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This article explores basic statistical concepts of clinical trial design
and diagnostic testing, or how one starts with a question, formulates it
into a hypothesis on which a clinical trial is then built, and integrates it
with statistics and probability, such as determining the probability of
rejecting the null hypothesis when it is actually true (type | error) and
the probability of failing to reject the null hypothesis when it is false
(type Il error). There are a variety of tests for different types of data,
and the appropriate test must be chosen for which the sample data
meet the assumptions. Correcting type | error in the presence of multi-
ple testing is needed to control the error’s inflation. Within diagnostic
testing, identifying false-positive and false-negative results is critical to
understanding the performance of a test. These are used to determine
the sensitivity and specificity of a test along with the test’s negative
predictive value and positive predictive value. These quantities, specif-
ically sensitivity and specificity, are used to determine the accuracy of
a diagnostic test using receiver-operating-characteristic curves. These
concepts are briefly introduced to provide a basic understanding of
clinical trial design and analysis, with references to allow the reader to
explore various concepts at a more detailed level if desired.
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Clinical trials and statistics serve as the basis of scientific re-
search in biomedical sciences. It is important that the clinicians,
investigators, and scientists working with statisticians on clinical
trials understand the concepts. This paper focuses on basic statisti-
cal concepts—such as hypothesis testing, Cls, parametric versus
nonparametric tests, multiplicity, and diagnostic testing—that
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INTRODUCTION TO STATISTICAL CONCEPTS ~ *

form the building blocks of research. The NRG-HNOO6 trial in
head and neck cancer, conducted by NRG Oncology, a research
group funded by the National Cancer Institute, will serve as many
of the examples for the statistical concepts presented.

NRG-HNO006 TRIAL

There is a lack of consensus in the head and neck cancer com-
munity on how to treat patients with early-stage oral cancer (7,2).
NRG-HNO006 (NCT04333537) randomizes T1-2NOMO oral cavity
patients with negative '*F-FDG PET or PET/CT findings to elec-
tive neck dissection (END) or sentinel lymph node biopsy
(SLNB). The coprimary objectives assess noninferiority in dis-
ease-free survival and superiority in quality of life.

For the SLNB arm, the primary tumor is injected with a radiotrac-
er that travels to the cervical lymph nodes. The first echelon of no-
des that are localized by the radiotracer represent those most likely
to harbor metastatic disease. The SLN can then be biopsied when
the primary tumor is excised. Typically, the incision made in the
neck is smaller than normal, and rather than having to dissect the en-
tire lymph node basin, as with END, less surgical manipulation is
required to remove a small number of lymph nodes. Pathologic ex-
amination is then focused on nodes with the highest likelihood of
harboring disease, rather than on many nodes harvested from END.
An important research question is whether there is a significant
difference in the performance of radiotracers in terms of the false-
negative rate (FNR). The FNR, to be described later, corresponds to
a negative SLNB result in a patient who subsequently develops
metastatic lymph nodes without recurrence at the primary site (3).

HYPOTHESIS TESTING

Clinical trials are designed around a hypothesis that is used to
determine the trial’s primary objective. Trials are conducted within
a sample, a subset of the population of interest. Statistics are used
to summarize the sample and estimate an unknown population
parameter, a number summarizing the population (Table 1) (4).
Hypothesis tests are based on a null hypothesis, Hy, and an
alternative hypothesis, H,. The H,, which is the hypothesis being
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TABLE 2
Equations for Comparing the False Negative Rate (FNR) of Two Radiotracers

= = 2.26, where FNR

Parameter Equation
Test statistic z for P FNRrag — FNRrag 0.15-0.07
comparison of = — — — —
2 binomial FNRRag1 X (1—FNRRgag2) + FNRRag2 X (1—FNRRad2) \/0'151§40'85 + 007x 093
samples using NRad1 NRad2
normal is estimated from the sample to estimate population FNR and n is number of patients receiving each
approximation radiotracer
95% Cl for _ _ R 1_FNR FNR 1-FNR
difference of 2 (FNRpagt — FNRpagp) + 2|/ Pt TOCFNRmn) o Pt TOCFNRR2) — 0,08 + 0.069 — [1.1%,14.9%],
proportions | where z corresponds to quantile of standard normal distribution for chosen confidence level, 95%
using norma

approximation

tested, is a very specific statement about a parameter of the popu-
lation. The H, is a broader statement that pairs with the H, but is
mutually exclusive from it. The H, is sometimes referred to as the
research hypothesis because it states, in statistical terms using pa-
rameters, the primary hypothesis of the trial. For example, if the
FNRs were compared between 2 radiotracers (Radl and Rad2) in
NRG-HNO006, Hy and H, would be ...

H(): FNRRadl = FNRRadz VS. HAI FNRRadl # FNRRadz.

Hypothesis testing involving a symmetric H, such as the one
above would use a 2-sided test. For a 1-sided test:

Hy: FNRRradi = FNRRag2 vs. H4: FNRRgaq1 > FNRRaaz-

A trial with this H, hypothesizes that radiotracer 1 has a higher
FNR, and worse performance, than radiotracer 2 in the target pop-
ulation. Whether the test is 1- or 2-sided is dependent on the ques-
tion of interest, such as a primary or secondary objective, and is
determined a priori.

Hypothesis testing is usually performed using a test statistic,
which summarizes the sample information. Under a certain set of
assumptions, a test statistic follows an exact or approximate distri-
bution under H, that reflects the randomness associated with the
sample. The P value, the probability of obtaining a statistic at least
as extreme as the test statistic in the direction of H, if H, were
true, is used to interpret that test statistic (4). The smaller the P
value, the stronger the evidence against H,, leading one to reject
it. Typically, this result is stated as being statistically significant in
favor of H,. Conversely, large P values do not provide enough ev-
idence against H,, leading one to fail to reject it. Not being able to
reject H,y does not make it true but rather allows one to conclude
that there is not enough evidence to reject it.

Consider the 2-sided test statistic for comparing the FNR be-
tween 2 radiotracers for SLNB in NRG-HNO006. Previous studies
have suggested that the FNR of the SLNB procedure can be
around 5%—15% (5). The value of the test statistic z for comparing
the FNR between radiotracers 1 (15%) and 2 (7%) observed with
154 patients per group, assuming a normal approximation, is 2.26
(Table 2) (5). z is used to determine the P value by matching this
value to probabilities of the standard normal distribution. With a
2-sided test, the P value corresponding to a z of 2.26 is 0.0238.
The threshold, set a priori, to determine whether the P value is
small enough to reject H, or large enough to fail to reject Hy is
known as the significance level. If the significance level is 0.05,

INTRODUCTION TO STATISTICAL CONCEPTS ~ *

which is commonly used, then there is enough evidence to con-
clude that the FNR differs between the 2 radiotracers since a P
value of 0.0238 is less than 0.05 (i.e., Hy is rejected). Statistical
significance, however, does not provide evidence on the magni-
tude of the effect, making a statistically significant difference not
necessarily clinically meaningful. For example, in a large sample
size, a small effect can reach statistical significance because of the
small variation in the sample. Likewise, if the sample is too small,
large effects may fail to be deemed statistically significant because
of the large amount of chance variation (i.e., the analysis is
underpowered).

The significance level also represents the probability of type I
error, denoted as o. This error occurs when Hj is rejected but is
actually true (Table 3). Thus, there is the truth for the population
and a decision to be made using the sample, yielding 4 possible
scenarios. In addition to the type I error, the type II error is an in-
correct decision that occurs when Hj fails to be rejected but is ac-
tually false (i.e., H, holds); its probability is denoted as f3. The 2
correct decisions are rejecting H, when it is false and failing to re-
ject Hy when it is correct.

Statistical power is related to the type II error by being its com-
plement, 1 — B. Thus, the statistical power of a hypothesis test is
its ability to identify a specified effect size at o significance level
or, conversely, to reject Hy when H, is true—a correct decision
described above. Ideally, a trial should have enough power to cor-
rectly conclude H, when it is true. With continuous outcomes, 4
main components impact power: the specified effect size, the sig-
nificance level, the sample size n, and the population variance o”.
Specifically, power increases with larger effect sizes, higher values
of o, larger sample sizes, and less variability within the sample.

TABLE 3
Probabilities Associated with Hypothesis Testing
Truth
Result of He is true Hy is false
statistical test 0 (Ha holds)

Fail to reject Hy
Reject Hy

Correct decision Type Il error (B)

Type | error (o) Correct decision (1 — )

Ho = the null hypothesis; H, = the alternative hypothesis.
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Most clinical trials are designed with statistical power ranging
from 80% to 95%. Trials with power of less than 80% or an overly
optimistic hypothesized treatment effect size are usually consid-
ered underpowered (6).

CIs are used to determine the range of possible values of the
true parameter, determined from the sample data, based on a cer-
tain level of confidence. For instance, 95% Cls are commonly
used and indicate that with 95% confidence, the true value being
estimated is within the interval. The level of confidence is deter-
mined by 1 — o and, in general, is thus equivalent to the probabili-
ty of failing to reject Hy when H, is true. In many cases, since the
level of confidence is determined on the basis of the significance
level, o, interpretation of the CI will correspond to that of the sta-
tistical test. For instance, if the FNR estimate for radiotracers 1
and 2 based on 154 patients per group is 15% and 7%, respective-
ly, the 95% CI based on a normal approximation of the difference
in FNR between the 2 radiotracers is 1.1%—-14.9% (Table 2). The
CI for the difference in FNR between the radiotracers does not
contain 0, which would allow one to conclude that the radiotracers
perform differently in terms of FNR. This result corresponds to
the P value for the test in the prior example—a P value of 0.0238,
which is less than an o of 0.05—which produces a statistically sig-
nificant result.

PARAMETRIC VERSUS NONPARAMETRIC TESTS

When the assumption that the sample data follow a known
probability distribution is met, such as the normal distribution,
parametric tests can be used. The 7 test, which is used to test the
difference between 2 means, is a parametric test that assumes the
sample data come from a normally distributed population (7). In
large samples (e.g., >30) that do not meet the normality assump-
tion, methods based on the normal distribution can still be used af-
ter invoking the central limit theorem. Broadly speaking, the cen-
tral limit theorem states that regardless of the distribution of the
population, as the sample gets larger, the distribution of the sample
means approaches a normal distribution (8). This allows tests that
assume data are normally distributed to be used to compare means.
Versions of the 7 test can be used in 2 independent samples or in
paired samples (i.e., pretest and posttest samples). An ANOVA is
an extension of the ¢ test to more than 2 independent samples.

In small samples or those that draw from populations with
heavily skewed distributions, nonparametric tests can be used in-
stead. The distribution of the nonparametric test statistic can be de-
rived under H, without specifying the underlying distribution of
the population (8). The Wilcoxon-Mann—Whitney test is the non-
parametric version of the 2-independent-sample ¢ test, whereas the
Wilcoxon signed-rank test is the counterpart to the paired ¢ test
(Table 4) (9,10). The Kruskal-Wallis test can be used to test dif-
ferences between more than 2 independent groups. Nonparametric
tests are not testing means, as in a ¢ test, but rather assign ranks to
the data in order to test for differences in the groups’ probability
distributions; thus, nonparametric tests typically report medians.

The x* goodness-of-fit test was used when comparing FNR, a
proportion, between 2 independent groups. x* tests can be used for
a single proportion, such as comparing the FNR of a diagnostic
test with a fixed value, or for 2 independent groups, as previously
presented. The y” test is a nonparametric test (since it does not re-
quire that the sample data follow a distribution) that uses frequen-
cies from categoric or count data to describe how well these data
fit with H,. The expected value of 80% of the counts is required to

760

TABLE 4
Parametric vs. Nonparametric Tests

Comparison type Parametric Nonparametric
Comparison of 2 t test Wilcoxon-Mann—
independent Whitney test

groups with
continuous
outcomes
Comparison of ANOVA Kruskal-Wallis
more than 2 test
independent
groups with
continuous
outcomes
Comparison of 2 Paired t test Wilcoxon signed-
paired samples rank test
with continuous
outcomes
Single proportion Binomial X test
exact test

ANOVA = analysis of variance; y*> = Chi-square.

be at least 5 for the test to have a good approximation to the x*
distribution (/7). If this assumption is violated, other tests, such as
the Fisher exact test, can be considered. The exact binomial test, a
parametric test based on the binomial distribution, can be used for
binary data for a single proportion.

MULTIPLICITY

Recall that the type I error, a, is the probability of incorrectly
rejecting Hy. In a single study with an o of 0.05, a type I error is
expected to occur 5% of the time. Take the context of brain imag-
ing, with tests performed on each vertex of the image representa-
tion of the brain, as an example (/2,/3). Roughly 100,000 voxels
are obtained from a series of 3-dimensional brain volumes with
the same number of hypothesis tests to depict activated regions
(13). If o is 0.05, then 5,000 false-positive results would be ex-
pected. Control of the familywise error rate, the probability of at
least one type I error in the trial, is thus desired under the presence
of multiple testing (/4).

Multiple methods exist to control the type I error rate. The Bon-
ferroni adjustment may be the most commonly used but is also the
most conservative, which can be desirable if strict control of the
type I error is desired (/5). When there are coprimary endpoints in
a study, such as in NRG-HNO006, a Bonferroni adjustment would
require splitting the type I error. To maintain an overall o of 0.05,
each endpoint may use an o of 0.025. This increases the sample
size required.

A study can be designed to avoid the issue of multiplicity. Hier-
archic testing is a method to control the type I error rate without
affecting a clinical trial’s sample size (/6). In NRG-HNO006, the
coprimary endpoint of disease-free survival is assessed first, and if
noninferiority is shown, quality-of-life superiority is tested. This
allows both tests to use an o of 0.05 while maintaining an overall
o of 0.05.

Alternatively, control of the false-discovery rate, which is the
proportion of significant results that are actually false-positives,
can be used to correct for multiplicity (/7). False-discovery rate—
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based methods are often preferred at early stages of discovery
because of their higher power to detect true-positives while con-
trolling the proportion of type I errors. A less conservative ap-
proach than the Bonferroni adjustment that is commonly used in
function MRI analysis is the Hochberg step-down procedure,
which adjusts for multiplicity by controlling the false-discovery
rate (13,17,18). This procedure orders the P values beginning with
the least significant and compares each with an adjusted type I er-
ror, a’. Once the P value is less than a’, the comparisons stop and
that test and all following tests are deemed statistically significant.
Details on and comparisons of the corrections addressed here, as
well as additional ones, such as parametric tests, can be found
elsewhere (12-14,19).

DIAGNOSTIC TESTING

In biomedical studies, diagnostic tests or procedures are typical-
ly used to determine the presence or absence of a disease or health
condition. Diagnostic tests can be used for screening or surveil-
lance, treatment monitoring, or staging. Some examples of diag-
nostic imaging tests are radiography, PET, CT, PET/CT, MRI, and
ultrasound (20). Test-accuracy studies are usually designed to an-
swer diagnostic or prognostic questions. Diagnostic test-accuracy
studies use the test information to classify a patient into a current
health status, whereas prognostic test-accuracy studies refer to the
risk of a future health status. An example of a prognostic test-ac-
curacy study is given by the NRG-HNO002 substudy that estimated
the accuracy of 12- to 14-wk posttherapy '*F-FDG PET/CT results
to predict 2-y locoregional control (27). In general, a diagnostic
test under study is also known as the index test (22). The true dis-
ease state is determined using a gold standard or reference stan-
dard test. In test-accuracy studies with a diagnostic goal, index
tests are usually proposed because they are associated with lower
costs and faster results or are less invasive. For instance, serology
tests to detect the presence of antibodies in the blood when the
body is responding to severe acute respiratory syndrome coronavi-
rus 2 are considered index tests. These tests show whether a per-
son has been infected by coronavirus in the past. Antigen tests can
also be considered index tests, but they instead diagnose active co-
ronavirus infections. Because antigen tests have a higher chance of
missing an active infection, negative test results are usually con-
firmed with a molecular test. Because of their high diagnostic ac-
curacy, molecular tests such as the nucleic acid amplification test

TABLE 5
SLNB (Index Test) Result and Pathology/Neck Dissection
(Reference Standard) Result

Isolated cervical metastases
SLNB result based after SLNB (true disease state)

on sentinel lymph

nodes Negative Positive Total
Negative True-negative False-negative T
Positive False-positive True-positive T"
Total D~ D" n

T~ and T* = number of patients with negative and positive
SLNB results, respectively; D~ and D* = number of patients with-
out and with true nodal metastasis, respectively; n = total number
of patients in study.

INTRODUCTION TO STATISTICAL CONCEPTS ~ *

are considered the gold standard to determine whether a patient
has coronavirus disease 2019. Several antigen and antibody tests
have been proposed because of their lower costs and sometimes
faster results. In the NRG-HNO002 prognostic test-accuracy sub-
study, the '®F-FDG PET/CT at 12—14 wk after treatment is the in-
dex test, and the protocol-specified method to assess locoregional
failure at 2 y after randomization is the reference standard (27).

Continuing with the NRG-HNO006 example of radiotracers, the
SLNB with a given radiotracer is the index test, which was used to
determine lymph node metastasis. The SLNB result is a positive
or negative nodal metastasis according to the pathology findings
from the SLNB. The subsequent development of isolated cervical
metastasis assessed through standard imaging after the SLNB is
the reference standard. A patient is called a false-negative if there
is a lymph node metastases but the SLNB gives a negative result
(Table 5). Conversely, a patient is called a false-positive if there is
no lymph node metastases but the SLNB predicts a positive result.
The FNR, a measure to assess the performance of a diagnostic
test, determines the proportion of incorrect negative test results
among individuals with the disease. The sensitivity (1 — FNR, or
the true-positive rate) of the test indicates the probability of a posi-
tive result among those with the disease (Table 6) (23). Similarly,
the false-positive rate (FPR) determines the proportion of incorrect
positive test results among those without the disease. The specific-
ity of the test (1 — FPR, or the true-negative rate) indicates the
probability of a negative result among those individuals without
the disease. The ideal diagnostic test should have high specificity
and sensitivity (24). A trade-off between specificity and sensitivity
depends on whether the diagnostic test is used for screening, stag-
ing, or prognosis.

In SLNB, an objective can be to estimate the ability of the
SLNB to predict an NO neck result (i.e., no lymph node metasta-
sis) since these patients may avoid an unnecessary neck dissection.
That is, what is the probability of developing isolated cervical me-
tastasis after a negative SLNB (i.e., NO neck)? The negative pre-
dictive value (NPV) of a test indicates the probability of not hav-
ing the disease given a negative test result. Likewise, the positive
predictive value (PPV) represents the probability of having the dis-
ease given a positive test result. The complements of the NPV and
PPV are called the false-omission rate and false-discovery rate, re-
spectively. Although the sensitivity and specificity are quantities
inherent in the performance of the diagnostic test, the NPV and
PPV depend not only on the test’s performance but also on the
prevalence of the disease or health condition (Fig. 1).

In the Sentinel European Node Trial, patients with a negative
SLNB who subsequently developed cervical metastasis and had a
negative primary tumor site were classified as false-negatives (25).
It is typical in SLNB studies that the number of false-positives is
deliberately kept to zero since a positive SLNB result is deemed
sufficient to declare the presence of cervical nodal metastases
(Table 7) (26). That is, the specificity and PPV of the SLNB are
both 100% (FPR is 0%). Occult lymph node metastases not de-
tected by the SLNB (false-negatives) are of concern to clinicians
since these patients may receive alternative therapies, such as
close observation for low-risk patients (2). Patients with occult
nodal metastasis may be at risk of distant metastatic disease given
that the cancer has spread to the lymph node basins. However, if
the SLNB predicts NO necks with high probability, these patients
may avoid unnecessary therapy and its implications relative to
morbidity, decreased quality of life, and cost. False-negatives in
SLNB can occur if the lymphatic pathway to the involved node is
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TABLE 6

Diagnostic Testing Terms

Term

Definition

Example

FPR
Specificity (1 — FPR)
FNR

Sensitivity (1 — FNR)

Proportion of incorrect positive results
among those without disease

Probability of negative results among those
without disease (true-negative rate)

Proportion of incorrect negative results
among those with disease

Probability of positive results among those
with disease (true-positive rate)

NPV Probability of not having disease given that
test result was negative

PPV Probability of having disease given that test
result was positive

ROC curve Plot of diagnostic tests’ 1 — specificity by
sensitivity for different thresholds

AUC Measure of how well classifier can

differentiate between 2 diagnostic groups

FPR of SLNB in T1-2 oral squamous cell
carcinomas was 29.3% (26)

Specificity of SLNB in T1-2 oral squamous cell
carcinomas was 70.7% (26)

FNR of SLNB in T1-2 oral squamous cell
carcinomas was 9.8% (26)

Sensitivity of SLNB in T1-2 oral squamous cell
carcinomas was 90.2% (26)

NPV in NRG-HNOO2 for 2-y locoregional control of
head and neck was 94.5% (24)

For skull base lesions, PPV was 80%, 60%, and
68.4% and NPV 100%, 83.3%, and 75% for

radiologist’s interpretation, SUV cutoff of 2.5,
and SUV cutoff of 3.0, respectively (27)

Hyun et al. (32)

AUC of 0.71 when predicting 1-y overall survival
from changes in '®F-FDG uptake after therapy

for Ewing sarcoma family of tumors (32)

8F_FDG PET/CT = '8F-fluorodeoxyglucose PET/CT; SUV = standardized uptake value.

blocked, if the pathologist fails to detect micrometastasis or isolat-
ed tumor cells inside a lymph node, or if the surgeon misses a
positive sentinel lymph node because of poor training or the com-
plexity of the surgical region (26). An estimate of the FNR for
SLNB in oral cancer is 15 of 109 cases, or 0.138 (13.8%) (Table 7).
Assuming normality, a 95% CI for the FNR is 0.073-0.203 which
indicates that the true FNR is between 7.3% and 20.3% with 95%
confidence. This FNR estimate for the SLNB is of concern to some
clinicians since roughly 1 or 2 of 10 patients could be incorrectly di-
agnosed. The NPV for the SLNB to detect NO neck patients is given
by 306 of 321 cases, or 0.95. Similarly, the sensitivity and specific-
ity of the SLNB are 0.86 (94/109) and 1.00 (306/306), respectively.

‘Sensitivity = P(T+|D¥) = 0.50 1[ ‘Sensitivity = P(T+|D+) = 090

050

Specificity = P(T-|D-)

000 025 050 075 025 050 075 100

0 000
1-Prevalence = P(D-)

FIGURE 1. Relationship between NPV, specificity, and disease preva-
lence when sensitivity of diagnostic test is 50% and 90%. D~ and D" =
number of patients without and with true nodal metastasis, respectively; P
= prevalence; T~ and T* = number of patients with negative and positive
SLNB results, respectively.

For a given patient, the probability of having lymph node metastasis
after a negative SLNB result increases to 0.95 from 0.74, the latter
being the probability of no nodal metastasis before the SLNB. It is
important to interpret the NPV (and PPV) after considering disease
prevalence. For a given sensitivity and specificity rate, the NPV
increases as the prevalence of the disease decreases (Fig. 1). Publi-
cations by Civantos et al. and Hines et al. provide additional exam-
ples of these terms (26,27).

An example of a prognostic test-accuracy study is a potential
NRG-HNO006 substudy assessing the predictive accuracy (NPV) of
"8E_.FDG PET/CT when combined with END or SLNB to predict
1-y locoregional control. Patients with negative results on 'SF-
FDG PET/CT and on END or SLNB (index test) would have
locoregional control assessed at 1 y using standard imaging and a
biopsy confirmation (reference test) per protocol-specified techni-
ques. Only the row with the negative index test results from Table 5

TABLE 7
Results of SLNB in Sentinel European Node Trial (3)

Isolated cervical
metastases after
SLNB (reference

standard)
SLNB result (index test) Negative Positive Total
Negative 306 15 321
Positive 0 94 94
Total 306 109 415

SLNB = sentinel lymph node biopsy.
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Sensitivity = P(T+[D+) = True Positive Rate (TPR)

0 025 050 075 1.00
1 - specificity = P(T+|D-) = False Positive Rate (FPR)

FIGURE 2. ROC curve. Each point along curve represents set of coordi-
nates (1 — specificity, sensitivity) for classifier defined by threshold. Diago-
nal line represents random classifier. D~ and D* = number of patients
without and with true nodal metastasis, respectively; T~ and T = number
of patients with negative and positive SLNB results, respectively.

is included in the study by design. Given the negative index results,
the locoregional control rates at 1 y can be compared using a x° test.

When designing a test-accuracy study, it is crucial to carefully
examine the objectives and, therefore, the design type, as it dic-
tates what accuracy measures can be properly estimated from the
data. For instance, NPV and PPV cannot be estimated from a
case-control design given that the proportion of patients with the
disease based on the reference standard is manipulated by
researchers, for example, by setting a 1:1 case-control matching
(28). One of the NRG-HNO006 eligibility criteria is an '*F-FDG
PET/CT-negative result for lymph node metastasis. Thus, a rea-
sonable inference target would be to estimate the NPV of 'SF-
FDG PET/CT in this population within only the END arm since
the number of patients with a negative index test is fixed by re-
searchers through the trial design. In this case, the true metastatic
nodal status is determined by the pathologic findings after
the END.

RECEIVER-OPERATING-CHARACTERISTIC (ROC) ANALYSIS

In many applications, investigators use continuous or ordinal bi-
omarkers or build predictive models based on a continuous or or-
dinal scale using a combination of variables such as biomarkers,
gene expression, and patient characteristics, among others (29). A
single biomarker or predictive model can be regarded as a classifi-
er for purposes of diagnostic testing. These classifiers can, howev-
er, be converted into a binary classifier after selection of a given
threshold on a suitable scale. For instance, logistic regression mod-
els are usually used to construct classifiers based on a set of pre-
dictors (30). Often, thresholds are selected on a probability scale.
For instance, if a patient has a predictive probability of more than
0.5 based on the logistic model, then that patient will be consid-
ered a positive result for diagnostic purposes. This binary classifier
based on a threshold can then be framed within the binary diag-
nostic testing discussion presented in Table 5. The selection of a
threshold should follow some type of optimality criterion to obtain
a classifier (diagnostic test) with at least acceptable accuracy. The
discriminative power or diagnostic performance of a classifier is
usually summarized and measured using the area under the ROC
curve (AUC) (31). The ROC curve plots the FPR (1 — specificity)

INTRODUCTION TO STATISTICAL CONCEPTS ~ *

by sensitivity for different thresholds (Fig. 2). A classifier that per-
fectly predicts the disease status among those with and without the
disease has an AUC of 1. Randomly predicting the disease status
leads to a classifier with an AUC of 0.5. The AUC can also be in-
terpreted using probabilities. Assume a rater is asked to score 2 in-
dividuals, one with the disease and the other without. The AUC
can be seen as the probability that the rater will give a higher score
to the individual with the disease than to the patient without the
disease. An alternative interpretation of the AUC is that it is the
average sensitivity across all possible FPRs. A publication by
Hyun et al. provides an example using AUC (32).

The goal in an ROC analysis is, therefore, to select an optimum
threshold that produces a classifier closer to the upper left corner
of the graph. For a random classifier (i.e., classification of an indi-
vidual within each disease status is done randomly with equal
probability, using, for instance, a fair coin), the NPV is 1 — dis-
ease prevalence. This result tells us that the classifier does not im-
prove the predictive ability of nondisease.

The AUC is a statistic allowing typical inferential procedures to
be applied. Namely, it is possible to perform hypothesis testing
and CI estimation for the AUC. Likewise, it is possible to compare
the AUC for 2 or more groups.

CONCLUSION

Clinical trials, the gold standard in research, are based on vari-
ous statistical concepts and assumptions. The probability of type I
and type Il errors is specified in advance and impact the rigor of
the study’s conclusions. The number of hypothesis tests being con-
ducted can inflate the type I error, resulting in the need to control
the familywise error rate. When performing diagnostic testing, one
must be aware of various performance measures such as sensitivity
and specificity, which are used to create an ROC curve that depicts
the discriminative power of a diagnostic test or classifier. Having a
basic understanding of these concepts can aid an interested investi-
gator in conducting research and in understanding how the results
inform the conclusion of research publications.
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