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Patient-specific dosimetry in radiopharmaceutical therapy (RPT) is
impeded by the lack of tools that are accurate and practical for the
clinic. Our aims were to construct and test an integrated voxel-level
pipeline that automates key components (organ segmentation, regis-
tration, dose-rate estimation, and curve fitting) of the RPT dosimetry
process and then to use it to report patient-specific dosimetry in
177Lu-DOTATATE therapy. Methods: An integrated workflow that
automates the entire dosimetry process, except tumor segmentation,
was constructed. First, convolutional neural networks (CNNs) are
used to automatically segment organs on the CT portion of one post-
therapy SPECT/CT scan. Second, local contour intensity–based
SPECT–SPECT alignment results in volume-of-interest propagation
to other time points. Third, dose rate is estimated by explicit Monte
Carlo (MC) radiation transport using the fast, Dose Planning Method
code. Fourth, the optimal function for dose-rate fitting is automati-
cally selected for each voxel. When reporting mean dose, we apply
partial-volume correction, and uncertainty is estimated by an em-
piric approach of perturbing segmentations. Results: The workflow
was used with 4-time-point 177Lu SPECT/CT imaging data from 20
patients with 77 neuroendocrine tumors, segmented by a radiolo-
gist. CNN-defined kidneys resulted in high Dice values (0.91–0.94)
and only small differences (2%–5%) in mean dose when compared
with manual segmentation. Contour intensity–based registration led
to visually enhanced alignment, and the voxel-level fitting had high
R2 values. Across patients, dosimetry results were highly variable;
for example, the average of the mean absorbed dose (Gy/GBq)
was 3.2 (range, 0.2–10.4) for lesions, 0.49 (range, 0.24–1.02) for left
kidney, 0.54 (range, 0.31–1.07) for right kidney, and 0.51 (range,
0.27–1.04) for healthy liver. Patient results further demonstrated the
high variability in the number of cycles needed to deliver hypotheti-
cal threshold absorbed doses of 23 Gy to kidney and 100 Gy to
tumor. The uncertainty in mean dose, attributable to variability in
segmentation, averaged 6% (range, 3%–17%) for organs and 10%
(range, 3%–37%) for lesions. For a typical patient, the time for the
entire process was about 25 min (�2 min manual time) on a desktop
computer, including time for CNN organ segmentation, coregistra-
tion, MC dosimetry, and voxel curve fitting. Conclusion: A pipeline
integrating novel tools that are fast and automated provides the
capacity for clinical translation of dosimetry-guided RPT.
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Radiopharmaceutical therapy (RPT) is well suited to the thera-
nostic treatment approach because imaging after one cycle could be
used to predict absorbed doses per unit activity that would be deliv-
ered from subsequent cycles. Thus, the injected activity or number
of cycles can be modulated on an individualized basis to potentially
enhance therapeutic efficacy while keeping organ toxicities at an
acceptable level (1–3). Despite this potential, fixed-activity proto-
cols continue to be used in RPTs such as 177Lu-DOTATATE pep-
tide receptor radionuclide therapy (PRRT), for which the standard
practice is to deliver 4 cycles at 7.4 GBq/cycle (1).
In RPT dosimetry, 3-dimensional patient images coupled with

voxel-level dose estimation using methods such as Monte Carlo
(MC) radiation transport can account for spatial and temporal activity
nonuniformity, as well as tissue heterogeneity, down to the resolution
limit of the imaging system. This method contrasts with traditional
methods that approximate the anatomy by a reference phantom
model and provide only the average absorbed dose to structures that
may not provide sufficient information to predict potential biologic
effects (4). However, voxel dosimetry can be logistically difficult to
implement because of the need for repeated SPECT imaging with
relatively long acquisitions, typically 20–30 min (5); coregistration
of sequential images and voxel-level curve fitting; and the computa-
tional cost of accurate dose-rate estimation using direct MC radiation
transport. The potential for reducing the imaging burden associated
with dosimetry has recently been reported (6). However, there is
much room to improve the efficiency and accuracy of the other steps
above, as well as volume-of-interest (VOI) segmentation, which is
needed to report dose metrics to lesions or organs.
Recent advances in automated medical image segmentation

using deep learning methods focus mostly on external-beam radio-
therapy applications (7). Despite the potential for substantially
reducing the variability and labor associated with segmentation,
well-validated deep learning tools are not yet routinely available
with RPT dosimetry software. Although segmentation in RPT
dosimetry is often performed on emission images, segmentation on
coregistered morphologic images (CT, MRI) exploits their superior
spatial resolution. The non–contrast-enhanced low-dose CT compo-
nent of integrated SPECT/CT and PET/CT systems is suitable for
segmenting some organs and well-defined lesions.
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Among voxel dosimetry methods, MC is the consensus reference
standard that is superior to simpler methods such as dose voxel (or
point) kernel convolution (DVK) in the presence of tissue heteroge-
neity. However, RPT dosimetry using general-purpose MC codes
(e.g., GEANT4 and MCNP) involve long simulation times, typi-
cally hours, to achieve reasonable statistics (8). The Dose Planning
Method (DPM) MC code, optimized specifically for dose computa-
tions in voxelated geometries derived from CT scans, was originally
developed, benchmarked, and experimentally validated for fast dose
estimation in external-beam radiotherapy (9). We previously adapted
DPM for application in 131I radioimmunotherapy by sampling decay
locations internally within the voxelated geometry and benchmarked
it (10). Recently, we performed measurements with radiochromic
film to directly validate DPM for 177Lu and 131I (11). As detailed in
Sempau et al. (9), DPM achieves its computational efficiency while
maintaining accuracy using simplified cross-sectional models that
are accurate at energies relevant to radiation therapy and by using
the delta scattering technique for photon transport and the random
hinge transport mechanics model for electron transport, which per-
mits long transport steps across voxel boundaries.
Our aim was to construct and test a voxel-dosimetry pipeline that

integrates deep learning–based segmentation, fast MC dose estima-
tion, and other automated processes and to use it to report highly
patient-specific dosimetry using multi-SPECT/CT imaging after
177Lu-PRRT.

MATERIALS AND METHODS

Dosimetry Pipeline
The dosimetry pipeline (Fig. 1) combining automated tools was imple-

mented as a workflow within a commercial software platform (MIM
Software Inc.). The only parts of the process that are not integrated are
lesion segmentation and partial-volume correction (PVC), which is
applied as a postprocessing step when reporting mean absorbed dose
only. The workflow is currently in a beta testing stage. Following regula-
tory review and licensing agreements between the University of Michi-
gan and MIM Software, an MC-based dosimetry workflow as described
in this work will be made available for clinical use via MIM.
Segmentation. Organ segmentation was performed on the CT por-

tion of the SPECT/CT scan at the reference time point, which is the
time point at which the CT was performed at a higher x-ray tube cur-
rent and exposure (mAs) than at the other time points. For kidney and
liver, we constructed convolutional neural networks (CNNs) based
on RefineNet (12), which is based on the U-Net architecture with
3-dimensional convolution blocks to better leverage contextual infor-
mation from all directions. The CNNs for kidney and liver were

trained with 65 and 108 manually contoured datasets, respectively,
with 5-fold cross validation. The previously evaluated Dice scores
from these tests averaged 0.93 6 0.04 and 0.97 6 0.05 for the kidneys
(13) and liver (14), respectively. In the current study, we tested the
CNN for liver by visual assessment and for kidney by calculating geomet-
ric similarity measures (Dice and mean distance to agreement [MDA])
and comparing dose estimates relative to manual segmentations performed
by an experienced technologist and checked by a radiologist. Dice is a
spatial overlap index, and MDA is a spatial distance–based metric; both
are widely used to assess the reliability of segmentations.

Automatic segmentation of lesions such as neuroendocrine tumor
(NET) is not yet sufficiently developed and validated. Therefore,
lesions (#5) were manually segmented by a radiologist on the patient’s
diagnostic-quality baseline CT or MRI scan and then transferred to the
reference SPECT/CT scan after coregistration. If misregistration was evi-
dent, the location was manually adjusted on the basis of SPECT uptake.
Lesions clearly visible on the CT portion of the reference SPECT/CT
scan were directly defined there. Only lesions that were well defined and
more than 2 cm3 in volume were segmented, to avoid large uncertainties.
The healthy liver was defined as the liver minus any segmented lesions
and therefore included any unsegmented lesions.
Local Contour Intensity–Guided Registration. To coregister

sequential images, contour intensity–based SPECT–SPECT alignment
was used. SPECT images are first rigidly registered to the reference
SPECT images as a gross alignment. The SPECT intensity information
on voxels within each selected VOI plus a surrounding 7-cm expansion
zone is then used to perform multiple local rigid registrations between
the images. These locally focused alignments are rigidly spliced together
to generate a composite image aligned and interpolated to the grid of the
reference SPECT images. In this process, VOIs are automatically propa-
gated from the reference to other time points. We tested this automated
method previously in a subset of patients by comparing time-integrated
activity values relative to rigidly transferred VOIs with visual fine tuning
and reported good agreement: 0.3% (95% CI, 28.0% to 8.7%) for kid-
neys and 1.9% (95% CI, 217.8% to 21.7%) for tumors (15).
Voxel Dose-Rate Estimation. Details on the MC transport mechan-

ics and physics data based on PENELOPE can be found in the original
paper on DPM development (9) and our subsequent paper (10) on
extension to RPT. For the current work, the 177Lu decay and spectral
information came from NuDat 3.0 (16) and BetaShape 2.2 (17). The
cutoffs for photon and electron transport were set to 4 keV and
59 keV, respectively, below which energy was locally deposited in the
voxel. These cutoffs are reasonable, considering that the range of a
59-keV electron in tissue (�0.07 mm) and the mean free path of a
4-keV photon in tissue (�0.1 mm) are much smaller than the voxel
size of the dose-rate map. For a typical case (patient 12), we tested
this assumption by running DPM with lower cutoffs (photons, 2 keV;

FIGURE 1. Overview of automated dosimetry workflow. At reference time point, CT of SPECT/CT was performed at higher mAs value than at other
time points. HU5 Hounsfield units.
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electrons, 20 keV), which results in a 20% increase in run time, but
the average difference in voxel dose rate in a VOI was only 0.5%.

Dose-rate estimation by DPM MC and DVK convolution with soft-
tissue kernels precalculated using DPM were integrated as options
within the dosimetry workflow to enable comparison. Exploiting the
high speed of Fast Fourier Transform convolution, we chose to work
with a large kernel (267 3 267 3 267 [3 mm 3 3 mm 3 3 mm]) to
ensure capturing of photon dose contribution from decays anywhere
within the SPECT field of view. The mass density map for MC trans-
port or for density scaling of the DVK results is generated via a CT-
to-density calibration curve, which we determined specifically for our
system. The coregistered quantitative SPECT image and the reference
time-point density map are the inputs to the dose-rate calculation,
which is repeated at each time point. Images are resampled to 167 3

167 3 131 (3 mm 3 3 mm 3 3 mm) for DVK and to 128 3 128 3

100 (3.91 mm 3 3.91 mm 3 3.91 mm) for MC. After testing statistical
uncertainty, 108 histories were selected for the MC simulations.
Voxel-Level Curve Fitting to Generate Dose Maps. At each voxel,

dose-rate _D as a function of time is fit by a monoexponential and a 3-
parameter (C1, l1, l2) biexponential of the form _DðtÞ ¼ C1ðe2l1t2e2l2tÞ
using standard least-squares optimization. Next, the best fit function is
automatically selected independently for each voxel on the basis of the
Akaike information criterion as proposed by Sarrut et al. (18). Other
options such as trapezoidal approximation as well as a 4-parameter biexpo-
nential, suitable when more time points are available, were implemented
but not used in the current study. Dose-rate functions are integrated analyti-
cally to generate the dose map.
Mean Absorbed Dose and Dose–Volume Histogram (DVH)

Metrics. The segmented contours are applied to the absorbed dose map
to generate the mean absorbed dose and other DVH metrics. Absorbed
dose estimates derived from SPECT images are degraded by partial-
volume errors associated with limited spatial resolution. For mean value
PVC, we determined recovery coefficients (RCs), defined as the ratio of
SPECT-measured activity to true activity (19) within CT-defined sphere
VOIs of a multisphere phantom with sphere-to-background ratio of 6.2:1
and sphere sizes of 2–113 mL. The same SPECT/CT system and imag-
ing and reconstruction parameters as used in the patient studies were
used for this phantom experiment. The fit to our RC-versus-volume data
was as follows: RC 5 1 2 1/[1 1 (v/3.673)0.948], where v is the volume
in milliliters. This function was used to determine volume-dependent
RCs for lesions or organs and were applied (scaling by 1/RC) when
reporting mean absorbed doses only.

Patient Characteristics and SPECT/CT Imaging
Patient Studies. Data correspond to 20 patients (Supplemental

Table 1; supplemental materials are available at http://jnm.snmjournals.
org) with NETs who completed 4-time-point SPECT/CT imaging after
cycle 1 of standard 177Lu-DOTATATE PRRT at the University of
Michigan Medical Center between August 2018 and July 2021. The
research imaging was approved by the Institutional Review Board, and
all patients provided written informed consent.
Quantitative SPECT/CT. The SPECT/CT system was a Siemens

Intevo Bold equipped with a medium-energy collimator and a 15-mm
crystal. The 4 SPECT acquisitions (25 s/view) were performed on
days 0 (directly after completion of amino acid infusion), 1, 4–5, and
5–8. Manufacturer-recommended settings of a 20% acquisition win-
dow at 208 keV with adjacent 10% scatter windows, a 256 3 256
matrix, and 120 views were used. Siemens xSPECT Quant software
was used to directly generate reconstructed images in Bq/mL units.
This system requires that a National Institute of Standards and Tech-
nology–traceable 75Se calibration source with a 3% uncertainty be
used to perform a monthly site-specific check of the system sensitivity
and associated fine tuning (19). The SPECT reconstruction parameters
were 48 iterations (1 subset) of ordered-subset conjugate gradient with

resolution recovery, a 256 3 256 3 199 matrix (1.953 mm3), and no
postfiltering (19). The non–contrast-enhanced, free-breathing CT was per-
formed at 120 kVp and 80 mAs at the reference time point and at
15 mAs at other time points. The CT reconstruction matrix was 512 3

5123 130 (0.97 mm3 0.97 mm3 3 mm).

Uncertainty Analysis
In RPT dosimetry, the traditional approach of propagating uncertain-

ties associated with each step has identified VOI delineation as the largest
source of variability (20). The analytic approach proposed for estimating
this variability is not well suited when anatomic imaging is used for seg-
mentation because factors other than spatial resolution (e.g., impact of
contrast agents or misalignment with SPECT) can dominate. In addition,
the spatial distribution of absorbed dose impacts the uncertainty estimate.
Hence, we take an empiric approach of introducing realistic variabilities
to the segmented VOIs and determining the corresponding variability in
the mean absorbed dose when the perturbed contours are applied to the
dose map and the perturbed volumes used to determine RCs. We intro-
duced volume expansions and contractions (organs, 65% and 610%;
lesions,610% and620%) and 26 translations of 4 mm (�SPECT voxel
size) for each perturbation. These levels were selected on the basis of an
ongoing interoperator variability study on lesion segmentation at our
institution and on the kidney volume differences for CNN versus manual
segmentation in the current study. For each VOI, the relative standard
deviation (coefficient of variation [COV]) in mean absorbed dose from
all perturbations is reported as the uncertainty.

RESULTS

The results correspond to imaging data after cycle 1, with 18 of
20 patients treated with the 7.4-GBq administration and 2 treated
with a reduced level of about 3.2 GBq (Supplemental Table 1).
All images associated with patient 6 are shared at University of
Michigan Deep Blue data repository: https://doi.org/10.7302/0n8e-
rz46 and https://doi.org/10.7302/vhrh-qg23.

Segmentation
Example segmentations are shown in Figure 2. The median

lesion volume was 22 (range, 22 1,039) mL, and 64 of 77 were in
the liver (Supplemental Table 1). In most cases, the CNN organ
segmentation was accepted by the radiologist. When manual
adjustment was needed, it took only 0.5–3 min per organ. The fine
tuning related mostly to inclusion of bowel loops with liver and
cysts with kidney (Fig. 2B). Comparing manual versus CNN-
defined kidney, Dice scores averaged 0.91 (range, 0.77–0.94)
without manual adjustment and 0.93 (range, 0.91–0.94) with man-
ual adjustment, and differences in mean absorbed doses were 3%
(range, 0%–21%) without adjustment and 2% (range, 0%–4%)
with adjustment (Supplemental Table 2).

Contour Intensity–Based SPECT–SPECT Alignment
Visual inspection showed well-aligned images (Fig. 3) across all

time points, with only 3 of 164 VOIs needing manual adjustment.
These 3 cases were 2 small lymph node lesions in the pelvis and a
lesion in the mesentery when there was substantial movement between
scans.

Voxel-Level Curve Fitting
For a typical patient, a map of the coefficient of determination

(R2) that measures the goodness of the fit at each voxel and exam-
ple dose-rate curve fits are shown in Figure 4. The R2 values across
all voxels in all patients are summarized in Figure 4B. Summary
statistics for the effective half-life (Teff) values of the main compo-
nent of the exponential are presented in Supplemental Table 3.
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Dosimetry
Example MC dose maps and DVHs are presented in Figure 5A.

Individual mean absorbed dose values after PVC are presented
in Figure 6 and Supplemental Figure 1, and summary statistics
averaged across all patients are presented in Supplemental Table 3.
The median RCs applied were 0.85 (range, 0.37–1.00) for lesions,
0.97 (range, 0.95–0.98) for kidney, and 1.00 (range, 1.00–1.00) for
healthy liver. There was a weak correlation between tumor volume
and mean absorbed dose (R2 5 0.052; P 5 0.046). DVH metrics
are presented in Supplemental Figure 2.

Uncertainty in Mean Absorbed Dose Estimates
With 108 MC histories, the contribution of statistical uncer-

tainty is negligible. For example, the COV in VOI dose rates
(available from the DPM uncertainty maps) was less than 0.2%
for the case shown in Figure 5A. The uncertainty associated with
SPECT–SPECT misalignment can be approximated empirically
by intentionally misaligning the 4 dose-rate maps and repeating the
voxel-level automatic fitting process. This process is not practical

to perform because of the various combinations of shifts, and we
therefore limit this process to 1 illustrative example. This case was
chosen because the right kidney is very near a tumor (Fig. 5B),
and therefore, the impact of misalignment can be expected to be
higher than typical, whereas the other structures are representative
of typical patients. With shifts of 64 mm in all directions, the esti-
mated COV in mean absorbed dose due to misregistration was
1.8%–2.6% for tumor, 1.6% for left kidney, 9.8% for right kidney,
and 1.4% for healthy liver. In general, the 4-mm misalignment has
a relatively low impact because of the poor resolution of SPECT.
The uncertainty that we report formean absorbed doses is that asso-

ciated with segmentation, which also impacts the volume-dependent
RCs. The COV, represented as error bars in Supplemental Figure 1,
averaged 5% (range, 4%–6%) for left kidney, 7% (range, 3%–17%)
for right kidney, 5% (range, 4%–9%) for spleen, 8% (range,
3%–15%) for tumors larger than 10 cm3, and 16% (range, 8%–37%)
for tumors smaller than 10 cm3. For organs and large tumors, the
major contributor to this uncertainty was the contour variability itself,
whereas for small tumors it was the sensitivity of RCs to tumor

A B

FIGURE 2. Example segmentations for patients 12 (A) and 4 (B). In A, CNN-defined kidney and liver were accepted by radiologist, whereas in B, the
CNN-defined kidney (yellow contour) was manually adjusted (purple contour) to avoid a cyst.

FIGURE 3. Two stages of automatic SPECT–SPECT registration demonstrated for day 0 and day 1 images of patient 12. Comparison of magnified
inserts shows subtle improvement in alignment with contour intensity–based refinement.
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volume uncertainty. For example, for tumor volumes smaller than 10
cm3, the COV in reported absorbed doses increased by a factor of 2
on average when applying RCs, whereas for tumors larger than
100 cm3 this factor was only 1.1 on average.

Comparison of MC, DVK, and OLINDA
Mean absorbed doses from MC, DVK, and OLINDA 1.0 are

compared in Figures 6D and 6E and demonstrate good agreement.
For the OLINDA calculation, the organ-level time-integrated activ-
ity values from the workflow were used. The difference between
DVH metrics from MC and DVK are presented in Supplemental
Figure 2.

Computational Cost
All processing was performed on a multicore Mac Pro (3.2 GHz)

desktop computer. For a typical patient (128 3 128 3 100 matrix),
the total run time starting with 4 SPECT/CT images is about 25 min
for the MC option and about 12 min for DVK, of which only about
2 min is manual time. This includes CNN organ segmentation
(�2min), contour-based SPECT alignment (3 min), MC dose-rate
estimation (4 min per time point), and voxel-level dose-rate fitting

and integration (3 min). DPM currently runs on a single processor
but can be accelerated with parallelization.

DISCUSSION

A highly automated pipeline for all steps of RPT voxel dosime-
try that needs minimal user interaction was constructed and tested
for the 177Lu PRRT application. The automated tools are suitable
for other radionuclides and therapies with appropriate testing.
Although activity quantification was not evaluated in the current

study, accuracy within 1.2% for large objects has been reported (19)
with xSPECT Quant software using the same standardized calibra-
tion process and reconstruction parameters as used in the current
study. Furthermore, the sphere phantom–based RCs reported in that
study and in our study are in good agreement. This simplistic PVC
has limitations because RCs depend on factors other than the vol-
ume of the object, such as shape and activity distribution. For a
2-compartment kidney model with uniform activity in the renal cor-
tex, it has been shown that the RC for the cortex is substantially
lower than that for a sphere of equal volume (21). Generating geom-
etry- or distribution-specific RCs is beyond the scope of the current
study and may not be practical because of wide patient-to-patient

A B

FIGURE 5. (A) Coronal slice of MC dose map and dose–volume histograms for patient 12. (B) Examples of contour perturbations applied to dose
maps of patients 12 and 26 for estimating uncertainty. COV in right kidney absorbed dose was 4% for patient 12 but 17% for patient 26 because of
proximity to tumor and liver.

A B

FIGURE 4. (A) Example dose-rate curve fittings for all voxels in right kidney and tumor 1 of patient 12, color-coded by R2 value of fit. Mono- and biex-
ponential functions are selected for different voxels. Organ-level curve fitting is shown in black. Coronal slice of R2 map is shown in insert. (B) Percentage
of voxels achieving R2 . 0.5, 0.7, and 0.9 for fits across all patients.
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variations. Despite the limitations, the sphere-based RCs used in our
study are widely applied as a mean value correction to mitigate reso-
lution effects in SPECT and PET quantification, including in dosim-
etry applications (22,23).
Ideally, when 3-dimensional dose distributions are being evaluated,

PVC should be applied at the voxel level, but this is a challenging and

yet-unresolved problem (24). Another chal-
lenge with voxel dosimetry is that iterative
reconstruction with resolution modeling leads
to edge artifacts that, depending on the size of
the object, can manifest as a visible dip or an
overshoot at the center (25). This effect and
partial-volume effects lead to differences
between DVHs derived from SPECT images
and those corresponding to the true activity
distribution within an object (26). Despite the
challenges, capturing nonuniformities in the
underlying dose distribution to the extent pos-
sible is desired when considering biologic
effect. There are alternative efforts using deep
learning, including by our group (27), to miti-
gate the impact of poor spatial resolution and
reconstruction artifacts on voxel dosimetry.
There was close agreement between dose

estimates corresponding to manual versus
CNN-defined kidney, as is consistent with the
findings for a 177Lu-PSMA therapy cohort
(28). We achieved further improvement with
quick manual adjustment of the CNN seg-
mentations. The Dice similarity metrics we
achieved are comparable to what is reported
for inter- and intraoperator variability in man-
ual organ segmentation (29). A possible re-
finement is to train the CNN to use both CT
and SPECT information, which may be bene-
ficial to identify cysts included in kidney con-
tours (Fig. 2B) and to reduce the effects
of misregistration between CT and SPECT
images (30). Visually, the local contour
intensity–based SPECT–SPECT registration
led to improved alignments compared with
global rigid registration (Fig. 3). The main
advantage of SPECT intensity–based registra-

tion over using CT-based registration to align serial SPECT images is
that the former does not depend on SPECT/CT alignment, which is
inconsistent because of respiratory motion and patient movement. The
automated approach to selecting the optimal fit function led to high R2

values and is especially beneficial for voxel-level fitting when selec-
tion by visual inspection is not feasible. The smooth voxel dose-rate–

versus–time data, high R2 values, and good
agreement in Teff when comparing average
values from voxel-level versus organ-level fit-
ting give us confidence in the ability to per-
form accurate voxel-level fitting.
It is notable that the difference between

the mean absorbed dose from the OLINDA
sphere model and MC was less than 10%
for 73 of 77 lesions (Fig. 6E). This differ-
ence can, however, be larger for radionu-
clides with more significant photon yields
than 177Lu. The main advantage of MC over
conventional DVK methods is in regions of
heterogeneous tissue and at steep activity gra-
dients, which are not fully resolved by simple
density scaling. Recently, more sophisticated
approaches that use multiple kernels to cover
media of varying density have been proposed

FIGURE 6. Violin plots of dosimetry results across all patients. (A) Teff. (B) Mean absorbed dose
with voxel-level MC calculation. (C) Difference in MC dose estimates with voxel-level vs. organ-level
dose-rate fitting. (D) Difference between MC and DVK (with density scaling). (E) Difference between
MC and OLINDA (with mass scaling). Difference 5 100 3 (MC 2 XX)/MC, where XX indicates the
other method. Circles indicate individual points, “x” indicates the average across patients, and
dashed lines indicate 25th and 75th percentiles.

FIGURE 7. Variation in number of 7.4-GBq cycles needed to deliver 23 Gy to kidney and 100 Gy
to tumor.
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to mitigate the limitations of using a single kernel (31). In the current
study, lesions in heterogeneous tissue such as bone metastases were
not considered because of their small size or the difficulty in defining
them. Accurate dosimetry of bone lesions andmarrow requires model-
ing the fine structure of the spongiosa that can be coupled with MC
transport (32).
RPT dosimetry is typically reported without uncertainty estimates

because of the complexity and limitations of traditional error propaga-
tion. Although we did not attempt to assess all components of the uncer-
tainty, we captured the main components: the variability associated
with contour delineation and the volume-based RCs (20). Facilitated by
voxel dose maps, our empiric approach of introducing perturbations is
both practical to implement and sensitive to each patient’s underlying
dose distribution, which is not the case with analytic approaches.
For example, in patient 26 the relative uncertainty for the right kidney
was higher than for the left because of proximity to a lesion in the liver
(Fig. 5B); this issue may also explain the higher values reported overall
for right versus left in our study and by others (1,3).
Across patients, the median Teff that we observed for left (51.7 h)

and right (50.3 h) kidney agree closely with previous reports (1,6)
for similar cohorts. The median absorbed dose to the left (0.41 Gy/
GBq) and right (0.43 Gy/GBq) kidneys can be compared with past
reported values of 0.61 (1), 0.54 (2), 0.47 (33), and 0.38 (average)
(34) Gy/GBq for the kidneys. Differences can be attributed to differ-
ences in patient cohorts, quantification or dosimetry methods, and
renoprotective amino acid preparation. The median value of the
mean absorbed dose to tumor in our study (17.7 Gy or 2.7 Gy/GBq)
is lower than the per-cycle median values of 50 Gy (23) and 4.4 Gy/
GBq (2) reported for 2 other studies. This difference is not surprising
because instead of the anatomic lesion segmentation used in our
study, SPECT thresholding was used in the first study whereas the
second used VOIs placed over the area of maximum uptake.
Although we do not report biologic effective dose, it can be calcu-

lated using the dose-rate maps and fit parameters available from the
workflow coupled with published values for the radiobiologic
parameters as outlined by Baechler et al. (35). Furthermore, since
most patients in our study had not yet finished their 4-cycle treat-
ment, no attempt was made to evaluate dose–outcome relationships.
PRRT clinical trials in which dosimetry is used solely to avoid toxic-
ity to critical organs have been reported (1–3). Performing both
tumor and organ dosimetry enables consideration of both efficacy
and toxicity when planning subsequent cycles. As a hypothetical
example, using the cycle 1 mean dose estimates from our study, we
determined the number of cycles each patient would need to receive
100 Gy to tumor and 23 Gy to kidney assuming the same number of
grays per cycle. These thresholds, though somewhat arbitrary, were
selected here on the basis of a dose–response finding for NETs (23)
and the generally accepted 23-Gy limit for nephrotoxicity in exter-
nal-beam radiotherapy, although this limit is likely too low for
PRRT. Most patients could receive more than the standard 4 cycles
without exceeding 23 Gy to kidney, and most lesions need more
than 4 cycles to achieve 100 Gy to tumor (Fig. 7). Access to this
type of information in real time via efficient dosimetry calculations
will enable clinicians to make well-informed treatment decisions.
Furthermore, highly patient-specific dosimetry results are needed to
establish the validity of simplified protocols.

CONCLUSION

Multiple steps of the dosimetry chain, organ segmentation, core-
gistration, dose-rate estimation by MC, and curve fitting were

automated and integrated to construct an efficient pipeline for
voxel dosimetry that was tested using imaging data from 177Lu-
PRRT patients. Facilitated by this efficient workflow, highly
patient-specific dosimetry results, including uncertainty estimates,
were reported. The speed, automation, and accuracy that were
achieved will facilitate implementation of real-time dosimetry-
guided RPT in the clinical setting.
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KEY POINTS

QUESTION: Can accurate and highly patient-specific dosimetry
be performed in a clinical setting to guide RPT?

PERTINENT FINDINGS: An automated pipeline that includes
CNNs for organ segmentation and a fast MC code for dose
estimation was constructed, tested, and applied to report
dosimetry in patients undergoing 177Lu-PRRT. Excluding the time
for lesion segmentation, voxel-level MC dose estimates were
achieved in about 25 min.

IMPLICATIONS FOR PATIENT CARE: Patient-specific real-time
dosimetry, such as performed in the current study after cycle 1,
can be used to tailor subsequent cycles on the basis of efficacy
and toxicity considerations.
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