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68Ga-RM2 targets gastrin-releasing peptide receptors (GRPRs), which
are overexpressed in prostate cancer (PC). Here, we compared preop-
erative 68Ga-RM2 PET to postsurgery histopathology in patients with
newly diagnosed intermediate- or high-risk PC. Methods: Forty-one
men, 64.0 6 6.7 y old, were prospectively enrolled. PET images were
acquired 42–72 min (median 6 SD, 52.5 6 6.5 min) after injection of
118.4–247.9 MBq (median 6 SD, 138.0 6 22.2 MBq) of 68Ga-RM2.
PET findings were compared with preoperative multiparametric MRI
(mpMRI) (n 5 36) and 68Ga-PSMA11 PET (n 5 17) and correlated to
postprostatectomy whole-mount histopathology (n 5 32) and time to
biochemical recurrence. Nine participants decided to undergo radia-
tion therapy after study enrollment. Results: All participants had inter-
mediate- (n 5 17) or high-risk (n 5 24) PC and were scheduled
for prostatectomy. Prostate-specific antigen was 8.8 6 77.4 (range,
2.5–504) and 7.6 6 5.3 ng/mL (range, 2.5–28.0 ng/mL) when partici-
pants who ultimately underwent radiation treatment were excluded.
Preoperative 68Ga-RM2 PET identified 70 intraprostatic foci of uptake
in 40 of 41 patients. Postprostatectomy histopathology was available
in 32 patients in which 68Ga-RM2 PET identified 50 of 54 intraprostatic
lesions (detection rate 5 93%). 68Ga-RM2 uptake was recorded in 19
nonenlarged pelvic lymph nodes in 6 patients. Pathology confirmed
lymph node metastases in 16 lesions, and follow-up imaging con-
firmed nodal metastases in 2 lesions. 68Ga-PSMA11 and 68Ga-RM2
PET identified 27 and 26 intraprostatic lesions, respectively, and 5 pel-
vic lymph nodes each in 17 patients. Concordance between 68Ga-
RM2 and 68Ga-PSMA11 PET was found in 18 prostatic lesions in 11
patients and 4 lymph nodes in 2 patients. Noncongruent findings were
observed in 6 patients (intraprostatic lesions in 4 patients and nodal
lesions in 2 patients). Sensitivity and accuracy rates for 68Ga-RM2 and
68Ga-PSMA11 (98% and 89% for 68Ga-RM2 and 95% and 89% for
68Ga-PSMA11) were higher than those for mpMRI (77% and 77%,
respectively). Specificity was highest for mpMRI with 75% followed by
68Ga-PSMA11 (67%) and 68Ga-RM2 (65%). Conclusion: 68Ga-RM2
PET accurately detects intermediate- and high-risk primary PC, with a
detection rate of 93%. In addition, 68Ga-RM2 PET showed signifi-
cantly higher specificity and accuracy than mpMRI and a performance
similar to 68Ga-PSMA11 PET. These findings need to be confirmed in

larger studies to identify which patients will benefit from one or the
other or both radiopharmaceuticals.
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Prostate cancer (PC) remains the most common noncutaneous
cancer in American men and the second highest cause of cancer-
related mortality (1). Cancer stage at diagnosis defines subsequent
management. Although low-risk PC (Gleason score 6, pretreat-
ment prostate-specific antigen [PSA] , 10 ng/mL, and clinical
stage T1–T2a) may be managed with active surveillance, patients
with higher grade, clinically significant cancers typically receive
treatment. Imaging plays a crucial role in initial staging. Multi-
parametric MRI (mpMRI) is widely used for initial evaluation.
However, mpMRI may miss clinically significant PC in 5%–8%
(2) to 35% (3) of cases.
Molecular imaging with PET and CT (PET/CT) or PET/MRI is

changing the landscape of PC staging with the development and
regulatory approval of new radiopharmaceuticals. The most prom-
ising radiopharmaceuticals target prostate-specific membrane anti-
gen (PSMA). PSMA is highly overexpressed in 90%–95% of PC
(4–7). However, it is not specific to PC (8,9) and false-positive
(FP) findings have been reported (10–13). Thus, there is a contin-
ued need for other imaging targets. 68Ga-RM2 is a bombesin
receptor antagonist that targets the gastrin-releasing peptide recep-
tor (GRPR) with high affinity (14). GRPR is highly overexpressed
in several cancers including breast (15,16), small cell lung cancer
(17), gastrointestinal stromal and neuroendocrine tumors (18,19)
and in PC (20–24), especially in earlier stages, making it an attrac-
tive target for initial staging (20).
In this study we compared preoperative 68Ga-RM2 PET and

mpMRI with histopathology after radical prostatectomy (RP) in
patients with newly diagnosed intermediate- or high-risk PC. In a
subgroup of patients, comparison with 68Ga-PSMA11 PET was
also available.
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MATERIALS AND METHODS

Participants

Patients scheduled to undergo RP for newly diagnosed, nontreated,
intermediate- or high-risk PC were prospectively enrolled in 2 clinical
trials evaluating the performance of 68Ga-RM2 (NCT03113617) and
68Ga-PSMA11 (NCT02678351). This study was approved by the local

institutional review board. Written informed consent was obtained
from all participants. Presurgical clinical assessments included serum
PSA, Gleason score, clinical stage, and risk assessment according to
the D’Amico classification (25). Patients were followed up to evaluate
time to biochemical recurrence (BCR).

Scanning Protocols
68Ga-RM2 PET. Discovery 690 PET/CT (n 5 19), Discovery MI

PET/CT (n 5 19), or SIGNA PET/MRI (n 5 3) scanners (GE Healthcare)
were used for 68Ga-RM2 PET. Details of PET/CT and PET/MRI
acquisitions were previously described (26,27). The choice of PET/CT
or PET/MRI was dictated by the funding available to support the clini-
cal trials. Discovery MI PET/CT and SIGNA PET/MRI use the same
silicon photomultiplier–based detectors, and we previously reported
their clinical evaluation (28,29).

68Ga-PSMA11 PET. A SIGNA PET/MRI scanner (GE Health-
care) was used for 68Ga-PSMA11 PET. Details of PET/MR image
acquisition were previously described (27).

68Ga-RM2 and 68Ga-PSMA11 were synthesized as previously
reported (30).

mpMRI Protocol
The protocol consisted of T2-weighted imaging, diffusion-weighted

imaging, and dynamic contrast-enhanced imaging sequences using a
3T scanner (MR750; GE Healthcare). Details of mpMR image acqui-
sition were previously described (31).

Histopathology
Hematoxylin-eosin–stained slides fromwhole-mount prostate specimens

were analyzed according to standard of care. The slides were annotated by a
genitourinary pathologist to outline areas of cancer across the entire gland.

Fusion of Histology and PET/MRI
The RAPSODI registration framework was used to align correspond-

ing preoperative axial T2-weighted imaging, whole-mount histopathol-
ogy, and 68Ga-PSMA11 PET/MRI using rigid, affine, and deformable
transformations (32). This registration ensures a slice-to-slice alignment
between histology—including ground-truth cancer labels—mpMRI,
and PET/MRI. The methodology relies on precise prostate segmenta-
tions, automatically generated by a validated deep learning model, and
its accuracy was evaluated using a Dice Similarity coefficient (33).

Image Analysis
Two nuclear medicine physicians reviewed and analyzed PET

images independently and in a random,
masked fashion with the knowledge that par-
ticipants were scheduled to undergo RP for
known PC. Any focal uptake of 68Ga-RM2 or
68Ga-PSMA11 higher than the adjacent back-
ground and not associated with physiologic
accumulation was deemed suggestive of PC
(34,35). The number and location of each
lesion and its SUVmax were recorded. A visual
comparison was performed between annotated
suggestive lesions on PET and cancer-anno-
tated histology slides. A lesion was deemed
true-positive when annotations on PET and
histopathology matched and considered true-
negative when uptake on PET was not above
background and when there was no cancer
annotation on corresponding histopathology
slides.

mpMRI was interpreted as standard of care
using PI-RADS criteria version 2 (36).
Lesions with a PI-RADS score $ 3 were

TABLE 1
Patients’ Characteristics (n 5 41)

Characteristic Data

Age (y) 64 6 6.7 (50–78)

PSA (ng/mL) 8.8 6 77.4 (2.5–504)

PSA (excluding radiation
therapy patients [ng/mL])

7.6 6 5.3 (2.5–28.0)

Risk (n)

Intermediate 17 (41.5%)

High 24 (58.5%)

Gleason score from preoperative biopsy* (n)

7 18 (45%)

8 12 (30%)

9 10 (25%)

Clinical stage (n) cT1b: 2 (5%);
cT1c: 18 (43.9%)

cT2a: 6 (14.6%);
cT2b: 6 (14.6%);
cT2c: 3 (7.3%)

cT3a: 6 (14.6%)

Preoperative biopsy
available (n patients)

40

mpMRI (n patients) 36
68Ga-PSMA11 PET (n patients) 17

Postoperative histopathology
available (n patients)

32

*Gleason score of 1 patient was unavailable.
Numeric factors are expressed as median 6 SD (range).

FIGURE 1. A 50-y-old patient with intermediate-risk PC and PSA of 5.27 ng/mL. 68Ga-RM2 PET/CT (A,
axial PET, fused PET/CT, CT, andmaximum-intensity-projection images, respectively) shows focal uptake
in left mid gland (red arrows) correlating to Gleason 41 3 prostate cancer (black arrow) on histology (B).
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recorded. A PI-RADS score of 3 was considered equivocal, PI-RADS
4 likely, and 5 highly likely for PC.

Statistical Analysis
A logistic regression model was used to determine the predictive

value of preoperative biopsy, mpMRI, 68Ga-RM2, and 68Ga-PSMA11
PET for final histopathology and risk prediction. Sensitivity, specific-
ity, and accuracy were stratified to intermediate- and high-risk groups
for 68Ga-RM2 and 68Ga-PSMA11. A McNemar test determined differ-
ence between 68Ga-RM2 and mpMRI for sensitivity, specificity, and
accuracy. A Wilcoxon signed-rank test was performed to determine
differences between SUVmax. Concordance correlation was used for
68Ga-RM2 and 68Ga-PSMA11 SUVmax. The degrees of correlation
are: . 0.99, almost perfect; 0.95–0.99, substantial; 0.90–0.95, moder-
ate; and , 90, poor agreement. Spearman correlation was used for
evaluation of SUVmax and time to BCR. Statistical analyses were per-
formed with Stata (version 16.1; Stata Corp. LLC). Continuous data
are presented as median 6 SD, with minimum–maximum values. A
P value of ,0.05 was considered significant except when Bonferroni
adjustment was applied for concordance analyses (P value , 0.0025
significant) and risk prediction (P value , 0.017 significant).

RESULTS

Forty-one men (age, 64.0 6 6.7 y [range, 50–78 y]) scheduled to
undergo RP for PC were prospectively enrolled. Seventeen (41.5%)
participants had intermediate-risk and 24 (58.5%) had high-risk
PC. PSA was 8.86 77.4 ng/mL (range, 2.5–504 ng/mL) and 7.66
5.3 ng/mL (range 2.5–28.0 ng/mL) when participants who received
radiation therapy (RT) were excluded. PSA was undetectable 3 mo
after RP in all but 3 patients. In 1 patient, preoperative biopsy was
not available and PC was diagnosed by imaging and PSA. All par-
ticipants (n 5 41) were imaged with 68Ga-RM2 PET, 36 of 41
underwent additional mpMRI, and 17 of 41 underwent 68Ga-
PSMA11 PET. Of these 41 patients, 32 underwent RP and 9 opted
for RT after enrollment in the protocol and completion of the scan.
Patient characteristics are shown in Table 1.

68Ga-RM2 PET
68Ga-RM2 PET identified 70 intraprostatic foci in 40 of 41 and

focal uptake in 19 nonenlarged pelvic lymph nodes in 6 of 41
patients. One participant had a negative 68Ga-RM2 PET scan
result.

TABLE 2
SUVmax of 68Ga-RM2 in Verified Intraprostatic Lesions and
Lymph Node Metastases Compared with Benign Prostate

and Lymph Node Uptake

68Ga-RM2 SUVmax P

SUVmax prostate cancer 6.1 6 5.9 (2.3–32.2)
0.04

SUVmax lymph node
metastases

4.7 6 3.3 (1.9–12.2)

SUVmax prostate cancer 6.1 6 5.9 (2.3–32.2)
,0.001

SUVmax benign prostate 1.8 6 0.5 (0.5–3.3)

SUVmax lymph node
metastases

4.7 6 3.3 (1.9–12.2)
,0.001

SUVmax benign lymph
nodes

0.5 6 0.2 (0.1–0.9)

Numeric factors are expressed as median 6 SD (range).
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In the 32 patients who underwent RP, 68Ga-RM2 identified 54
intraprostatic foci, with 50 of 54 (92.6%) confirmed by histology
(example shown in Fig. 1). Four lesions in 4 patients were false-
negative (FN). A total of 527 lymph nodes were removed, of which
26 of 527 proved to be metastases in 8 participants. 68Ga-RM2 PET
identified 19 lymph nodes in 6 patients, of which 16 were verified
by pathology. The 3 unverified positive lymph nodes were seen in
the 3 patients whose PSA did not decrease after RP, suggesting TP
for metastases. Two lesions were subsequently confirmed by stan-
dard-of-care 18F-fluciclovine PET after RP.
The SUVmax of histologically verified intraprostatic lesions was

statistically significantly higher than that of verified lymph node
metastases (P 5 0.04) and benign prostatic uptake (P , 0.001).
68Ga-RM2 uptake in lymph node metastases was also significantly
higher than that in benign nodes (P , 0.001). SUVmax findings are
summarized in Table 2.

mpMRI
mpMRI identified lesions in 36 of 41 participants: 43 PI-RADS

$ 4 lesions (vs. 64 on corresponding 68Ga-RM2) in 33, and 6 PI-
RADS 3 lesions (vs. 5 on corresponding 68Ga-RM2) in 3 patients. In
the 30 participants who underwent RP, mpMRI detected 42 intrapro-
static lesions with 38 confirmed by histopathology (vs. 50 seen and 48
verified lesions on corresponding 68Ga-RM2). One suggestive pelvic
lymph node was seen and verified as PC metastasis on mpMRI (vs.
18 seen and 16 verified pelvic lymph nodes on corresponding 68Ga-
RM2 PET). Four lesions were FP on histopathology, and 10 lesions
were FN. Table 3 summarizes detection rates of the 3 modalities.

68Ga-PSMA11 and 68Ga-RM2 PET
In 17 participants, 68Ga-RM2 and 68Ga-PSMA11 PET identified

27 and 26 intraprostatic lesions, respectively, and 5 positive pelvic

lymph nodes each. Concordance was seen in
18 intraprostatic lesions (example shown in
Fig. 2) and 3 lymph nodes. Histopathology
was available in 13 patients and confirmed
18 of 19 and 17 of 18 intraprostatic lesions
and 4 of 5 and 3 of 5 lymph node metastases
for 68Ga-RM2 and 68Ga-PSMA11, respec-
tively. On a per-lesion analysis, 68Ga-RM2
had 1 FP and 2 FN intraprostatic lesions,
whereas 68Ga-PSMA11 had 1 FP and 3 FN.
Six patients had incongruent uptake (exam-
ples shown in Supplemental Figs. 1 and 2;
supplemental materials are available at
http://jnm.snmjournals.org): cancer was pre-
sent in 5 of 6 lesions on 68Ga-RM2 versus 3
of 4 on 68Ga-PSMA11.

68Ga-PSMA11 SUVmax of verified PC was
significantly higher than that of lymph node
metastases (P5 0.002). No statistically signif-
icant differences were noted when comparing
SUVmax for 68Ga-RM2 with 68Ga-PSMA11
for intraprostatic cancers (P5 0.43) or lymph
node metastases (P 5 0.25). 68Ga-RM2 and
68Ga-PSMA11 were poorly correlated be-
tween the left and right prostate. Table 4
summarizes 68Ga-RM2 and 68Ga-PSMA11
findings.

Sensitivity, Specificity, and Accuracy
All 3 modalities—68Ga-RM2, 68Ga-PSMA11 PET, and mpMRI—

were significant predictors for PC (P # 0.0025). For intraprostatic
lesions, both 68Ga-RM2 and 68Ga-PSMA11 had higher sensitivity and
accuracy rates than mpMRI, whereas specificity was highest for
mpMRI (Supplemental Table 1). For intraprostatic and lymph node
lesions, specificity increased for both radiopharmaceuticals, whereas
sensitivity decreased for 68Ga-PSMA11 (Supplemental Table 2). Sig-
nificantly higher sensitivity (P 5 0.01) and accuracy (P , 0.01) were
seen for 68Ga-RM2 PET than for mpMRI.
Sensitivity, specificity, and accuracy for 68Ga-RM2 were slightly

higher for the high-risk than for the intermediate-risk group. For
68Ga-PSMA11, the opposite was found (Supplemental Table 3).
For the relationship and predictive value of PSA (grouped into ,5,

5–10, 10.1–15, and $15 ng/mL), PI-RADS (3, $4), and SUVmax

for histopathologic outcome, the only significance found was a higher
SUVmax of

68Ga-RM2 in PSA$5 versus PSA,5 (P, 0.0025, Fig. 3).

Follow-up
Six patients were lost in follow-up. After RP, patients (n 5 26)

were followed for 28.6 6 11.7 mo (range, 7.0–47.3 mo). PSA
remained undetectable in 15 patients, whereas 11 developed BCR
17.7 6 10.8 mo (range, 2.8–32.0 mo) after RP. 68Ga-RM2 SUVmax

of intraprostatic lesions and time to BCR were negatively corre-
lated (r 5 20.34), meaning the lower the SUVmax, the longer the
time to BCR. The correlation of PSA and time to BCR was also
negatively correlated (r 5 20.25), indicating the lower the PSA,
the longer the time to BCR.

DISCUSSION

In this study, we prospectively compared GRPR-targeting 68Ga-
RM2 PET with whole-mount histopathology after RP in patients

FIGURE 2. A 65-y-old man, presenting with PSA of 9.5 ng/mL and Gleason 31 4 lesion on presur-
gery biopsy. 68Ga-PSMA11 PET/MRI (A) and 68Ga-RM2 PET/CT (B) axial PET, fused PET/CT, CT,
and maximum-intensity-projection images, respectively, show concordant focal uptake in left ante-
rior apex of prostate (arrows), correlating to Gleason 31 3 on histology (C, arrow).
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with newly diagnosed PC. Sensitivity and accuracy were high for
68Ga-RM2 at 98% and 89%, respectively, and were comparable to
those for 68Ga-PSMA11 and superior to those for mpMRI. However,
a specificity of 65% was lower than that for mpMRI. These results
were comparable to previously reported sensitivity, specificity, and
accuracy rates of 89%, 81%, and 83% for prostatic lesions and sensi-
tivity of 70% for lymph node metastases for 68Ga-RM2 PET/CT in a
smaller cohort of 14 men with primary PC and 3 with BCR (37).

68Ga-RM2 and 68Ga-PSMA11 both showed high detection rates
for primary PC and lymph node metastases but were poorly corre-
lated. A recently published study compared 68Ga-RM2 and 68Ga-
PSMA11 PET/MRI in staging of 19 men with biopsy-proven
high-risk PC, with histopathology available in 12 patients.
Although the detection rate of 95% for the primary tumor is simi-
lar that in to our study, the positivity rates for lymph nodes were
lower (37% for 68Ga-PSMA11, 21% for 68Ga-RM2). Apart from a
negative 68Ga-RM2 finding in 1 participant, concordant uptake
was seen between 68Ga-RM2 and 68Ga-PSMA11 (38). The incon-
gruent uptake pattern in our cohort might be due to our more het-
erogeneous groups of intermediate- and high-risk PC. However,
the difference in expression pattern of PSMA and GRPR is consis-
tent with our previous findings in BCR PC (30,39) and is sup-
ported by immunohistochemistry showing that GRPR and PSMA
expression are not correlated (40). Fassbender et al. found in a
voxel-based approach that 68Ga-RM2 and 68Ga-PSMA11 in
8 patients with primary PC showed similar averaged SUVmean;
however, on a per-patient basis, they found a different intensity,
revealing again a different expression pattern of GRPR and
PSMA (41).
We found no correlation between 68Ga-RM2 uptake and Glea-

son score or tumor volume, but a positive correlation between
PSA and 68Ga-RM2 SUVmax. SUVmax was also negatively corre-
lated to time to BCR. This negative correlation is supported by
previous findings in patients with BCR PC showing a positive cor-
relation between 68Ga-RM2 positivity and PSA and PSA velocity
and, conversely, a negative correlation of SUVmax and PSA with
time to BCR indicating that the higher 68Ga-RM2 SUVmax and
PSA, the shorter the time to BCR (27). However, there is contro-
versy (24) as to whether GRPR density is related to a better prog-
nosis of PC (20,21) or found in high-risk tumors as our results
indicate. Larger studies with a longer follow-up are needed to
understand these possible correlations.
The need now is to understand if and how these radiopharma-

ceuticals may provide complementary and useful information in
patients with PC at various stages and risks. Given the high tumor
heterogeneity in PC, and that neither 68Ga-RM2 nor 68Ga-PSMA11
are 100% sensitive or specific and hence attributing to FP and FN
lesions, a bispecific tracer that targets GRPR and PSMA simulta-
neously may present a promising imaging option (42).
Limitations of this study include the relatively small number of

patients, especially of participants undergoing both 68Ga-RM2 and
68Ga-PSMA11 PET, and the different imaging modalities used,
that is, different PET/CT scanners and PET/MRI. In addition, not
all participants had histopathology data available because some
elected to undergo RT. Correlating lymph node positivity to histo-
pathology is a challenge because not all lymph nodes seen on PET
were resected. PET data were analyzed by readers who were
aware that participants were scheduled to undergo RP for known
PC, whereas readers for mpMRI were unaware that participants
were scheduled for RP as mpMRI was part of clinical care for PC
diagnosis.

T
A
B
LE

4
C
or
re
la
tio

n
of

6
8
G
a-
R
M
2
an

d
6
8
G
a-
P
S
M
A
11

P
E
T
in

17
P
at
ie
nt
s
an

d
C
om

p
ar
is
on

to
H
is
to
p
at
ho

lo
gi
c
O
ut
co

m
e
in

13
P
at
ie
nt
s

P
os

ts
ur
gi
ca

lp
at
ho

lo
gy

6
8
G
a-
R
M
2

6
8
G
a-
P
S
M
A
11

V
ar
ia
b
le

6
8
G
a-
R
M
2

6
8
G
a-
P
S
M
A
11

n
P

C
on

fir
m
ed

/t
ot
al

(%
)

FP
/F
N

C
on

fir
m
ed

/t
ot
al

(%
)

FP
/F
N

In
je
ct
ed

ac
tiv

ity
(M

B
q
)

14
0.
6
6

11
.7

(1
25

.1
–
16

2.
8)

17
8.
7
6

31
.7

(1
24

.3
–
23

3.
8)

17

Ti
m
e
to

sc
an

(m
in
)

53
.5

6
7.
4
(4
6–

72
)

48
.0

6
7.
4
(4
0–

75
)

17

S
U
V
m
a
x
p
ro
st
at
ic

le
si
on

(v
er
ifi
ed

)
6.
1
6

4.
6
(2
.3
–
19

.3
)

7.
7
6

5.
8
(3
.6

–
25

.5
)

13
0.
43

S
U
V
m
a
x
ly
m
p
h
no

d
e
le
si
on

ve
rifi

ed
)

3.
9
6

3.
4
(1
.9
–
10

.7
)

4.
3
6

1.
0
(2
.3
–
5.
1)

4
0.
25

P
ro
st
at
ic

le
si
on

s
18

/1
9
(9
4.
7%

)
1/
2

17
/1
8
(9
4.
4%

)
1/
3

Ly
m
p
h
no

d
e
le
si
on

s
4/
5
(8
0%

)
1/
1

3/
5
(6
0%

)
2/
2

In
co

ng
ru
en

t
p
ro
st
at
ic

le
si
on

s
5/
6
(8
3%

)
1/
0

3/
4
(7
5%

)
1/
0

In
co

ng
ru
en

t
ly
m
p
h
no

d
e
le
si
on

s
1/
1
(1
00

%
)

0/
2

0/
1
(0
%

)
1/
2

N
um

er
ic

fa
ct
or
s
ar
e
ex

p
re
ss

ed
as

m
ed

ia
n
6

S
D
,(
ra
ng

e)
an

d
as

m
ea

n
(9
5%

C
I).

Ti
m
e
b
et
w
ee

n
6
8
G
a-
R
M
2
an

d
6
8
G
a-
P
S
M
A
11

P
E
T
5

3.
0
6

5.
6
d
(1
–
21

d
)(
n
5

17
);
P
S
A
5

7.
5
6

3.
6
ng

/
m
L
(2
.5
–
14

.7
ng

/m
L)

(n
5

17
).
C
on

co
rd
an

ce
co

rr
el
at
io
n
b
et
w
ee

n
6
8
G
a-
R
M
2
an

d
6
8
G
a-
P
S
M
A
11

P
E
T
fo
r
le
ft
p
ro
st
at
ic

le
si
on

s
w
as

0.
77

(9
5%

C
I,
0.
56

–
0.
98

)a
nd

fo
r
rig

ht
p
ro
st
at
ic

le
si
on

s
0.
68

(9
5%

C
I,
0.
41

–
0.
95

),
re
sp

ec
tiv

el
y;

ag
re
em

en
tw

as
p
oo

r.

68GA-RM2 PET IN PRIMARY PROSTATE CANCER � Duan et al. 1833



CONCLUSION

68Ga-RM2 PET accurately detects intermediate- and high-risk
primary PC with a significantly higher specificity and accuracy
than mpMRI and a performance similar to 68Ga-PSMA11 PET.
The poor correlation between 68Ga-RM2 and 68Ga-PSMA11
underline the different expression patterns of GRPR and PSMA
and the complex tumor biology of PC. Larger prospective studies
are needed to identify which patients will benefit from one, the
other, or both radiopharmaceuticals.
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KEY POINTS

QUESTION: Is 68Ga-RM2 PET a useful tool in the initial staging of
PC?

PERTINENT FINDINGS: Forty-one patients with newly diagnosed
PC underwent 68Ga-RM2 PET; a subgroup also underwent
mpMRI (n 5 36) and 68Ga-PSMA11 PET (n 5 17). 68Ga-RM2 PET
showed high sensitivity, accuracy, and detection rates of 98%,
89%, and 93%, respectively. Specificity at 65% was lower than
that of mpMRI (75%). Poor correlation to 68Ga-PSMA11 indicates
the different expression patterns of GRPR and PSMA in PC.

IMPLICATIONS FOR PATIENT CARE: 68Ga-RM2 PET accurately
detected intermediate- and high-risk primary PC with a significantly
higher sensitivity and accuracy than that mpMRI and a performance
similar to that of 68Ga-PSMA11 PET. Larger prospective studies are
needed to identify which patients will benefit from one, the other, or
both radiopharmaceuticals.
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