learning–based m-maps instead of stan-
dard model-based m-maps.

IMPLICATIONS FOR PATIENT CARE:
The proposed deep learning–based
method can be used to accurately gen-
erate m-maps with air pockets and can
reduce the PET estimation bias in
regions surrounding air pockets.
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