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Sarcoidosis and lymphoma often share common features on 18F-FDG
PET/CT, such as intense hypermetabolic lesions in lymph nodes and
multiple organs. We aimed at developing and validating radiomics sig-
natures to differentiate sarcoidosis from Hodgkin lymphoma (HL) and
diffuse large B-cell lymphoma (DLBCL). Methods: We retrospectively
collected 420 patients (169 sarcoidosis, 140 HL, and 111 DLBCL) who
underwent pretreatment 18F-FDG PET/CT at the University Hospital of
Liege. The studies were randomly distributed to 4 physicians, who
gave their diagnostic suggestion among the 3 diseases. The individual
and pooled performance of the physicians was then calculated. Inter-
observer variability was evaluated using a sample of 34 studies inter-
preted by all physicians. Volumes of interest were delineated over the
lesions and the liver using MIM software, and 215 radiomics features
were extracted using the RadiomiX Toolbox. Models were developed
combining clinical data (age, sex, and weight) and radiomics (original
and tumor-to-liver TLR radiomics), with 7 different feature selection
approaches and 4 different machine-learning (ML) classifiers, to dif-
ferentiate sarcoidosis and lymphomas on both lesion-based and
patient-based approaches. Results: For identifying lymphoma versus
sarcoidosis, physicians’ pooled sensitivity, specificity, area under the
receiver-operating-characteristic curve (AUC), and accuracy were
0.99 (95% CI, 0.97–1.00), 0.75 (95% CI, 0.68–0.81), 0.87 (95% CI,
0.84–0.90), and 89.3%, respectively, whereas for identifying HL in the
tumor population, it was 0.58 (95% CI, 0.49–0.66), 0.82 (95% CI,
0.74–0.89), 0.70 (95% CI, 0.64–0.75) and 68.5%, respectively. Moder-
ate agreement was found among observers for the diagnosis of lym-
phoma versus sarcoidosis and HL versus DLBCL, with Fleiss k-values
of 0.66 (95% CI, 0.45–0.87) and 0.69 (95% CI, 0.45–0.93), respectively.
The best ML models for identifying lymphoma versus sarcoidosis
showed an AUC of 0.94 (95% CI, 0.93–0.95) and 0.85 (95% CI,
0.82–0.88) in lesion- and patient-based approaches, respectively, using
TLR radiomics (plus age for the second). To differentiate HL from
DLBCL, we obtained an AUC of 0.95 (95% CI, 0.93–0.96) in the
lesion-based approach using TLR radiomics and 0.86 (95% CI,
0.80–0.91) in the patient-based approach using original radiomics
and age. Conclusion: Characterization of sarcoidosis and lymphoma
lesions is feasible using ML and radiomics, with very good to excel-
lent performance, equivalent to or better than that of physicians, who
showed significant interobserver variability in their assessment.
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Sarcoidosis is a systemic inflammatory disease characterized by
the development of granulomas, which may involve lymph nodes
and various organs. Hodgkin lymphoma (HL) and diffuse large
B-cell lymphoma (DLBCL), the most frequent type of non-Hodgkin
lymphoma, are also characterized by enlarged invaded lymph nodes
but can affect many organs. When 18F-FDG PET/CT is performed
at diagnosis, these diseases may present with a similar pattern, that
is, intense hypermetabolism in enlarged lymphadenopathies, in par-
ticular in the mediastinum. Involvement of many other nodal sta-
tions may also be observed, along with extranodal lesions, and the
distribution of lesions thus helps imaging specialists in interpreting
these PET/CT scans. Nonetheless, the accuracy of visual interpreta-
tion of 18F-FDG PET/CT scans for differentiating sarcoidosis from
lymphomas is imperfect (1). Semiquantitative measurements such
as SUVmax have not proven to be the answer either (2,3). Moreover,
sarcoidosis can develop before lymphoma (sarcoidosis-lymphoma
syndrome) and after lymphoma, and immunotherapy-induced sar-
coidlike reactions are increasingly observed (4–7). No matter the
results of the imaging studies, pathologic confirmation of the disease
is mandatory in all cases before initiating treatment.
The histopathology of these entities is very different, suggesting

that deep characteristics of the image might also be specific. Radio-
mics is a high-throughput approach allowing extraction of large
amounts of data from images and characterization of the lesion
phenotype (8,9). The development of artificial intelligence and
machine learning (ML) combined with radiomics has gained popu-
larity in different medical imaging tasks, including lesion identifica-
tion and characterization. In lymphoma, some studies have shown
the potential of 18F-FDG PET/CT radiomics to differentiate lym-
phoma from other types of cancers and to differentiate different
types of lymphoma (10–14). To the best of our knowledge, no
study has yet explored the use of 18F-FDG PET/CT radiomics to
characterize sarcoidosis lesions, except one for the diagnosis of car-
diac involvement (15).
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The primary objective of the present study was to develop and
validate a radiomics signature to differentiate sarcoidosis, HL, and
DLBCL lesions. Furthermore, we compared the ML-driven diag-
nosis with physician performance in categorizing the 3 diseases,
taking into account interobserver variability.

MATERIALS AND METHODS

Patients
The study was approved by the Ethics Committee of the University

Hospital of Li�ege. The need for written informed consent was waived
because of the retrospective and noninterventional design of the study.
We retrospectively collected consecutive 18F-FDG PET/CT scans
obtained at the University Hospital of Li�ege between April 2010 and
February 2020 of patients with HL, DLBCL, or sarcoidosis at initial
diagnosis, before any treatment. The diagnosis was based on pathol-
ogy in all lymphoma cases and in most cases of sarcoidosis. The diag-
nosis of the remaining sarcoidosis cases was based on clinical
evidence and follow-up. Exclusion criteria were radiotracer extravasa-
tion, artifacts in pathologic areas, absence of a delineated volume of
interest (VOI) after semiautomatic segmentation, and absence of rele-
vant information in the DICOM files. Basic clinical data (age, sex, and
weight) were collected from the information obtained routinely on the
day of the PET/CT scan. Figure 1 shows the flowchart of the study.

Imaging
18F-FDG PET/CT scans were acquired using 2 cross-calibrated PET/

CT systems, a GEMINI TF Big Bore and a GEMINI TF 16 (Philips),
66 min on average (range, 58–92 min) after intravenous injection of
18F-FDG (mean injected activity, 245 MBq, depending linearly on the
patient’s weight). The patients fasted for at least 6 h before the injec-
tion, and the median glycemia was 92 mg/dL (range, 59–195 mg/dL).
A low-dose CT scan (slice thickness, 5 mm; tube voltage, 120 kV; and
tube current–time product, 50–80 mAs, depending on the patient’s
weight) was performed without injection of intravenous contrast agent,
followed by a PET emission scan of 90 s per bed position (50% over-
lap), extending from the upper thighs to the skull base. All images were
acquired and reconstructed according to the EARL (European Associa-
tion of Nuclear Medicine Research Ltd.) guidelines for both PET/CT
systems. Images were reconstructed with standard 4 3 4 3 4 mm

voxels (slice thickness, 4 mm) using an iterative list-mode algorithm
(blob ordered-subset time-of-flight), and corrections for attenuation,
dead time, random events, and scatter events were applied without post-
reconstruction smoothing.

Lesion Segmentation and Clinical Diagnosis
The entire cohort of anonymized patients was randomly distributed

into 4 groups (groups A–D). The scans of each group were assigned to 4
different nuclear medicine physicians (observers A–D), who were
unaware of any clinical information or diagnosis and had 6 y (observer
A), 3 y (observer B), 15 y (observer C), and 10 y (observer D) of experi-
ence. In a first step, from visual interpretation of the PET/CT scans, the
physicians attributed a diagnosis to each patient of their cohort. For that
purpose, they first chose either sarcoidosis or cancer, and if the latter was
selected, they chose HL or DLBCL. This evaluation was based solely on
the experience of each physician. No reading guidelines or visual or
semiquantitative interpretation criteria were provided to the readers
within the framework of the study. For each answer, the physicians indi-
cated their level of confidence (0, possible; 1, probable; or 2, certain).

In the next step, the physicians segmented PET VOIs for their
assigned patient population using MIM software, version 7.0.5 (MIM
Software Inc.), with the following 4 steps. The first was automatic selec-
tion of all regions using an absolute threshold SUVmax of at least 3
within a rectangular VOI manually drawn on the whole body. The sec-
ond step was automatic exclusion of VOIs smaller than 2 cm3. The third
step was manual exclusion of all physiologic VOIs (e.g., brain, heart,
and kidneys). The fourth step was manual modification of some patho-
logic VOIs, that is, removing physiologic activity in continuity with the
pathologic VOI but never enlarging the VOI. In the absence of literature
references for this combination of diseases, especially considering sar-
coidosis, the thresholds of SUVmax and volume were decided after tests
were performed on a sample of images with the aim of including as
many lesions as possible while limiting the need for manual modifica-
tions. A VOI of 20 cm3 was also drawn on the healthy liver.

Radiomics Extraction and Model Elaboration
Two hundred fifteen features were extracted from the segmented

PET volumes using the RadiomiX Toolbox (Radiomics SA), coded
with Matlab (MathWorks), and aligned with the Imaging Biomarkers
Standardization Initiative, with, however, some additional features

(a list of all features can be found in the sup-
plemental materials, available at http://jnm.
snmjournals.org). We also studied the ratio
of the feature values calculated in the tumor
and in the liver (tumor-to-liver ratio [TLR]),
except for the shape features. For calculation
of the texture matrix-based features, the inten-
sities were discretized using 2 different meth-
ods according to the recommendations of the
Imaging Biomarkers Standardization Initia-
tive: fixed bin numbers of 32 and 64 and fixed
bin widths of 0.05, 0.1, 0.2, and 0.5 SUV.

Since each patient could have more than 1
lesion, 2 radiomics approaches were tested. In a
first approach (lesion-based), each lesion was
considered as 1 observation and the goal was to
classify each lesion as, first, belonging to the
sarcoidosis or lymphoma class and, second, as
belonging to the HL or DLBCL class. In the
second approach (patient-based), the radiomics
features of each lesion and for each patient
were merged using their minimum, maximum,
mean, and median values, and clinical data (age,
sex, and weight) were added to the radiomics

Patients with sarcoidosis or lymphoma according to the gold-standard and who underwent baseline 18F-FDG PET/CT
448 patients

Semi-automatic segmentation of pathologic volumes of interest (VOI) by 4 nuclear medicine (NM) specialists
448 patients

Exclusion criteria
13 without segmented VOI
6 with image artifacts
5 with paravenous injection
4 with missing information in DICOM files

Final studied population: 420 patients

Suggestion of diagnosis by 4 NM 
specialists based on visual analysis, with 
use of levels of confidence: 420 patients

Inter-observer variability 
analysis in a subgroup of 

34 common patients 

Radiomics analysis and development of 
machine learning models

419 patients

Exclusion criteria
1 patient with diffuse liver involvement

Per-lesion analysisPer-patient analysis

FIGURE 1. Study flowchart.
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features. Here, the aim was to classify each patient into the sarcoidosis,
HL, or DLBCL group.

We also evaluated whether combining different feature selection (FS)
approaches and ML classifiers would allow for a radiomics signature to
differentiate sarcoidosis from lymphoma patients and to differentiate HL
from DLBCL. For that purpose, we tested a different set of models,
which differed in feature type, that is, original radiomics or TLR radio-
mics; FS and ML classifier method; and the effect of adding clinical data
before FS. Seven different FS methods were tested: accuracy decrease
obtained from the embedded FS of the random forest (RF) classifier;
Gini impurity decrease obtained from the embedded FS of the RF classi-
fier; forward FS using the minimum redundancy maximum relevance
(MRMR) method with Pearson correlation; backward FS using MRMR
with Pearson correlation; forward FS using MRMR with Spearman cor-
relation; backward FS using MRMR with Spearman correlation; and for-
ward MRMR based on the mutual information. We also used 4 ML
classifiers: RF, support vector machine with radial kernel, naive Bayes,
and a logistic regression (16). The dataset was stratified with the same
percentage of classes, avoiding unbalanced data, and was randomly
divided into training and test sets (80% and 20%, respectively). We
tested different models that differed in the FS, ML, and intensity discreti-
zation method and in the number of features, which was between 2 and
20 with intervals of 2. We used 5-fold cross validation in our training
data, and we chose the best radiomics signature according to the best
mean 5-fold cross validation area under the precision-recall area under
the receiver-operating-characteristic curve (AUCpr). For each classifier,
the default hyperparameter values were used in their respective R pack-
ages. Finally, for each of the different models with distinct selected fea-
tures, all training data were bootstrapped to derive the corresponding
95% CIs for each performance metric and tested on the independent test
set. The number of bootstrap repetitions was set to at least 1,000. Since
images came from only 2 scanners (same manufacturer and model, same
acquisition protocol), which were also cross-calibrated, we did not con-
sider it necessary to perform data harmonization. As recently suggested
by Buvat and Orlhac (17), we performed a T.R.U.E. checklist (Is it true?
Is it reproducible? Is it useful? Is it explainable?) to assess the potential
impact of our findings.

Statistical Analysis
The homogeneity in age and weight across the A, B, C, and D pop-

ulations was assessed by the Kruskal–Wallis nonparametric test,
whereas x2 test association was performed for sex and the final diag-
nosis (gold standard). Additionally, the homogeneity in age, sex, and
weight across cancer and sarcoidosis patients and between HL and
DLBCL patients was also evaluated using the x2 and Kruskal–Wallis
tests. Statistical significance was assigned for P values of 0.05 or less.

The diagnostic performance of all observers pooled together and
each individual observer against the gold standard was calculated
using sensitivity, specificity, positive predictive value (PPV), and neg-
ative predictive value (NPV). In addition, diagnostic performance was
evaluated by calculating the percentage of agreement (or accuracy)
and the AUC. To calculate the predicted probabilities, we fitted a
logistic regression model with the observer’s classification as the pre-
dictor. We additionally bootstrapped the data to measure the AUC
95% CIs. The 95% CIs for the sensitivity, specificity, PPV, and NPV
were calculated using exact binomial confidence limits.

To test variability among observers, we applied the CI approach in
sample size estimation for interobserver agreement with binary out-
comes (18). Because of a lack of literature on the established agree-
ment, to calculate the sample size in the case of 4 observers we
assigned an expected k of 0.70, indicating moderate agreement (19), a
lower bound of 0.50 with an unknown upper bound, and a significance
level of 0.05. With a prevalence of 0.3 for sarcoidosis versus cancer
and 0.6 for HL versus DLBCL, a sample size of 27 and 23 was

required, respectively. On the basis of this estimation, we randomly
selected a subgroup of 34 patients who were subsequently analyzed by
all 4 observers to evaluate the interobserver variability. Because of the
misclassification for the sarcoidosis versus cancer, only 21 patients
remained in the evaluation of interobserver variability in the analysis
of HL versus DLBCL. Fleiss k was used to investigate overall agree-
ment among 4 observers in the classification (for sarcoidosis/cancer
and for HL/DLBCL) and intraclass correlation coefficients for degree
of certainty. Finally, the Hotelling T2 test was used to test the differ-
ence in agreement between pairs of observers.

For radiomics, we evaluated the performance of the models using
AUC, AUCpr, sensitivity, specificity, PPV, and NPV, with a 0.5 prob-
ability threshold on the test set for lesion-based and patient-based
approaches. Statistical and ML analyses were performed for the 2 clin-
ical tasks (sarcoidosis/cancer and HL/DLBCL) using R software,
version 4.0.3.

RESULTS

In total, 448 patients meeting the study inclusion criteria were
initially identified. After the exclusion criteria were applied, 420
patients (mean age, 49 6 18 y; 241 men and 179 women) remained
in the study (Fig. 1). According to the gold standard, 169 patients
had sarcoidosis (40.2%), 140 had HL (33.3%), and 111 had
DLBCL (26.4%). The Ann Arbor stages for HL were 10 cases of
stage I, 1 of stage IE, 64 of stage II, 1 of stage IIE, 19 of stage III,
20 of stage IIIS, and 25 stage of IV, and the stages for DLBCL
were 10 cases of stage I, 27 of stage II, 12 of stage III, 10 of stage
IIIS, and 52 of stage IV. Eighty-one patients with sarcoidosis had
extrathoracic lesions. Table 1 presents the patient characteristics
and gold standard for the entire population and the 4 physicians’
subsamples. The 4 groups were balanced except for observer D,
who had significantly more sarcoidosis patients and fewer DLBCL
patients. Patient age differed significantly across the 4 subsamples
(P 5 0.008), with patients in group D being significantly younger
than those in groups A and B, which could be explained by the dif-
ference in the distribution of diseases. There was no significant dif-
ference in weight or sex across the 4 subsamples.

Individual and Pooled Observer Performance as Compared
with Gold Standard
For identifying lymphomas (HL and DLBCL) in the entire popu-

lation (n 5 420), the sensitivity and specificity were 0.99 (95% CI,
0.97–1.00) and 0.75 (95% CI, 0.68–0.81), respectively. The AUC
was 0.87 (95% CI, 0.84–0.90), and accuracy was 0.893 (95% CI,
0.86–0.92). Similarly, a Cohen k of 0.78 (95% CI, 0.72–0.84)
revealed substantial agreement with the gold standard. Taking the
certainty level into account, a significant higher agreement k of 0.86
(95% CI, 0.79–0.92) was found for certainty level 2, compared with
a k of 0.41 (95% CI, 0.23–0.58) for level 1 (P , 0.001).
Overall and individual observer performance for the diagnosis of

cancer versus sarcoidosis for their subsample populations is listed in
Table 2. All observers had an excellent sensitivity (0.97–1.00) but a
lower and more variable specificity (0.58–0.81). AUC and accuracy
ranged from 0.79 to 0.90 and from 0.85 to 0.92, respectively.
Regarding the confidence levels, observers A, B, C, and D chose
level 2 in 81%, 80%, 80%, and 65% of cases; level 1 in 15%, 19%,
12%, and 27%; and level 0 in 4%, 1%, 8%, and 8%, respectively.
For identifying HL in the cancer population (n5 248, after remov-

ing 3 patients mistakenly categorized with sarcoidosis), the sensitivity
and specificity were 0.58 (95% CI, 0.49–0.66) and 0.82 (95% CI,
0.74–0.89) respectively. AUC was 0.70 (95% CI, 0.64–0.75), and
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accuracy was 0.69 (95% CI, 0.63–0.74). The Cohen k of 0.40 (95%
CI, 0.29–0.51) indicated only fair agreement with the gold standard.
When the certainty level was 2, a significantly higher k of 0.51 (95%
CI, 0.41–0.67) was obtained, compared with a k of 0.20 (95% CI,
0.14–0.39) at level 1 certainty (P5 0.003).
Overall and individual observer performance for the diagnosis

of HL versus DLBCL for their subsample populations is listed in
Table 3. The sensitivity ranged from 0.39 to 0.77 and specificity
from 0.77 to 0.85. AUC and accuracy ranged from 0.60 to 0.81
and from 0.59 and 0.82, respectively. Regarding the confidence
levels, observers A, B, C, and D selected level 2 in 54%, 46%,
61%, and 45% of cases; level 1 in 38%, 49%, 33%, and 43%; and
level 0 in 8%, 5%, 6%, and 12%, respectively. Representative
examples of PET studies are shown in Figures 2 and 3.

Interobserver Agreement
In the sample of 34 patients, a Fleiss k-value of 0.66 (95% CI,

0.45–0.87) indicated that the 4 observers were in moderate

agreement with one another in the diagnosis of cancer versus sar-
coidosis. Regarding the certainty levels, an intraclass correlation
coefficient of 0.353 (95% CI, 0.181–0.547) showed poor agree-
ment among the observers. At the individual level, the agreement
with the gold standard was highly variable, as k ranged from 0.45
to 0.93. The Hotelling T2 test showed that agreement with the
gold standard differed significantly between the 2 extreme values,
that is, observers B and D (T2 5 8.70, P 5 0.006).
For the diagnosis of HL versus DLBCL, in the population of 21

patients diagnosed with cancer evaluated by all 4 observers, the
Fleiss k-value of 0.69 (95% CI, 0.45–0.93) indicated moderate
agreement among observers. Regarding certainty levels, an intra-
class correlation coefficient of 0.075 (95% CI, 0.076–0.316)
showed poor agreement among the observers. At the individual
level, only observer A displayed substantial agreement with the
gold standard (k 5 0.70; 95% CI, 0.38–1.01), whereas the other 3
observers showed poor agreement, with k ranging from 0.07 to
0.27. The Hotelling T2 test showed that observer A outperformed

TABLE 2
Overall and Individual Performance for Diagnosis of Sarcoidosis Versus Lymphoma

Parameter Overall Observer A Observer B Observer C Observer D

Proposed diagnosis:
sarcoidosis, cancer

130–290 31–78 21–80 28–72 50–60

Correct classification 375/420: 89.3%
(86.3%–92.2%)

100/109: 91.7%
(86.6%–96.9%)

86/101: 85.1%
(78.2%–92.1%)

92/100: 92%
(86.7%–97.3%)

97/110: 88.2%
(82.3%–94.2%)

Correct sarcoidosis
classification

133/169: 78.7%
(72.5%–84.9%)

29/36: 80.6%
(67.6%–93.5%)

21/36: 58.3%
(42.2%–74.4%)

27/34: 79.4%
(65.8%–93%)

56/63: 88.9%
(81.1%–96.7%)

Correct cancer classification 248/251: 98.8%
(97.5%–100%)

71/73: 97.3%
(93.5%–100%)

65/65: 100% 65/66: 98.5%
(95.5%–100%)

47/47: 100%

Sensitivity 0.99 (0.97–1.00) 0.97 (0.90–1.00) 1.00 (0.94–1.00) 0.98 (0.92–1.00) 1.00 (0.92–1.00)

Specificity 0.75 (0.68–0.81) 0.81 (0.64–0.92) 0.58 (0.41–0.74) 0.79 (0.62–0.91) 0.79 (0.67–0.89)

PPV 0.86 (0.81–0.89) 0.91 (0.81–0.96) 0.81 (0.71–0.89) 0.90 (0.82–1.00) 0.78 (0.66–0.88)

NPV 0.98 (0.93–1.00) 0.94 (0.79–0.99) 1.00 (0.84–1.00) 0.96 (0.82–1.00) 1.00 (0.93–1.00)

AUC 0.87 (0.84–0.90) 0.89 (0.82–0.96) 0.79 (0.71–0.87) 0.89 (0.82–0.96) 0.90 (0.85–0.95)

Data in parentheses are 95% CIs.

TABLE 1
Patient Characteristics (n 5 420) and 4 Physician Subsamples

Characteristic Overall Observer A Observer B Observer C Observer D

Median age (y) 49 (Q1–Q3, 35–61) 52 (Q1–Q3, 36–67) 52 (Q1–Q3, 37–61) 49 (Q1–Q3, 39–60) 44 (Q1–Q3, 29–55)

Median weight (kg) 75 (Q1–Q3, 63–86) 74 (Q1–Q3, 62–84) 75 (Q1–Q3, 66–85) 72 (Q1–Q3, 62–85) 77 (Q1–Q3, 63–89)

Sex

Female 179 47 41 45 46

Male 241 62 61 55 64

Diagnosis

Sarcoidosis 169 (40.2%) 36 (33%) 36 (35.5%) 34 (34%) 63 (57%)

HL 140 (33.3%) 32 (29%) 36 (35.5%) 35 (35%) 37 (34%)

DLBCL 111 (26.5%) 41 (38%) 29 (29%) 31 (31%) 10 (9%)

Q1 and Q3 are interquartile ranges.
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the other 3 observers in agreement with the gold standard and that
the most significant difference was between observers A and B
(T2 5 9.60, P 5 0.006). There was no significant difference in
agreement among observers B, C, and D. Supplemental Tables
1–2 show all the individual k and Hotelling T2 values for the inter-
observer agreement analysis for the 2 tasks.

Performance of Radiomics Models Compared with
Gold Standard
In the whole cohort, 2816 VOIs were segmented, including

1,028 (36.5%) for sarcoidosis, 836 (29.7%) for HL, and 952
(33.8%) for DLBCL (mean number of VOIs by patient: 42.1 for
sarcoidosis, 44.7 for HL, and 75.8 for DLBCL). One patient with
sarcoidosis was excluded from the radiomics analyses (n 5 419)
because of diffuse liver pathologic infiltration that did not allow

delineation of the hepatic background VOI. The results of the best
model performance compared with physician performance are
summarized in Figures 4 and 5.
An RF classifier, in which features were selected with the embedded

RF feature selection using the accuracy decrease as a criterion, yielded
the best performance to differentiate cancer from sarcoidosis following
a lesion-based approach. This model included 4 TLR radiomics features
discretized with a fixed bin width of 0.05 SUV: 2 first-order gray-level
statistics features (Stats_min; Stats_p10), 1 intensity volume histogram
feature (IVH_AIRV_90), and 1 textural feature (GLCM_infoCorr2).
This model showed sensitivity of 0.92 (95% CI, 0.89–0.94), specificity
of 0.80 (95% CI, 0.75–0.84), PPV of 0.88 (95% CI, 0.86–0.91), and
NPV of 0.85 (95% CI, 0.81–0.89). For the test set, performance was
excellent, with an AUC and AUCpr of 0.94 (95% CI, 0.93–0.95) and
0.96 (95% CI, 0.95–0.97), respectively, and was significantly better

than the best model with original radiomics
(AUC, 0.68; and AUCpr, 0.78). The best
patient-based radiomics models included TLR
radiomics (intensity volume histogram, shape,
and texture features), merged using their mini-
mum values, and age of patients but showed
poorer results than for differentiation by
lesion, with an AUC and AUCpr of 0.85
(95% CI, 0.82–0.88) and 0.88 (95% CI,
0.84–0.92), respectively. For a decisional
threshold of 0.5, sensitivity was 0.84 (95%
CI, 0.78–0.90), specificity was 0.67 (95%
CI, 0.56–0.76), PPV was 0.79 (95% CI,
0.74–0.84), and NPV was 0.74 (95% CI,
0.67–0.83), respectively. Supplemental Tables
3–6 show the selected features and results of
the best original and TLR radiomics models
for lesion-based and patient-based analysis.

TABLE 3
Overall and Individual Performance for Diagnosis of HL Versus DLBCL Lymphomas

Parameter Overall Observer A Observer B Observer C Observer D

Proposed diagnosis: HL, DLBCL 110–180 33–45 22–58 27–45 28–32

Correct HL classification 80/140: 57.1%
(49.0%–65.3%)

23/32: 71.9%
(56.3%–87.5%)

14/36: 38.9%
(23.0%–54.8%)

20/35: 57.1%
(40.8%–73.5%)

27/37: 73.0%
(58.7%–87.3%)

Correct DLBCL classification 91/111: 82%
(74.8%–89.1%)

35/41: 85.4%
(74.5%–96.2%)

24/29: 82.8%
(69.0%–96.5%)

24/31: 77.4%
(62.7%–92.1%)

8/10: 80%
(55.2%–100%)

When observer said cancer and
gold standard was cancer:

Correct HL classification 79/137: 57.7%
(49.4%–65.9%)

23/30: 76.7%
(61.5%–91.8%)

14/36: 38.9%
(23.0%–54.8%)

20/34: 58.8%
(42.3%–75.4%)

22/37: 59.5%
(43.6%–75.3%)

Correct DLBCL classification 91/111: 82%
(74.8%–89.1%)

35/41: 85.4%
(74.6%–96.2%)

24/29: 82.8%
(69.0%–96.5%)

24/31: 77.4%
(62.7%–91.1%)

8/10: 80%
(55.2%–100%)

Sensitivity 0.58 (0.49–0.66) 0.77 (0.58–0.90) 0.39 (0.23–0.57) 0.59 (0.41–0.75) 0.59 (0.42–0.75)

Specificity 0.82 (0.74–0.89) 0.85 (0.71–0.94) 0.83 (0.64–0.94) 0.77 (0.59–0.90) 0.80 (0.44–0.97)

PPV 0.80 (0.71–0.87) 0.79 (0.60–0.92) 0.74 (0.49–0.91) 0.74 (0.54–0.89) 0.92 (0.73–0.99)

NPV 0.61 (0.53–0.69) 0.83 (0.69–0.93) 0.52 (0.37–0.67) 0.63 (0.46–0.78) 0.35 (0.16–0.57)

Accuracy 170/248: 68.5%
(62.7%–74.3%)

58/71: 81.7%
(72.7%–90.7%)

38/65: 58.5%
(46.5%–70.5%)

44/65: 67.7%
(56.3%–79.1%)

30/47: 63.8%
(50.1%–77.5%)

AUC 0.70 (0.64–0.75) 0.81 (0.72–0.91) 0.60 (0.50–0.72) 0.68 (0.57–0.79) 0.70 (0.54–0.85)

Data in parentheses are 95% CIs.

FIGURE 2. Representative examples of 18F-FDG PET/CT studies of diseases localized to thorax:
DLBCL (A), HL (B), and sarcoidosis (C).
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To differentiate HL from DLBCL, the lesion-based radiomics
model with the best performance used the RF classifier (Gini impu-
rity decrease) and comprised 2 TLR radiomics features discretized
with a fixed bin width of 0.05 SUV: 1 first-order gray-level statistics
features (Stats_min) and 1 textural feature (GLCM_infoCorr2). It
showed sensitivity, specificity, PPV, and NPV of 0.89 (95% CI,
0.85–0.92), 0.88 (95% CI, 0.84–0.92), 0.87 (95% CI, 0.83–0.90),
and 0.90 (95% CI, 0.87–0.92), respectively. For the test set, perfor-
mance was excellent, with an AUC and AUCpr of 0.95 (95% CI,
0.93–0.96) and 0.95 (95% CI, 0.92–0.96), respectively, close to those
of the validation set (AUC and AUCpr of 0.97, both) and signifi-
cantly better than the best model with original radiomics (AUC,
0.67; and AUCpr, 0.62). The best patient-based radiomics models
used a naive Bayes classifier and a forward MRMR with Pearson
correlation for FS. The model included original radiomics features
merged with their maximal values and discretized with a fixed bin
width of 0.5 SUV (first-order, intensity volume histogram, and tex-
tural features: IH-entropy, IVH_AIRV_70, GLCM_infoCorr1,
NGLDM_SM, and NGLDM_DNN) and patient age. It showed very
good performance, with an AUC and AUCpr of 0.86 (95% CI,
0.80–0.91) and 0.87 (95% CI, 0.78–0.91), respectively. For a deci-
sional threshold of 0.5, this model showed sensitivity of 0.79 (95%
CI, 0.71–0.86), specificity of 0.85 (95% CI, 0.73–0.86), PPV of 0.87
(95% CI, 0.79–0.89), and NPV of 0.76 (95% CI, 0.70–0.83),
respectively.

DISCUSSION

In cancer imaging, 18F-FDG PET/CT takes
advantage of a high sensitivity, but the specif-
icity is intrinsically limited by significant up-
take by various inflammatory and infectious
lesions. Obviously, 18F-FDG uptake alone
cannot reliably identify the pathology of the
tumor. In this study, we developed radiomics
signatures to characterize lesions with highly
increased 18F-FDG uptake, as a proof of
concept of ML to differentiate inflammation
from cancer and to differentiate 2 cancer
types. At the lesion level, we found highly
accurate signatures, with an AUC of 0.94 for
the first task and 0.95 for the second one. At
the patient level, we created models with very
good performance to differentiate cancer

from sarcoidosis (AUC, 0.85) and HL from DLBCL (AUC, 0.86),
which were respectively equivalent and significantly better than
human performance. All physicians showed an excellent sensitivity
(0.97–1.00) to identify patients with cancer and a good but lower
specificity (0.75). Overall, the global performance was good, with
an AUC of 0.87. However, there was only moderate agreement
among the observers, especially because of the poorer performance
of the youngest observer (resident in training with 3 y of experi-
ence). Furthermore, the observers greatly varied in their level of cer-
tainty when deciding whether a PET/CT scan result was cancer or
sarcoidosis. Interestingly enough, this level of certainty correlated
significantly with performance; that is, higher confidence was associ-
ated with better performance. To differentiate HL from DLBCL, the
overall performance of the physicians deteriorated, with an AUC of
0.70, which was related to moderate sensitivity. Again, large variabil-
ity among observers was observed, with one of them performing sig-
nificantly better than the others. However, the difference was unrelated
to experience level, whereas there was a significant correlation with
the degree of certainty. Observer D had a sample of diseases different
from the other observers. Yet, the fact that he was not aware of this
difference, and the fact that his performance in his subsample and in
the interobserver variability analysis was unaffected, were reassuring
as to any possible confounding effect on the obtained results.
The findings confirmed that radiomics analysis of the metabolic

signal could effectively distinguish not only between inflammatory

FIGURE 3. Representative examples of 18F-FDG PET/CT studies of diffuse diseases: DLBCL
(A), sarcoidosis (B), and HL (C).

FIGURE 4. Chart illustrating performance of physician and ML-radio-
mics models for diagnosis of sarcoidosis vs. lymphoma. Vertical lines at
top of each bar represent CIs.

FIGURE 5. Chart illustrating performance of physicians and ML-radio-
mics models for diagnosis of HL vs. DLBCL. Vertical lines at top of each
bar represent CIs.
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and neoplastic lesions (20–22) but also among different types of
cancer (10,12,23–26). Regarding lymphomas, in a population of 25
patients, Lartizien et al. used 18F-FDG PET/CT radiomics and a sup-
port vector machine classifier to distinguish aggressive lymphoma
lesions (B-cell lymphoma and HL) from nonlymphomatous uptake
sites (e.g., brown fat, inflammation, infection, and physiologic thymic
uptake) with an AUC of 0.91 (27). Lippi et al. reported that ML per-
formed well in discriminating different types of lymphomas from one
another, especially HL, but in a small population of patients (11).
Recently, de Jesus et al. showed promising results in differentiating
follicular lymphoma from DLBCL using radiomics and an ML classi-
fier in a population of 120 patients—findings that might have impor-
tant clinical use when monitoring for aggressive transformation (14).
Their best performing model showed an AUC of 0.86, significantly
higher than the performance of the SUVmax-based model (AUC,
0.79). In addition to the significant difference in population size and
the differences in types of lymphoma, certain methodologic differ-
ences should be highlighted with our work, including the type of ML
classifier (based on per-lesion only), the segmentation method, the
choice of analyzed lesions, the absence of comparison with human
performance, and the use of radiomics of PET and CT simulta-
neously. Beyond the proof of concept, our results may have clinical
implications. Indeed, the high sensitivity of the model might avoid an
invasive biopsy in patients with sarcoidosis, provided that these excel-
lent results can be confirmed in a large and independent external
population.
The performance of ML algorithms depends on several factors,

including data size, randomness during learning, and preprocess-
ing steps (28). We therefore tested a different set of models—a set
that differs in the feature types, that is, original radiomics or TLR
radiomics; the FS strategy and number of features; and the inten-
sity discretization scheme. We have shown in previous studies that
using the TLR as a reference organ improves the predictive perfor-
mance in cervical cancer and the robustness across centers (16).
The improvement in model performance might be because a nor-
malizing effect of SUVs on each patient. In the present study, the
TLR models systematically outperformed the original radiomics
models in the lesion-based approach but not in the patient-based
approach. Nevertheless, the performance of the models when
using TLR features was close to that when using the original fea-
tures, showing the high potential of TLR-based features in terms
of applicability in different centers.
Even though the present study followed the guidelines of the

Imaging Biomarkers Standardization Initiative and scored 56%
according to the radiomics quality score (29), it had several limita-
tions, including its retrospective and monocentric design, with the
need for external validation within an independent population. It is
possible that the performance of physicians in this study was under-
estimated in comparison to that in clinical routine because of the
complete absence of clinical data. Moreover, the fact that the physi-
cians were nuclear medicine specialists without specific training in
radiology might potentially influence performance. Conversely, the
performance of radiomics and ML might be improved by integrat-
ing more clinical data (e.g., sweating and weight loss) and biologic
data, the localization of lesions (11), the CT or MRI radiomics
(14,24,30), and a deep-learning approach (31). In our study, some
VOIs were manually adapted if physiologic activity overflowed
into a pathologic VOI. However, such occurrences were rare and
were unlikely to result in biased results. Also, we excluded from
the study the patients without any VOI generated by the automated
segmentation process. Given that these patients represented only a

small part of the population (n 5 12/448 patients; 2.5%), it was
unlikely that they would have affected the results. Finally, to show
the validity, reproducibility, usefulness, and explainability of our
results, we add a T.R.U.E. checklist in the supplemental materials.

CONCLUSION

Characterization of sarcoidosis and lymphoma lesions using
ML and radiomics is feasible as seen in their very good to excel-
lent performance, proving to be equivalent to or better than that
of physicians, who showed significant interobserver variability in
their assessment.
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KEY POINTS

QUESTION: Are specialists in medical imaging able to differentiate
sarcoidosis from lymphoma on the basis of visual analysis of
18F-FDG PET/CT images, and can ML models using radiomics
help them in this task?

PERTINENT FINDINGS: Physicians characterized these diseases
with variable performance, from moderate to very good. ML and
radiomics models achieved similar and better performance, in a
more reproducible way.

IMPLICATIONS FOR PATIENT CARE: ML and radiomics models
can differentiate sarcoidosis from lymphoma, making it possible to
consider, after external validation, their use to avoid unnecessary
biopsies in patients with high suspicion of sarcoidosis.
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