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The assessment of gliomas by 18F-FDOPA PET imaging as an
adjunct to MRI showed high performance by combining static and
dynamic features to noninvasively predict the isocitrate dehydro-
genase (IDH) mutations and the 1p/19q codeletion, which the
World Health Organization classified as significant parameters in
2016. The current study evaluated whether other 18F-FDOPA PET
radiomics features further improve performance and the contri-
butions of each of these features to performance. Methods: Our
study included 72 retrospectively selected, newly diagnosed
glioma patients with 18F-FDOPA PET dynamic acquisitions. A set
of 114 features, including conventional static features and
dynamic features, as well as other radiomics features, were
extracted and machine-learning models trained to predict IDH
mutations and the 1p/19q codeletion. Models were based on a
machine-learning algorithm built from stable, relevant, and
uncorrelated features selected by hierarchic clustering followed
by a bootstrapped feature selection process. Models were
assessed by comparing area under the curve using a nested
cross-validation approach. Feature importance was assessed
using Shapley additive explanations values. Results: The best
models were able to predict IDH mutations (logistic regression
with L2 regularization) and the 1p/19q codeletion (support vector
machine with radial basis function kernel) with an area under the
curve of 0.831 (95% CI, 0.790–0.873) and 0.724 (95% CI,
0.669–0.782), respectively. For the prediction of IDH mutations,
dynamic features were the most important features in the model
(time to peak, 35.5%). In contrast, other radiomics features were
the most useful for predicting the 1p/19q codeletion (up to 14.5%
of importance for the small-zone low-gray-level emphasis). Con-
clusion: 18F-FDOPA PET is an effective tool for the noninvasive
prediction of glioma molecular parameters using a full set of
amino-acid PET radiomics features. The contribution of each
feature set shows the importance of systematically integrating
dynamic acquisition for prediction of the IDH mutations as well as
developing the use of radiomics features in routine practice for
prediction of the 1p/19q codeletion.
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The World Health Organization (WHO) 2016 classification of
gliomas shifted from a purely histology-based approach (1) to the
integration of molecular parameters (2). These parameters notably
include isocitrate dehydrogenase (IDH) mutations and the 1p/19q
codeletion, which are determinant in the patient’s prognosis (3).
PET imaging using radiolabeled amino acids is currently

recommended as an adjunct to MRI by the Response Assessment
in Neuro-Oncology group (4), with the ability to noninvasively
predict molecular parameters using, among others, 6-18F-fluoro-L-
DOPA (18F-FDOPA) (5). One advantage of such an image-derived
noninvasive prediction is the ability to study the metabolism of the
whole tumor area, whereas histopathologic analyses consider only
part of the tumor. In a recent series of 58 newly diagnosed gliomas,
18F-FDOPA PET imaging was found to predict IDH mutational
status with an accuracy of 74% thanks to the integration of dynamic
features (5).
The non-invasive predictive capability of dynamic amino-acid

PET correlated with the emergence of the radiomics field, which
extracts numerous quantitative features from images on the basis
of classic static and dynamic features (5) but also others, such as
morphologic and textural features (6). These radiomics studies
helped to noninvasively predict specific tumor phenotypes by
using machine learning algorithms to identify advanced imaging
biomarkers representative of the intratumoral heterogeneity (7).
Radiomics is increasingly being used in the PET characterization

of gliomas at the initial diagnosis (8), even though only a minority of
studies to date has been performed with the amino-acid tracers
recommended for glioma assessment (9–11). It has therefore
become paramount to understand the potential significance of
particular imaging features—that is, static, dynamic, and other
radiomics features—to predict IDH mutations and the 1p/19q
codeletion. To the best of our knowledge, in the age of radiomics no
study has yet assessed the potential benefits of amino-acid PET
imaging to characterize the molecular parameters of gliomas
according to the WHO 2016 classification by exploiting amino-
acid PET acquisition as a whole.
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The current study therefore aimed to determine to what extent the
high-throughput extraction of advanced imaging biomarkers can
predict these molecular parameters and the contributions of each of
these 18F-FDOPA PET features to performance.

MATERIALS AND METHODS

Patients
We retrospectively selected newly diagnosed glioma patients who

were investigated by 18F-FDOPA PET for suspected glioma
components in the Department of Nuclear Medicine at the CHRU of
Nancy, between November 2012 and November 2019. Only included
patients satisfying the following selection criteria were included:
patients with a neuropathologic diagnosis of grade II, III, or IV glioma
according to the WHO 2016 classification (2) with a maximum delay
from the time of the 18F-FDOPA PET of 150 d for diffuse grade II or
III glioma and 60 d for glioblastoma, in line with previously published
time ranges (5,12,13); patients with a dynamic analysis and available
raw data; and patients with visually abnormal 18F-FDOPA uptake, that
is, by excluding isometabolic and photopenic gliomas (14,15). A
flowchart of patient selection is shown in Figure 1. The institutional
ethics committee (Comit�e d’Ethique du CHRU de Nancy) approved
the evaluation of retrospective patient data on August 26, 2020. The
trial was registered at ClinicalTrials.gov (NCT04469244). This
research complied with the principles of the Declaration of Helsinki.
Informed consent was obtained from all individuals included in the
study.

18F-FDOPA PET Acquisition and Image Reconstruction
Patients were instructed to fast for at least 4 h before the examination,

and some patients were administered carbidopa 1 h before the
examination to increase uptake of the tracer in the brain (16). Patients
were scanned on a conventional PET/CT camera (Biograph 6 True
Point; Siemens Healthineers) and on a digital PET/CT camera (Vereos;
Philips). A CT scan was first recorded for each patient, immediately
followed by a 30-min 3-dimensional list-mode PET recording initiated
during the bolus injection of 3MBq (conventional) or 2MBq (digital) of
18F-FDOPA per kilogram of body weight. Dynamic PET images
consisted of 30 frames of 1 min each, whereas static PET images were
reconstructed from the list-mode data acquired 10–30min after injection
(Fig. 2) (10,17).

The conventional PET/CT static and dynamic images were
reconstructed using the ordered-subsets expectation maximization
2-dimensional algorithm (2 iterations, 21 subsets, 4-mm gaussian
postreconstruction filter) without time-of-flight information and 256 3

2563 148 voxels of 2.73 2.73 3 mm with a slice spacing of 1.5 mm
for the static and dynamic images. The digital static images were
reconstructed using the time-of-flight information and a high-resolution
protocol with the ordered-subsets expectation maximization
3-dimensional algorithm (2 iterations, 10 subsets, a deconvolution of
the point-spread function) and 256 3 256 3 164 voxels of 1 3 1 3 1
mm, whereas a protocol with a lower spatial resolution was used for the
dynamic images in order to limit the level of noise—that is, 3 iterations,
15 subsets, without point-spread function, and 128 3 128 3 82 voxels
of 2 3 2 3 2 mm (18).

All images were corrected for attenuation using CT, dead time,
random coincidences, and scattered coincidences during the reconstruc-
tion process.

Segmentation
Volumes of interest (VOIs) for tumor, contralateral healthy brain, and

striatum were defined on the static image using LifeX software
(lifexsoft.org) (19).

This healthy brain uptake was measured in a crescent-shaped VOI
manually positioned on the unaffected hemisphere so as to comprise
both white and gray matter, as recommended (10).

Tumor VOI was segmented semiautomatically using a threshold of
1.6 for healthy brain SUVmean (10). The striatum was delineated
semiautomatically using a threshold of 70% of the SUVmax

18F-FDOPA
uptake and corrected manually when required.

When a VOI comprised multiple components, the one with the largest
volume was retained in the analysis. All final VOIs were visually
inspected by an experienced physician to ensure the quality of the
methods applied. Examples of representative VOIs are provided in
Figure 2.

Image Preprocessing and Extraction of Features
Figure 2 illustrates the workflow of image preprocessing and the

extraction of features.
Static Features. Mean, maximum, and peak tumor–to–normal-brain

ratios and tumor-to-striatum ratios were computed as, respectively,
SUVmean, SUVmax, and SUVpeak in the tumor VOI divided by the
SUVmean in the brain and the striatumVOI. Themetabolic tumor volume
was defined as the volume of the tumor VOI.
Dynamic Features. Each dynamic frame was first registered to the

associated CT image, in order to correct for any potential patient
movement during the acquisition (20). The brain and tumor
time–activity curves were extracted by retrieving the SUVmean for
each frame, respectively, in the brain VOI and in the volume
corresponding to the SUVpeak of the tumor VOI on the static image, to
represent the most aggressive part of the tumor (21). To overcome
noise effects, a nonlinear fit was applied to each time–activity curve
(5,22), with a function dedicated to tumoral vascularization (patent
WO/2008/053268, entitled “Method and System for Quantification of
Tumoral Vascularization”) and a nonlinear least optimization using
the trust-region–reflective algorithm. Given that tumor–to–normal-
brain values are less likely to be influenced by carbidopa premed-
ication than is SUV, the time–activity curve ratio, representing the
evolution of the ratio between the tumor- and brain-fitted
time–activity curves, was calculated (5). Time to peak was computed
as the delay between the beginning of the dynamic acquisition and the
time of the maximum uptake value, and the slope of the linear
regression of the data between the 10th and 30th minutes was then
determined (5).
Other Radiomics Features. For patients whose acquisition was

performed on the conventional PET camera, isotropic voxel resampling
was performed using the SimpleITK Python package following Image
Biomarker Standardization Initiative recommendations to reach a voxel
size of 2.73 2.73 2.7 mmwith tricubic spline interpolation. Each static
image was normalized by the SUVmean in the brain VOI to compensate
for differences in carbidopa premedication in our population—differ-
ences that are known to impact SUVmeasurements (23). A fixed bin size
of 0.1 was used for absolute image discretization in all patients. One
hundred five features were extracted from the tumor VOI, including
morphologic, local intensity, intensity-based statistical, intensity histo-
gram, and textural features. A 3-dimensional merging strategy was used
for textural matrices (24). Extraction of the features was based on the
guidelines and benchmark values of the Image Biomarker Standardiza-
tion Initiative (24) using pyradiomics (https://github.com/Radiomics/
pyradiomics) or an in-house software for local intensity features that
were not available in pyradiomics. The full list of extracted features is
given in Supplemental Table 1, and extraction parameters are given in
Supplemental Table 2 (supplemental materials are available at http://
jnm.snmjournals.org).

These 114 features were used for the following classification tasks:
IDH mutant (IDH-positive) versus IDH wild-type (IDH-negative)
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gliomas, and gliomas with and without 1p/19q codeletion (1p19q-
positive vs. 1p19q-negative).

Data Harmonization
All extracted features other than dynamic features were harmonized with

the modified ComBat method (http://github.com/SteinCK/M-ComBat) (25)
using the digital PET device as a reference. This harmonization proved to be
efficient for removing the device effect without altering the biologic variation

(26). Dynamic features were not harmonized since they represent semiquan-
titative kinetic features and are not much affected by the PET device (9).

Model Building
For a given training and validation set, all transformations and the

algorithm were fitted using the training set only. In the validation set, all
transformations computed on the training set were applied and the fitted
algorithm was used to predict the output.

FIGURE 1. Flowchart of retrospective selection of study patients.
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FIGURE 2. Detailed workflow of image acquisition and reconstruction, VOI segmentation (shown in red contours), and features extracted, where images
and VOIs are listed in orange and gray rectangles, respectively, processing steps in green rectangles, intermediate results in dark blue rectangles, and final
features in lightblue rectangles.GLCM=gray level co-occurrencematrix;GLRLM=gray level run lengthmatrix;GLSZM=gray levelsize zonematrix;MTV5

metabolic tumor volume; NGTDM= neighborhood gray tone differencematrix; NGLDM= neighboring gray level dependence; p.i.5 after injection; TBR5

tumor–to–normal-brain ratio; TSR5 tumor-to-striatum ratio; TAC5 time–activity curve; TTP5 time to peak.

150 THE JOURNAL OF NUCLEAR MEDICINE � Vol. 63 � No. 1 � January 2022



All static, dynamic, and other features were first normalized with
a z score normalization. Then, dimensionality was reduced by
hierarchic clustering (27), where highly correlated features (abso-
lute Spearman correlation coefficient $ 0.9) are clustered together.
For each cluster, the feature selected was the medoid of the cluster,
that is, the feature that minimizes the dissimilarity from all other
features in the cluster. The most relevant and stable uncorrelated
features were selected on the basis of 100 bootstrap samples in
which the features were ranked using the Wilcoxon score (28), with
a global rank computed with the previously published importance
score (27). A range of 5–15 selected features was tested, in
increments of 5.

Finally, selected features were given as an input to a machine
learning classification algorithm. Class imbalance for each classifica-
tion task was addressed by assigning weights inversely related to the
class’s prevalence in the training data during machine-learning
algorithm training. In the case of severely imbalanced groups in a
given classification task (classification of 1p/19q codeletion), the
Synthetic Minority Oversampling Technique algorithm (29) was used
for oversampling the minority class. The performance of 5 classifiers
implemented were compared: logistic regression with L2 regulariza-
tion, neural networks, random forest, support vector machine with
radial basis function kernel, and support vector machine with linear
kernel.

Model Performance
Nested cross-validation was used to get an unbiased estimate of

the model’s performance (30), with repeated stratified cross-
validations as inner and outer loops to reduce the influence of the
variance on the results (31). Hyperparameters were tuned through an
inner loop with a 3-fold stratified cross-validation repeated 50 times
by optimizing the mean area under the curve (AUC) overall inner
folds and using 100 iterations of a random search over the set of
hyperparameters described in Supplemental Table 3. The model
assessment was performed through the outer loop with a 10-fold
stratified cross-validation repeated 5 times by calculating the mean
AUC overall outer folds. For this purpose, software was developed
in-house and is freely available online (https://github.com/
TimZaragori/Sklearn_NestedCV/tree/master/Radiomics_gliomas_
article). The whole modeling pipeline is shown in Figure 3. For each
classification task, the final model selected was the one with the
highest performance.

Statistical Analysis
Categoric variables are expressed as percentages, and continuous

variables as medians (first to third quartiles), because variables did not
follow a normal distribution. Groups were compared with the x2 test for
categoric variables and theMann–Whitney test for continuous variables.
For each outer fold receiver-operating-characteristic curve, the optimal
threshold was computed on the training set by selecting the point on the
curve closest to (0,1) and applying it on the validation set to get the
predictions. Diagnostic performance (accuracy, sensitivity, specificity,
positive predictive value, and negative predictive value) was computed
from outer model predictions. P values lower than 0.05 were considered
significant. One thousand bootstrap iterations of outer results were used
to determine the 95% CIs of each dataset performance. Analyses were
performed with R software, version 3.6.2 (R Foundation for Statistical
Computing). For each classification, the model introspection was
performed using Shapley additive explanation (SHAP) values (32),
which provide information on the importance of each feature by taking
into account the whole modeling pipeline. SHAP values were computed
on each outer model and concatenated to obtain a global and reliable
importance score for each feature.

RESULTS

Patients
We retrospectively selected 72 patients (median 51.0 [inter-

quartile range (IQR), 34.8-62.4 y]; 29 women), who underwent
18F-FDOPA PET for a newly diagnosed glioma, with a histo-
pathologic diagnosis determined either from tissue obtained
during surgery (n 5 33) or from biopsies (n 5 39): 43 IDH-
positive gliomas from which 18 1p/19q codeleted. The time
window between PET imaging and neuropathologic confirmation
was 35 d (IQR, 11.5–84 d) for diffuse grade II or III gliomas and
3 d (IQR, 1–24 d) for glioblastomas. Data for 44 of the patients
(61%) were acquired by conventional PET/CT, and data for 28
(39%) were acquired by digital PET/CT. Forty-two (58%)
patients were premedicated with carbidopa. The patients who
underwent the conventional PET/CT were already analyzed
previously (5). Further details of the patient characteristics are
provided in Table 1. The validations of the harmonization and
normalization processes are shown in, respectively, Supplemen-
tal Tables 4 and 5.

Predicting IDH Mutations
The combination of logistic regression with L2 regularization and

5 selected features was the best-performing model for predicting
IDHmutations and yielded an AUC of 0.831 (95%CI, 0.790–0.873)
(details of the predictive performance of this model and the
performance of all models for predicting IDH mutations are
presented in Table 2 and Supplemental Fig. 1, respectively). The
time to peak was found to be the feature with the highest importance,
reaching a 35.5% contribution to the overall model’s performance
(Fig. 4). The other dynamic parameter, slope, was also among the 5
most contributive features, even though with a lower importance
(4.3%).

Predicting the 1p/19q Codeletion
The 1p/19q codeletion was best predicted by a model that

combined a support vector machine with a radial basis function
kernel and 15 features selected (AUC, 0.724 [95%CI, 0.669–0.782])
(Supplemental Fig. 2 shows the results of all models for 1p/19q
codeletion, and Table 2 shows the complete predictive performance
of this model). In contrast to the prediction of the IDHmutations, the
other radiomics features were the most contributive, with the small-
zone low-gray-level emphasis from gray level size zone matrix
being the most important feature (14.5%) (Fig. 4).
An overview of the impact on the model of each feature according

to its values for the interpretation of the radiomics signatures is
shown in Figure 5. Representative examples of patients for both
classifications, with their local interpretation using SHAP values, are
provided in Figure 6.

DISCUSSION

The current study shows that 18F-FDOPA PET imaging is an
efficient tool for the noninvasive prediction of two of the most
important molecular parameters of newly diagnosed gliomas
according to the WHO 2016 classification, the IDHmutations using
dynamic features and the 1p/19q codeletion using other radiomics
features. Using a set of 114 radiomics features, a good performance
for predicting these 2 parameters was achieved, with AUCs of 0.831
and 0.724, respectively. Interestingly, the greatest contribution to the
predictive performance for IDHmutations was provided by dynamic
features, whereas the contribution of the set of other radiomics
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features was the most useful for predicting the 1p/19q codeletion
(Table 2; Figs. 4 and 5).
Since the emergence of the radiomics field, only a few amino-acid

PET studies have been devoted to the characterization of molecular
parameters in newly diagnosed gliomas (8). Among these, only two
were performed for the 2 molecular parameters that are key features of
the WHO 2016 classification. Lohmann et al. (9) focused their analysis

exclusively on predicting IDH genotype, whereas Haubold et al.
extended their analysis to various othermolecular parameters usingMR
fingerprints and 18F-FET but did not include the information provided
by the dynamic PET acquisitions (11). The objective of our studywas to
predict the classification of newly diagnosed gliomas according to both
IDH mutations and the 1p/19q codeletion by considering amino-acid
PET data as a whole—that is, by extracting a full set of radiomics

FIGURE 3. Modeling pipeline using nested cross-validation to obtain unbiased estimate of model performance. Fifty repeats of 3-fold cross-validation
wereusedas inner loopand5 repeatsof10-foldcross-validationasouter loop.Foreach foldofoutercross-validation,hyperparametersofmodelwere tuned
in inner cross-validation using only outer training data. Best hyperparameters chosen were then used to fit model to outer training data, and model
performancewas evaluated on outer test data. Blue and red rectangles, respectively, denote training and test data for each cross-validation. Green arrows
represent predictionsmade by fittedmodel on test data, and green boxes represent score calculated from these predictions. CV5 cross-validation; OF5

outer fold; IF5 inner fold; Si = score on test data of outer fold i; Si.j = score on test data of inner fold j from outer fold i.
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features, including dynamic ones, to better characterize the contribution
of each group of features (static, dynamic, and other radiomics features)
in the prediction of molecular parameters.
For the prediction of IDH mutations, our results are consistent

with those of Lohmann et al. using dynamic 18F-FET, who
reported accuracies of greater than 70% (9) (vs. 74.7% in the
present study). Conversely, Haubold et al. reported lower predic-
tive performances for IDH mutations (AUC of 0.639, vs. 0.831 in
the present study) but without including any dynamic information

in their analyses (11). This latter point underlines the fact that
dynamic information is crucial for the prediction of IDH
mutations, consistent with our previous results, in which dynamic
features led to accuracies of up to 74% in predicting IDH
mutations (5). For the prediction of the 1p/19q codeletion, the set
of other radiomics features provided the most important contri-
bution (Figs. 4 and 5). These statements are supported by the
findings of Haubold et al., who reported a much higher prediction
of the textural features for the classification of the 1p/19q

TABLE 1
Patient Characteristics (n 5 75)

Characteristic
Conventional

(n 5 44)
Digital
(n 5 28)

All
(n 5 72) P

Age (y) 0.020*

Median 42.4 57.2 51.0

Range 19.8–73.7 20.3–78.6 19.8–78.6

Female sex 15 (34) 14 (50) 29 (40) 0.273

Primary histopathologic type 0.305

Astrocytoma, IDH-mutant 10 (23) 7 (25) 17 (24)

Anaplastic astrocytoma, IDH-mutant 5 (11) 1 (4) 6 (8)

Astrocytoma, IDH-wild-type 2 (5) 3 (11) 5 (7)

Anaplastic astrocytoma, IDH-wild-type 2 (5) 3 (11) 5 (7)

Oligodendroglioma, IDH-mutant and 1p/19q codeleted 7 (16) 4 (14) 11 (15)

Anaplastic oligodendroglioma, IDH-mutant and 1p/19q codeleted 7 (16) 0 (0) 7 (10)

Glioblastoma, IDH-wild-type 10 (23) 9 (32) 19 (26)

Glioblastoma, IDH-mutant 1 (2) 1 (4) 2 (3)

Carbidopa premedication 14 (32) 28 (100) 42 (58) ,0.001*

Contrast enhancement on MRI 18 (41) 11 (39) 29 (40) 1

*P , 0.05 for comparison between conventional PET and digital PET patients.
Data are number followed by percentage in parentheses, except for age.

TABLE 2
Model Performances for Each Classification

Classification AUC Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%)

IDH-positive vs.
IDH-negative
(LR_L2 and 5
features
selected)

0.831
(0.790–0.873)

77.0 (72.5–81.4) 70.7 (63.0–78.3) 74.7 (71.4–78.4) 82.5 (78.5–86.7) 70.9 (64.9–76.6)

1p19q-positive
vs. 1p19q-
negative
(SVM_RBF
and 15
features
selected)

0.724
(0.669–0.782)

55.0 (43.0–66.0) 72.3 (66.7–78.5) 67.0 (62.5–71.2) 39.6 (30.4–48.3) 84.2 (80.5–88.2)

PPV 5 positive predictive value; NPV 5 negative predictive value; IDH-positive 5 IDH mutant gliomas; IDH-negative 5 IDH wild-type
gliomas; LR_L2 5 logistic regression with L2 regularization algorithm; 1p19q-positive 5 1p/19q codeleted gliomas; 1p19q-negative 5

gliomas not 1p/19q codeleted; SVM_RBF 5 support vector machine with radial basis function kernel algorithm.
Data are mean followed by 95% CI in parentheses.
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codeletion (AUC of 0.858) than IDH mutations (AUC of 0.639).
The highly predictive value of dynamic parameters for IDH
mutations and other radiomics features for 1p/19q codeletion is
further supported by additional results obtained when comparing
the performances of the 114-feature dataset with the datasets
having only static features, static and other radiomics features, and
static and dynamic features (Supplemental Fig. 3).
It is crucial to try and explain glioma signatures in terms of the

significance of the selected features (Figs. 4 and 5). In the signature of
the IDH mutations, IDH wild-type gliomas are characterized by low
time-to-peak values. This is consistent with results from our previous
study (5), in which IDH wild-type gliomas, reputed as more
aggressive tumors, were associated with a breakdown of the
blood–brain barrier but also a higher microvessel density and LAT1

expression. All these considerations are consistent with intense wash-
in and washout phenomena, leading to short times to peak.
The signature interpretation for the 1p/19q codeletion classi-

fication is more complex and can be considered in 2 parts. The
first is by focusing on features that have highly negative SHAP
values and that help the classifier exclude a potential 1p19q-
positive glioma. This is the case for high values of minimum
intensity statistics, given that 1p19q-positive gliomas exhibit
high amino-acid PET uptake (33), as well as low values of small-
zone low-gray-level emphasis from gray level size zone matrix
and high values of busyness from neighborhood gray tone
difference matrix, since 1p19q-positive gliomas are homoge-
neous tumors. Second, and in contrast to the first interpretation of
the signature, features exhibiting positive SHAP values allow the

FIGURE 4. Feature importance derived from outer models for most contributive features to prediction of IDHmutations using logistic regression with L2
regularization and5 features selected (A) and 1p/19qcodeletion using support vectormachinewith radial basis function kernel and 15 features selected (B).
Individual importance of each feature was normalized to sum of 1.0. Other radiomic features are in blue, and dynamic features are in orange.
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classifier to confirm a potential 1p19q-positive glioma. This is the
case for features associated with a nonaggressive behavior such
as high values of sphericity morphologic feature, characterizing
spheric tumors or other features from the gray level size zone
matrix representative of a homogeneous tumor (high values of
large-zone emphasis and low values of zone percentage).
As a limitation, the number of patients was relatively low,

particularly the number of glioma patients with 1p/19 codeletions,
even though the number was comparable to and even larger than
that of other radiomics studies performed on this relatively rare

entity (9,11). Our methodology for radiomics modeling (feature
selection, nested cross-validation, and adapted corrections for
imbalanced datasets) was nevertheless adapted to the number of
patients to avoid the risk of overfitting. However, validation on an
external dataset of the suggested models is still required before
transfer to the clinical setting. Another limitation is the use of 2
different PET cameras for acquisitions—a factor that we handled by
harmonizing the features of each device using the modified ComBat
method (Supplemental Table 4). In contrast to the ComBat method,
the modified method has the advantage of aligning data in the space

FIGURE5. Overviewof impact onmodel of each feature according to its values (forpredictionof IDHmutations [A] and for prediction of 1p/19q codeletion
[B]). Impactonmodeloutput is shownwithSHAPvaluesonx-axis, and featurevalue isdisplayed incolors (blueandred for, respectively, lowandhighvalues).
For instance, in A, for classification of IDH mutations, high values of time to peak (in red) are showing positive SHAP values and thus are associated with
prediction of positive class (IDH-positive gliomas) as opposed to lowvalues of time to peak (in blue), which exhibit negativeSHAP values,meaning that they
are associated with prediction of negative class (IDH-negative gliomas).
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of a specific device so that results can be used in routine clinical
practice.

CONCLUSION

To the best of our knowledge, our current study was the first to
focus on predicting the presence of major molecular parameters that
are of prognostic interest, based on the WHO 2016 glioma
classification, by using a full set of amino-acid PET static, dynamic,
and radiomics features. Interestingly, most of the salient information
for the prediction of IDH mutations is provided by the dynamic

analysis, which highlights the necessity of systematically including
dynamic acquisition as part of routine amino-acid PET imaging.
However, for the classification of the 1p/19q codeletion, the
predominant contribution of textural features shows the need to
develop the routine extraction of such features through machine
learning models as complementary tools for clinical interpretation.
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FIGURE 6. Representative examples of patients with IDHwild-type glioma (A) and 1p/19q codeleted glioma (B). Shown for each patient are axial slice of
18F-FDOPAPET (left), dynamicmean tumor–to–normal-brain ratio curve (middle; time to peak, light gray dotted line; slope, dark blue dotted line), and same
slice on FLAIR MRI (right), above graphic representing contribution of features involved in model prediction (IDH mutations classification [A]; 1p/19q
codeletion classification [B]). Red features push prediction toward positive class, whereas blue features push toward negative class; longer arrow indicates
more impact on model. Base model values (value of featureless model) and final decision values are displayed, respectively, in italics and boldface. For
interpretation purposes, feature names along with their value (expressed in z score) are displayed under each arrow. TTP 5 time to peak; ZP 5 zone
percentage; DV 5 difference variance; LZE 5 large-zone emphasis; SZLGE 5 small-zone low-gray-level emphasis; GLNU 5 gray-level nonuniformity;
DCNUN5 dependence count nonuniformity normalized. IS = intensity statistics; GLCM = gray level co-occurrence matrix; GLRLM = gray level run length
matrix;GLSZM=gray level size zonematrix;MORPH=morphologic;NGTDM= neighborhoodgray tonedifferencematrix;NGLDM=neighboringgray level
dependence matrix.
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KEY POINTS

QUESTION: To what extent can the high-throughput extraction of
advanced imaging biomarkers predict molecular parameters in
gliomas, and what is the contribution of each 18F-FDOPA PET
feature to the performance?

PERTINENT FINDINGS: 18F-FDOPA PET is an effective tool for the
noninvasive prediction of glioma molecular parameters using a full
set of amino-acid PET radiomics features, with respective AUCs of
0.831 (95% CI, 0.790–0.873) and 0.724 (95% CI, 0.669–0.782) for
IDH mutations (dynamic features) and the 1p/19q codeletion
(radiomics features).

IMPLICATIONS FOR PATIENT CARE: The contribution of each
feature set shows the importance of systematically integrating the
dynamic acquisition and of developing the use of radiomics features
in clinical 18F-FDOPA PET imaging.
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