Direct Comparison of the Tau PET Tracers 18F-Flortaucipir and 18F-MK-6240 in Human Subjects

Alexandra Gogola¹, Davneet S. Minhas¹, Victor L. Villemagne², Ann D. Cohen², James M. Mountz¹, Tharick A. Pascoal², Charles M. Laymon¹,¹, N. Scott Mason¹, Milos D. Ikonomovic²,⁴, Chester A. Mathis¹, Beth E. Snitz⁴, Oscar L. Lopez⁴, William E. Klunk², and Brian J. Lopresti¹

¹Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania; ²Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; ³Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; and ⁴Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania

Introduction: Tau PET tracers exhibit varying levels of specific signal and distinct off-target binding patterns that are more diverse than amyloid PET tracers. This study compared 2 frequently used tau PET tracers, 18F-flortaucipir and 18F-MK-6240, in the same subjects. Methods: 18F-flortaucipir and 18F-MK-6240 scans were collected within 2 mo in 15 elderly subjects varying in clinical diagnosis and cognition. FreeSurfer, version 5.3, was applied to 3-T MR images to segment Braak pathologic regions (I–IV) for PET analyses. Off-target binding was assessed in the choroid plexus, meninges, and striatum. SUV ratio (SUVR) outcomes were determined over 80–100 min (18F-flortaucipir) or 70–90 min (18F-MK-6240) normalized to cerebellar gray matter. Masked visual interpretation of images was performed by 5 raters for both the medial temporal lobe and the neocortex, and an overall (majority) rating was determined. Results: Overall visual ratings showed complete concordance between radiotracers for both the medial temporal lobe and the neocortex. SUV ratio outcomes were highly correlated ($P > 0.92; P < 0.001$) for all Braak regions except Braak II. The dynamic range of SUVRs in target regions was approximately 2-fold higher for 18F-MK-6240 than for 18F-flortaucipir. Cerebellar SUVRs were similar for 18F-MK-6240 and 18F-flortaucipir, suggesting that differences in SUVRs are driven by specific signals. Apparent off-target binding was observed often in the striatum and choroid plexus with 18F-flortaucipir and most often in the meninges with 18F-MK-6240. Conclusion: Both 18F-MK-6240 and 18F-flortaucipir are capable of quantifying signal in a common set of brain regions that develop tau pathology in Alzheimer disease; these tracers perform equally well in visual interpretations. Each also shows distinct patterns of apparent off-target binding. 18F-MK-6240 showed a greater dynamic range in SUVR estimates, which may be an advantage in detecting early tau pathology or in performing longitudinal studies to detect small interval changes.

Key Words: tau, PET, Alzheimer disease, 18F-flortaucipir, 18F-MK-6240

DOI: 10.2967/jnumed.120.254961

Alzheimer disease (AD) is pathologically characterized by 2 specific brain pathologies: extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) comprised of hyperphosphorylated tau protein. Although much evidence supports the amyloid cascade hypothesis of AD (1), whereby abnormal Aβ deposition is an initiating feature of AD, tau pathology is more closely linked to symptom severity, rate of decline, and development of dementia in AD pathophysiologic spectrum patients (2) and to a decline in visuospatial and language functions (3).

The ability to detect tau pathology in the living brain is critical for understanding the relationship between neuropathology and clinical symptoms and for monitoring the efficacy of novel antiantau therapies (3–7). In addition to the recently U.S Food and Drug Administration–approved flortaucipir (Tavud; Eli Lilly and Co.), previously known as 18F-AV-1451 and 18F-T807 (8), several tau radioligands have been advanced to investigational human studies, including 18F-MK-6240 (9), 18F-TIK-5317, 18F-TIK-5351, 11C-PBB3, 18F-RO-948, 18F-PI-2620, 18F-GTP1, and 18F-PMBB3 (4). Ongoing investigations underscore that tau radioligands differ in specificity to species of tau aggregates, dynamic range, and nonspecific and off-target binding (4). Of the tau imaging agents under development, 18F-flortaucipir and 18F-MK-6240 have seen widespread investigational use and have emerged as leading candidates for clinical translation.

Flortaucipir shows high in vitro binding affinity and selectivity for paired helical filament tau (PHF-tau) constituting NFT pathology, and in vivo indices of tau load correlate well with postmortem AD-related tau pathology (10). In vivo patterns of 18F-flortaucipir retention reflect Braak pathologic staging (11) and support PET-based staging of AD (6). A robust 18F-flortaucipir in vivo signal is observed predominantly in patients who show AD-characteristic Aβ deposits (4). Data suggest that 18F-flortaucipir is specific for the mixed 3- and 4-repeat (3R/4R) PHF-tau deposits prevalent in AD NFTs and dystrophic neurites (4) and suggest utility for differential diagnoses of AD from other tauopathies (12).

An autopsy confirmation study of 18F-flortaucipir detected an advanced level of NFT pathology (Braak V–VI) and high levels of neuropathologic change according to the joint National Institute of Aging–Alzheimer Association criteria for an AD neuropathologic diagnosis (10). However, some 18F-flortaucipir characteristics are not ideal for PET imaging assessments, such as slower clearance from the cortex than the cerebellum with increasing tau pathologic burden, resulting in unstable SUV ratio (SUVR) outcomes even after long periods (13). Off-target binding in the basal ganglia, choroid plexus, and other regions (4) may influence specific signal determination in adjacent regions. Although the test–retest reproducibility of 18F-flortaucipir is excellent (<4%) (14), a low signal...
in mild cognitive impairment (MCI) and early AD combined with high nonspecific retention in amyloid-negative controls may pose challenges for early detection and for longitudinal tracking of tau aggregation (15,16).

11C-PiB has also shown high affinity and selectivity for 3R/4R PHF-tau (5,17) and has advanced to human studies (4,18). In amyloid PET–positive subjects, 18F-MK-6240 showed excellent brain uptake and retention patterns consistent with Braak stages of tau pathology (4,18). Like 11C-flortaucipir, the slowly equilibrating kinetics of 11C-PiB may represent a source of bias in SUVr outcomes for typical scanning intervals (e.g., 70–90 min or 90–110 min) (3,17–21). Off-target binding of 11C-PiB is not present in the basal ganglia and choroid plexus (17,18,21), although off-target binding in the retina, ethmoid sinus, substantia nigra, and dura mater is common (19). In vivo studies of 18F-MK-6240 show good reproducibility (test–retest reproducibility, < 6%) (18,22), an ability to differentiate cognitively normal subjects from MCI or AD patients (19,23), and sensitivity for detecting tau in early disease stages (21).

Although amyloid PET tracers show similar patterns of specific signal across subjects and radiotracers, this is not the case for tau tracers. While both 18F-flortaucipir and 18F-MK-6240 appear to detect tau deposits in vivo, evaluating the relative performance of these 2 radiotracers is complicated by the absence of direct comparisons performed in the same subjects. This shortcoming layers biologic variability on top of tracer variability since there is a wide range in the spatial distribution and severity of tau pathology across individuals (3). The present work describes a direct comparison of 18F-flortaucipir and 18F-MK-6240 in a group of 15 subjects having a range of clinical diagnoses studied with both radiotracers within a 2-mo interval.

MATERIALS AND METHODS

Human Subjects

The study was approved by the University of Pittsburgh’s Institutional Review Board, and all subjects or their caregivers consented to the Alzheimer Disease Research Center examination and imaging protocol. Fifteen subjects were recruited through the University of Pittsburgh Alzheimer Disease Research Center and other population-based studies (Table 1), selected to represent a range of AD pathologic burden based on cognition and amyloid PET. No subjects were excluded. All subjects underwent a battery of cognitive tests and a consensus clinical diagnosis performed by the same Alzheimer Disease Research Center neurologist, geriatric psychiatrist, and neuropsychologist (24). A 11C-Pittsburgh compound B (11C-PiB) scan was performed on the day of the 18F-flortaucipir scan to determine amyloid status. Five subjects were clinically diagnosed with probable AD (mini-mental state examination score range, 9–29), and all were globally 11C-PiB–positive. One subject was classified as MCI-amnestic (mini-mental state examination score, 22), but a negative 11C-PiB scan suggested a non-AD etiology. The remaining 9 subjects had normal cognition (NC), although 6 scored outside the reference ranges on at least 1 objective measure of cognition, memory, or executive function (classified as “impaired test without complaints”). Among the 9 NC subjects, 7 had mini-mental state examination scores within reference ranges (28–30) and only 1 NC subject was globally 11C-PiB–positive.

Imaging

18F-PiB and 18F-MK-6240 were produced in accordance with drug master files approved by the University of Pittsburgh Radioactive Drug Research Committee. Precursors for 18F-flortaucipir and 18F-MK-6240 were provided by Avid Radiopharmaceuticals, Inc., and Cerveau Technologies, Inc., respectively, under existing agreements. 18F-flortaucipir was prepared in accordance with procedures detailed in Food and Drug Administration–approved investigational-new-drug application 123396, and 18F-MK-6240 was prepared as previously described (9). 18F-flortaucipir (340 ± 19 MBq) and 18F-MK-6240 (189 ± 15 MBq) PET scans were collected within 26 ± 14 d (maximum, 54 d) on a Biograph mCT (TrueV) (Siemens Healthcare) and reconstructed as previously described (25). To assess amyloid status, 11C-PiB scans (50–70 min, 529 ± 107 MBq) were collected on a Siemens ECAT HR+ on the same day as 18F-flortaucipir scans (26). A sagittal T1-weighted MPRAGE (magnetization-prepared rapid acquisition with gradient echo) MR image was acquired using a 3.0T Siemens Prisma scanner (Siemens Healthcare) for brain segmentation and parcellation.

Data Analysis

MR images were processed using FreeSurfer, version 5.3, to obtain a brain parcellation atlas for PET image sampling as previously described (25,27). Briefly, motion-corrected 18F-MK-6240 and 18F-flortaucipir images were summed over 70–90 min for 18F-MK-6240 (21) and 80–100 min for 18F-flortaucipir (13,28) and registered to a subject-specific reference MR image. The FreeSurfer parcellation template was used to sample summed PET images, and a volume-weighted average of FreeSurfer regions was calculated for each of 6 composite Braak stage regions of interest (ROIs) (Supplemental Table 1; supplemental materials are available at http://jnm.snmjournals.org). Striatal FreeSurfer ROIs (caudate, putamen, accumbens, and pallidum) were excluded from the composite Braak V ROI because of frequent off-target binding of 18F-flortaucipir but were examined separately as a composite striatal region (bilateral), along with the choroid plexus (unilateral because of asymmetries) and meninges, to assess off-target binding (5). Regional 18F-flortaucipir and 18F-MK-6240 SUVRs and SUVR images were calculated using cerebellar gray matter as a reference (19,29).

To compare off-target binding in the meninges, individual MR images were normalized into Montreal Neurological Institute space using SPM12 software (Statistical Parametric Mapping, University College, London). The c4 ROI (meninges + bone) was extracted from the SPM12 tissue probability map and edited to exclude other head and neck tissues based on an average MRI of all 15 subjects (Supplemental Fig. 1). The c4 ROI was subsequently transformed back to native space for PET image sampling. Voxelwise comparisons of 18F-flortaucipir and 18F-MK-6240 SUVR images were performed using SPM12. T-value parametric maps (representing voxels for which 18F-ME-6240 > 18F-flortaucipir and 18F-flortaucipir > 18F-MK-6240) were generated from the output of the paired t test and overlaid on an MRI template for visualization.

Visual Assessments

18F-flortaucipir and 18F-MK-6240 SUVR images were visually assessed by 5 experienced raters using a randomized coding scheme. Ratings were performed using only the PET images, which were assessed for tau pathology in the medial temporal lobe (MTL) and neocortex (NEO). Interrater reliability (Fleiss κ) was assessed across tracers and regions. The overall MTL and NEO ratings for assessing radiotracer concordance were based on a simple majority of 5 individual ratings. Additional details are provided in the supplemental materials.

RESULTS

PET Imaging

18F-flortaucipir and 18F-MK-6240 PET SUVR images displayed a range of tau pathology, with patterns of cortical involvement that were primarily posterior (AD2, AD3), highly focal (AD1), or widespread (AD4) (Fig. 1). In NC subjects, the tau PET signal for both radiotracers was modest and most prominent in the MTL.
Visual Assessments

Five raters assessed abnormal tracer retention in the MTL and NEO for \(^{18}\text{F-} \text{flortaucipir}\) and \(^{18}\text{F-MK-6240}\). Overall tau-positivity ratings showed complete concordance between radiotracers in the MTL and NEO (Table 2), and there was substantial agreement between raters (\(\kappa > 0.73\)) for both regions (MTL and NEO) and radiotracers (Table 3). Individual ratings showed complete agreement for all AD subjects and were least reliable in patients with low levels of tau pathology (e.g., NC4 and NC5, Supplemental Fig. 2).

SUVR Analyses

\(^{18}\text{F-} \text{flortaucipir}\) and \(^{18}\text{F-MK-6240}\) SUVRs correlated strongly (\(r^2 > 0.9; p < 0.001\)) across Braak stage regions (Fig. 2 except for Braak II (\(r^2 = 0.52; P = 0.0024\)). However, the dynamic range of SUVR, as indicated by the regression slope, was approximately 2-fold greater for \(^{18}\text{F-MK-6240}\) across Braak stage regions except Braak II, where the difference was more modest (\(\times 1.4\)). The distributions of cerebellar gray matter SUVs did not significantly differ between \(^{18}\text{F-} \text{flortaucipir}\) and \(^{18}\text{F-MK-6240}\) (\(P > 0.4, \text{paired } t\text{-test}\)), with a mean cerebellar SUV of 0.88 ± 0.18 and 0.84 ± 0.16, respectively (Fig. 2, right).

Off-Target Binding

Figure 3 shows the distribution of SUVR outcomes and representative images of typical off-target binding, where the striatum and choroid plexus were frequent loci of \(^{18}\text{F-} \text{flortaucipir}\) off-target signal. By comparison, off-target binding of \(^{18}\text{F-MK-6240}\) in these regions was low. Off-target binding of \(^{18}\text{F-} \text{flortaucipir}\) in the choroid plexus was frequent but variable, with an elevated signal (SUVR > 1.0 in either hemisphere) being seen in 9 of 15 subjects and extreme

TABLE 1

<table>
<thead>
<tr>
<th>Subject no.</th>
<th>Age (y)</th>
<th>Sex</th>
<th>MMSE</th>
<th>Education (y)</th>
<th>Scan interval (d)</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD1</td>
<td>83</td>
<td>M</td>
<td>20</td>
<td>16</td>
<td>2</td>
<td>Probable AD (atypical)</td>
</tr>
<tr>
<td>AD2</td>
<td>68</td>
<td>M</td>
<td>23</td>
<td>14</td>
<td>6</td>
<td>Probable AD</td>
</tr>
<tr>
<td>AD3</td>
<td>86</td>
<td>M</td>
<td>15</td>
<td>12</td>
<td>1</td>
<td>Probable AD</td>
</tr>
<tr>
<td>AD4</td>
<td>53</td>
<td>M</td>
<td>9</td>
<td>12</td>
<td>2</td>
<td>Probable AD</td>
</tr>
<tr>
<td>AD5</td>
<td>64</td>
<td>F</td>
<td>29</td>
<td>12</td>
<td>1</td>
<td>Probable AD</td>
</tr>
<tr>
<td>MCI1</td>
<td>77</td>
<td>M</td>
<td>22</td>
<td>12</td>
<td>2</td>
<td>MCI-amnestic & other</td>
</tr>
<tr>
<td>NC1</td>
<td>79</td>
<td>F</td>
<td>24</td>
<td>12</td>
<td>7</td>
<td>Abnormal w/o complaint</td>
</tr>
<tr>
<td>NC2</td>
<td>79</td>
<td>F</td>
<td>30</td>
<td>18</td>
<td>52</td>
<td>Normal cognition</td>
</tr>
<tr>
<td>NC3</td>
<td>79</td>
<td>F</td>
<td>28</td>
<td>14</td>
<td>54</td>
<td>Abnormal w/o complaint</td>
</tr>
<tr>
<td>NC4</td>
<td>76</td>
<td>F</td>
<td>30</td>
<td>14</td>
<td>48</td>
<td>Abnormal w/o complaint</td>
</tr>
<tr>
<td>NC5</td>
<td>76</td>
<td>M</td>
<td>22</td>
<td>11</td>
<td>26</td>
<td>Abnormal w/o complaint</td>
</tr>
<tr>
<td>NC6</td>
<td>73</td>
<td>F</td>
<td>30</td>
<td>18</td>
<td>24</td>
<td>Abnormal w/o complaint</td>
</tr>
<tr>
<td>NC7</td>
<td>82</td>
<td>F</td>
<td>30</td>
<td>14</td>
<td>30</td>
<td>Abnormal w/o complaint</td>
</tr>
<tr>
<td>NC8</td>
<td>75</td>
<td>F</td>
<td>30</td>
<td>14</td>
<td>19</td>
<td>Normal cognition</td>
</tr>
<tr>
<td>NC9</td>
<td>69</td>
<td>F</td>
<td>30</td>
<td>16</td>
<td>49</td>
<td>Normal cognition</td>
</tr>
</tbody>
</table>

MMSE = mini-mental state examination; w/o = without.

FIGURE 1. \(^{18}\text{F-} \text{flortaucipir}\) \((^{18}\text{F-FTP})\) and \(^{18}\text{F-MK-6240}\) SUVR images from 6 subjects representing the range of tau pathology observed in our cohort. From left to right: subject showing no evidence of tau pathology (NC7); cognitively normal subject showing early Braak stage pathology (NC4); atypical AD subject with tau pathology in MTL and evidence of focal uptake in Braak V (AD1); and 3 AD subjects showing progression of increasingly severe tau pathology culminating in widespread neocortical involvement in AD4. \(^{18}\text{F-} \text{flortaucipir}\) and \(^{18}\text{F-MK-6240}\) are shown on common scale (SUVR, 0.5–4.0). \(^{18}\text{F-FTP}\) images are repeated (row 3) on compressed scale (SUVR, 0.5–2.75) so that subtle differences may be more appreciated. AWOC = abnormal without complaint; GBL = global; MMSE = mini-mental state examination.
values (SUVR > 2) being seen in 1 subject (NC5) who was amyloid-negative and tau-negative in the MTL and NEO by visual assessment. The remaining 18F-flortaucipir images and all 18F-MK-6240 images showed low off-target binding in the choroid plexus. In the striatum, off-target binding of 18F-flortaucipir was approximately 56% higher than that of 18F-MK-6240 on average (SUVR, 1.45 ± 0.12 vs. 0.93 ± 0.18), and the ranges of striatal SUVRs for the 2 tracers overlapped in only 3 of 15 subjects (Fig. 3).

Six of 15 subjects showed an increased 18F-MK-6240 signal (SUVR > 1.0) at the pial surface of the brain, centered on the meninges (Fig. 3), although meningeal SUVR outcomes correlated strongly (r² = 0.68; P < 0.001) between tracers.

In another group of 6 subjects, all female, we noted a conspicuous signal from both radiotracers arising from an overgrowth of bony tissue on the internal surface of the calvarium, consistent with hyperostosis frontalis interna (30), which was apparent on CT and MR images (Fig. 4). Hyperostosis is a common benign radiographic finding in postmenopausal women (31) and is considered to be an X-chromosome–linked abnormality (32). In some subjects, CT scans revealed other sites of calcification or ossification corresponding to areas of increased 18F-MK-6240 and 18F-flortaucipir off-target signal; these sites included the pineal gland, the meninges of the falx cerebri, and other focal meningeal calcifications. These features were sometimes noted in the absence of more generalized meningeal 18F-MK-6240 off-target binding, as in NC1 and NC4 (Fig. 4).

TABLE 2

Visual Assessments of 18F-Flortaucipir and 18F-MK-6240 Scans

<table>
<thead>
<tr>
<th>Subject no.</th>
<th>FTP</th>
<th>MK</th>
<th>FTP</th>
<th>MK</th>
<th>SUVR</th>
<th>Centiloids</th>
<th>Aβ status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD1</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
<td>2.53</td>
<td>132</td>
<td>POS</td>
</tr>
<tr>
<td>AD2</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
<td>2.42</td>
<td>112</td>
<td>POS</td>
</tr>
<tr>
<td>AD3</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
<td>2.3</td>
<td>103</td>
<td>POS</td>
</tr>
<tr>
<td>AD4</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
<td>2.47</td>
<td>129</td>
<td>POS</td>
</tr>
<tr>
<td>AD5</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
<td>2.51</td>
<td>121</td>
<td>POS</td>
</tr>
<tr>
<td>MCI1</td>
<td>POS</td>
<td>POS</td>
<td>NEG</td>
<td>NEG</td>
<td>1.24</td>
<td>0</td>
<td>NEG</td>
</tr>
<tr>
<td>NC1</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
<td>1.56</td>
<td>50</td>
<td>POS</td>
</tr>
<tr>
<td>NC2</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>1.13</td>
<td>-2</td>
<td>NEG</td>
</tr>
<tr>
<td>NC3</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>1.13</td>
<td>-10</td>
<td>NEG</td>
</tr>
<tr>
<td>NC4</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
<td>POS</td>
<td>1.31</td>
<td>19</td>
<td>NEG</td>
</tr>
<tr>
<td>NC5</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>1.14</td>
<td>4</td>
<td>NEG</td>
</tr>
<tr>
<td>NC6</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>1.18</td>
<td>9</td>
<td>NEG</td>
</tr>
<tr>
<td>NC7</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>1.16</td>
<td>-5</td>
<td>NEG</td>
</tr>
<tr>
<td>NC8</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>1.21</td>
<td>4</td>
<td>NEG</td>
</tr>
<tr>
<td>NC9</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>1.29</td>
<td>6</td>
<td>NEG</td>
</tr>
</tbody>
</table>

FTP = 18F-flortaucipir; MK = 18F-MK-6240; POS = positive; NEG = negative.

TABLE 3

Assessments of Interrater Reliability of Visual Ratings

<table>
<thead>
<tr>
<th>Region</th>
<th>Tracer</th>
<th>k</th>
<th>z score</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTL</td>
<td>FTP</td>
<td>0.836 (0.675–0.997)</td>
<td>10.2</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>MK</td>
<td>0.813 (0.653–0.973)</td>
<td>9.96</td>
<td><0.0001</td>
</tr>
<tr>
<td>NEO</td>
<td>FTP</td>
<td>0.733 (0.573–0.893)</td>
<td>8.98</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>MK</td>
<td>0.760 (0.600–0.920)</td>
<td>9.3</td>
<td><0.0001</td>
</tr>
<tr>
<td>All</td>
<td>FTP</td>
<td>0.785 (0.672–0.898)</td>
<td>13.6</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>MK</td>
<td>0.787 (0.674–0.900)</td>
<td>13.6</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

k = Fleiss k-statistic. Data in parentheses are 95% CIs.

DISCUSSION

Amyloid radiotracers in human subjects with typical AD dementia show a consistent pattern of pathology across tracers and subjects despite differences in dynamic signal range and nonspecific binding characteristics (33–36). The similarity in the brain distribution of specific signal between Aβ radiotracers has facilitated standardization techniques, such as centiloid scaling (37,38), and is likely attributable to a single human isoform of fibrillar Aβ constituting a distinct brain pathology—amyloid plaques—which is the dominant signal source for Aβ in vivo imaging agents (39,40). Tau is considerably more complex, with 6 human
isoforms, more posttranslational modifications, and a greater diversity of pathologic lesions (e.g., NFTs, astroglial and oligodendroglial tau inclusions, or Pick bodies), stages of tangle maturity (41), and ultrastructural conformations (i.e., PHF, straight filaments, or twisted filaments), although in AD the most prevalent species are NFTs comprising a PHF combination of 3R and 4R tau isoforms (42,43). In vitro binding studies of flortaucipir and MK-6240 suggest low affinity to tau pathologies other than PHF-tau (17,29,44–46), although a few in vivo imaging studies have suggested a possible or weak sensitivity of 18F-flortaucipir to 4R-tau deposits in some primary tauopathies (47–49).

As suggested by autoradiography (44), the present study suggested that 18F-flortaucipir and 18F-MK-6240 are almost certainly detecting the same AD- and age-related tau pathology. This

FIGURE 2. Comparison of 18F-flortaucipir and 18F-MK-6240 SUVR outcomes across 6 Braak stage regions, showing linear regression of values. For each Braak stage region, dynamic range of SUVR outcomes is indicated. Data point representing AD1 is shown to illustrate dilution of visually evident focal tau signal in large Braak-stage regions. CER = cerebellum.

FIGURE 3. Comparison of off-target binding of 18F-flortaucipir (18F-FTP) and 18F-MK-6240 in choroid plexus, striatum, and meninges. Shown are representative images of typical patterns of off-target retention in these regions (top). Distribution of SUVR outcomes is also shown (below).
possibility is evidenced by the similarity in radiotracer retention patterns across a spectrum of disease (Fig. 1), highly correlated SUVR outcomes across Braak stage regions, and voxel-based analyses that show no differences in patterns of specific binding to pathologic tau deposits (Fig. 5). In some Braak regions, we observed a slightly elevated floor signal for 18F-flortaucipir compared with 18F-MK-6240, suggesting the former to have a slightly higher nonspecific retention. This was most apparent in Braak II, as is likely attributable to spill-in from off-target binding of 18F-flortaucipir in the choroid plexus.

Our approach to visual interpretation of 18F-flortaucipir and 18F-MK-6240 images was intended to mirror a clinical nuclear medicine environment, albeit with slightly more granularity than a global rating. Although we observed only 1 instance in our small cohort in which a subject (MCI1) was adjudicated overall to be positive in either the MTL or the NEO but not both, conceivably distinct ratings for MTL and NEO tau signal may provide some differentiation of the diverse tau phenotypes previously described (3) and, considering Aβ status, may help to differentiate AD pathology from normal aging processes (e.g., primary age-related tauopathy) characterized by MTL tau deposits that may occur independently of Aβ (50,51).

Although we observed differences in dynamic signal range and off-target binding between tracers, we expected either would perform well in visual assessments, in which off-target binding can be more easily accounted for. This expectation was supported by our results, which showed complete concordance between tracers in overall ratings for both the MTL and the NEO (Table 2) and substantial agreement between raters (κ > 0.73, Table 3), regardless of tracer or region.

Comparing visual assessments with diagnoses, both MTL and NEO tau pathology was present in all AD subjects. Among NC subjects, 7 of 9 showed no evidence of tau pathology in either the MTL or the NEO, whereas NC1 and NC4 were positive in both and had the highest 11C-PiB SUVRs of all NC subjects, although only NC1 was quantitatively Aβ-positive (11C-PiB CL = 50). The MCI subject, who was Aβ-negative (11C-PiB CL = 0), was tau-positive only in MTL. This subject may be an example of primary age-related tauopathy.

Comparison of SUVR images shows that both 18F-flortaucipir and 18F-MK-6240 indicated the same tau pathology, although 18F-MK-6240 showed a nearly 2-fold higher dynamic range (Fig. 2) as indexed by regression slopes ranging from 1.45 to 1.98. A similarity between 18F-flortaucipir and 18F-MK-6240 in cerebellar

FIGURE 4. 18F-flortaucipir (18F-FTP), 18F-MK-6240, CT, and MR images of subjects with hyperostosis frontalis interna (HFI) (first row); HFI and highly calcified pineal gland (second row); marked meningeal ossification and calcification in falx cerebri (third row); and HFI and bony lesion of skull with several small meningeal calcifications (fourth row).

FIGURE 5. Voxel-based comparison of 18F-flortaucipir and 18F-MK-6240 retention. Shown are T-maps of significant contrasts (P < 0.05, uncorrected [T > 1.76], where 18F-FTP > 18F-MK-6240 (A) and 18F-MK-6240 > 18F-FTP (B). T-maps are shown overlaid on average MR image generated from 15 subjects.
gray matter SUVs, which are used to compute SUVR, indicated that this observation is not attributable to differences in nonspecific retention. In vitro saturation binding studies of \(^{3}H\)-MK-6240 and \(^{3}H\)-flortaucipir conducted using the same AD tissue homogenates showed \(^{3}H\)-MK-6240 to have a 3- to 10-fold higher affinity (K_D) for PHF-tau than did \(^{1}H\)-flortaucipir, as well as a 3- to 5-fold higher B_max/K_D ratio (17,46). Indeed, differences in the pharmacologic properties may reasonably explain the increased dynamic range of \(^{18}F\)-MK-6240 SUVR, although other factors such as nonspecific binding, radiotracer metabolism, and rates of plasma and reference region clearance may influence in vivo specific binding measures. Although both tracers appeared to be well suited to visual interpretation, the greater dynamic range of \(^{18}F\)-MK-6240 may represent an advantage for longitudinal studies of tau progression or treatment response, in which detecting small interval changes is key.

An examination of the dispersion of the SUVR data (Fig. 2) shows that for all regions except Braak II there was a subject cluster, with SUVRs of approximately 1 for both radiotracers in all subjects visually adjudicated to be negative, whereas the positive cases covered a much broader range, with few subjects overlapping with the negative cluster. The fact that there were only a few visually positive subjects with low SUVRs likely indicates that they represent subjects for whom the raters identified focally intense radiotracer uptake but that the focus of increased signal was diluted in the averaging of all voxels in the respective Braak stage region, such as the relatively large Braak III–VI regions shown in Figure 6. An example of such a subject is AD1 (Fig. 1), who showed a clear unilateral focus of increased uptake in the left precuneus that, by visual ratings, was indicated as positive for the MTL and NEO with both radiotracers, but \(^{18}F\)-flortaucipir and \(^{18}F\)-MK-6240 SUVRs for the Braak V region in this subject were only 1.16 and 1.09. This example highlights a potential limitation of sampling PET images of tau radiotracers in accordance with Braak staging. Another complication is that in some elderly subjects with or without cognitive impairment, significant MTL (Braak stage I–III region) pathology may occur independently of Aβ. These subjects may represent cases of primary age-related tauopathy. Therefore, classifying tau status (T+/-T–) on the basis of MTL pathology alone would presumably reduce the specificity of a pathologic diagnosis of AD. It is likely that the most sensitive and specific indicators of tau lesions consistent with AD neuropathologic change will require tau PET positivity beyond MTL structures. However, the Braak IV region is relatively large and potentially suffers from the limitation of diluting a focal signal that might be the earliest indicator of neocortical spread of tau pathology. For this reason, others have moved toward a data-driven approach with a more granular tissue sampling strategy (52).

\(^{18}F\)-flortaucipir images often exhibit elevated off-target binding in the striatum and choroid plexus (Fig. 4), as well as other tissues, which may occur independently of neurodegenerative disease pathology as previously reported (6). For \(^{18}F\)-MK-6240, the frequent observation of elevated signal arising from the meninges and other extracerebral structures (Fig. 3) was in accordance with previous observations (21). In some cases, it was apparent that spill-in of off-target \(^{18}F\)-MK-6240 signal from the meninges could impact the quantification of signal in cortical brain regions as well as the cerebellum, although the fact that meningeal off-target signal is not apparent on \(^{18}F\)-flortaucipir images yet the SUVR outcomes of \(^{18}F\)-flortaucipir and \(^{18}F\)-MK-6240 correlated strongly (Fig. 2) suggests that this effect does not represent a major confounder.

The off-target signal in bone observed with both tracers, most notably in female subjects with hyperostosis frontalis interna, does not appear to be completely explained by in vivo defluorination of these tracers, as we did not observe widespread bone uptake consistent with \(^{18}F\)-fluoride scans and the inspection of batch records from our \(^{18}F\)-MK-6240 radiosyntheses did not show evidence of significant residual \(^{18}F\)-fluoride in the injectate. Intracranial calcifications are a common and normal age-related radiographic finding, often described in the pineal gland, habenula, choroid plexus, basal ganglia, falx cerebri, dura mater, petroclinoid ligaments, superior sagittal sinus, and dentate nuclei of the cerebellum and the hippocampus (53). Interestingly, these regions overlap areas where off-target binding of these tau radiotracers is often observed, but inspection of low-dose CT scans showed no macroscopic calcifications in the choroid plexus of our study subjects.

Limitations of the present study include a small sample size and a limited range of pathology and degree of clinical impairment. Only 1 of 9 NC subjects was globally amyloid positive and the only MCI subject was amyloid negative. The 5 AD subjects showed mild to moderate cognitive impairment, and we observed relatively limited tau pathology in Braak stages V and VI across the sample. Given the small sample size of our pathologically heterogeneous cohort, in which patients with advanced tau pathology comprise over one third of the study cohort, it might not be possible to generalize our measures of interrater reliability to other subject cohorts. We would expect there to be considerably less agreement and lower reliability in studies of cohorts that comprised predominantly cognitively normal elderly individuals, in whom tau burden is less. Indeed, we observed some discordance between raters among nondemented subjects (Supplemental Fig. 4). In our study, \(^{18}F\)-MK-6240 injected doses were limited to 185 MBq to meet the organ dosimetry limits of the University of Pittsburgh’s Radioactive Drug Research Committee. Another limitation of the present study was the lack of measures of intrarater reliability, as the small size and high disease burden in our cohort would be expected to yield a high level of intrarater reliability that also could not be generalized to other cohorts.

CONCLUSION

The direct comparison of brain distribution, specific signal, and off-target binding of \(^{18}F\)-flortaucipir and \(^{18}F\)-MK-6240 in the same subjects suggests that these tau radiotracers indicate the same tau...
pathology and reflect Braak stages of NFT pathology. The off-target binding pattern was frequently observed in the choroid plexus and striatum for 18F-flortaucipar and in the meninges for 18F-MK-6240. Complete concordance in visual ratings of tau positivity suggests in our subject cohort, possibly because of its higher affinity to PHF-tau. This may be an important consideration in planning longitudinal studies in which detecting small changes in tau load indices over relatively short periods is of paramount importance.

DISCLOSURE

GE Healthcare holds a license agreement with the University of Pittsburgh based on some of the technology described in this article. William Klunk and Chester Mathis are coinventors of 13C-PiB and, as such, have a financial interest in this license agreement. Milos Ikonomovic received research funding from GE Healthcare. This work was supported by grants from the National Institute of Aging: AG025204 and AG005133. No other potential conflict of interest relevant to this article was reported.

ACKNOWLEDGMENTS

We thank the staff of the University of Pittsburgh PET Facility and the Alzheimer’s Disease Research Center for their assistance.

KEY POINTS

QUESTION: What are the cross-sectional differences in on- and off-target binding of the two most commonly used tau PET imaging agents?

PERTINENT FINDINGS: The head-to-head comparison of 18F-flortaucipar and 18F-MK-6240 showed very similar relative levels of radiotracer retention in most cortical regions in both tau-negative and tau-positive cases, suggesting that these agents have on-target binding similar to that of PHF tau, the prevalent form in AD. However, there were important differences in off-target binding characteristics in the choroid plexus, striatum, and meninges.

IMPLICATIONS FOR PATIENT CARE: These tau PET imaging agents provide similar estimations of the presence of PHF tau related to AD, but care must be taken to understand the influence of off-target binding in the interpretation of each specific tracer.

REFERENCES

18F-FLORTAUCIPAR AND 18F-MK-6240 PET • Gogola et al.