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Discovery of biomarkers has been steadily increasing over the past

decade. Although a plethora of biomarkers has been reported in the
biomedical literature, few have been sufficiently validated for

broader clinical applications. One particular challenge that may

have hindered the adoption of biomarkers into practice is the lack of

reproducible biomarker cut points. In this article, we attempt to
identify some common statistical issues related to biomarker cut

point identification and provide guidance on proper evaluation,

interpretation, and validation of such cut points. First, we illustrate
how discretization of a continuous biomarker using sample percen-

tiles results in significant information loss and should be avoided.

Second, we review the popular “minimal-P-value” approach for cut

point identification and show that this method results in highly un-
stable P values and unduly increases the chance of significant find-

ings when the biomarker is not associated with outcome. Third, we

critically review a common analysis strategy by which the selected

biomarker cut point is used to categorize patients into different risk
categories and then the difference in survival curves among these

risk groups in the same dataset is claimed as the evidence support-

ing the biomarker’s prognostic strength. We show that this method

yields an exaggerated P value and overestimates the prognostic
impact of the biomarker. We illustrate that the degree of the opti-

mistic bias increases with the number of variables being considered

in a risk model. Finally, we discuss methods to appropriately ascer-
tain the additional prognostic contribution of the new biomarker in

disease settings where standard prognostic factors already exist.

Throughout the article, we use real examples in oncology to high-

light relevant methodologic issues, and when appropriate, we use
simulations to illustrate more abstract statistical concepts.
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Recent advances in biotechnologies have made it possible to
perform extensive biologic characterizations of human diseases.

These efforts have resulted in the discovery of a myriad of biomarkers

and generated much excitement for their potential to guide patient care.

Possible uses of biomarkers in research and clinical settings include

individual risk stratification, disease monitoring, and guiding the use of

specific treatment regimens. Despite the large volume of published

articles in biomedical journals on newly identified biomarkers, very

few of these have progressed to the point of being clinically actionable.

Many biomarkers may appear promising in the initial research reports

but fail to retain their utility in subsequent studies. One particular

challenge that may have hindered the adoption of biomarkers into

practice is the lack of reproducible biomarker cut points. To aid clinical

decision making, medical practitioners are accustomed to discretizing a

biomarker measured on a quantitative scale into different risk cate-

gories based on some partition of the scale, commonly called cut

points. This practice is natural, as it is desirable to define patient groups

sharing a similar expected prognosis (say, for treatment or surveillance),

and an overly precise scale is not useful in this regard. However, re-

search reports frequently lack sufficient details on how such cut points

are identified. Moreover, naı̈ve use of statistical methodology for cut

point identification, invalid methods for analysis, and overconfidence in

the reliability of cut point–defined risk groups have hampered the

ability to compare results across different studies or to generalize the

results to the larger disease population of interest in an unbiased fash-

ion. Even in the same or a similar disease setting, the biomarker cut

points reported are often inconsistent and irreproducible.
Our goal in this article is to highlight some common statistical

issues that arise from biomarker cut point identification and to
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provide guidance on proper evaluation, interpretation, and valida-
tion of such cut points. First, we illustrate how discretization of a
continuous biomarker using sample percentiles (e.g., sample
median) results in significant information loss and should be
avoided. Second, we review a popular method for cut point
identification that entails testing a range of cut points and
selecting the cut point that yields the smallest P value (i.e., the
‘‘minimal-P-value’’ approach). We show that this approach re-
sults in highly unstable P values and is associated with a se-
verely inflated false-discovery rate (i.e., it unduly increases the
chance of significant findings when the biomarker is not asso-
ciated with the outcome) and estimates of the biomarker effect
that are biased (suggesting a larger effect than is actually pre-
sent). Some methods for correcting the P value and biomarker
effect are referenced. Third, we critically review a common
analysis strategy by which the selected biomarker cut point is
used to categorize patients into different risk categories and
then the difference in survival curves among these risk groups
in the same dataset is claimed as the evidence supporting the
biomarker’s prognostic strength. We show that this method
yields exaggerated P values and overestimates the prognostic
impact of the biomarker. We illustrate in a simulation study that
the degree of the optimistic bias increases with the number of
variables being considered in a risk model. We expand from
that point to special considerations for biomarker cut points in
disease settings where standard prognostic factors already ex-
ist. We discuss methods to appropriately ascertain whether
there is any additional prognostic contribution from the new
biomarker and the relevance of cut point determination in such
a context.
Throughout the article, we use real examples in oncology to

highlight relevant methodologic issues, and when appropriate, we
use simulations to illustrate more abstract statistical concepts.
Although the examples here pertain primarily to molecular bio-
markers, these principles generally apply to other types of bio-
markers (e.g., imaging biomarkers and blood biomarkers) so long
as they are measured on a continuous scale. Similarly, these
statistical principles can readily be adapted to other noncancer
disciplines in biomedical research.

STATISTICAL PITFALLS IN BIOMARKER CUT POINT SEARCH

AND ANALYSIS

Loss of Information Due to Discretization

A popular strategy for handling continuous biomarkers is to
convert them into discrete variables by grouping patients into

distinct risk subgroups (e.g., groups based on sample percentiles of

the biomarker values). This type of categorization avoids the need to

make strong assumptions about the functional relationship between the

biomarker and the outcome. In reality, however, the true relation

between a continuous biomarker and outcome is almost always smooth.

Such relations are seldom characterized by an abrupt jump at a given

biomarker value. Figure 1 illustrates 2 true relationships between a

biomarker and some continuous outcome of interest (e.g., patient sur-

vival)—one linear (the risk of death increases linearly with the bio-

marker value) and the other quadratic (the risk of death decreases up

to a certain point but then increases linearly). Dichotomy of biomarkers

into 2 patient groups assumes that a discontinuity in the risk occurs at

some biomarker value and that the relationship between the biomarker

and the outcome is flat for patients whose biomarker values are within

the same intervals, as defined by the point of dichotomy. Such di-

chotomy presumes that there is a notable change in prognosis at the

cut point in that patients whose biomarker values are below the cut

point are conferred the same risk, which is lower than the risk con-

ferred to patients whose biomarker values exceed the cut point. This

risk stratification based on dichotomizing the biomarker clearly does

not adequately reflect the true linear relationship between the bio-

marker and the outcome. In addition, categorizing a continuous bio-

marker causes considerable loss of valuable information, which may

in turn increase the chance of missing a real association. For exam-

ple, a patient whose true risk is highest in a high-risk subgroup is

assumed to have the same prognosis as a patient whose true risk is

lowest in the same risk category.
Consider the following example. In early-stage triple-negative breast

cancer, an elevated neutrophil-to-lymphocyte ratio (NLR, a
peripheral indicator of systematic inflammation) has been shown
to be associated with poor outcomes in small retrospective patient
cohorts (1–3). In a recent report, 605 patients were identified who
underwent breast surgery for stage I–III breast cancer between
1985 and 2012 at the Mayo Clinic and met the criteria for the

triple-negative breast cancer phenotype
(4). Clinicopathologic factors and bio-
markers (including NLR) were collected
to assess their impact on clinical out-
comes. In that study, the median NLR
was 2.52. A common strategy for han-
dling continuous biomarkers such as
NLR is to dichotomize the biomarker
at its sample median since this guaran-
tees an equal sample size between the
low- and high-risk groups. Figure 2A
displays the relationship between NLR
and patient survival using a restricted
spline (5). Clearly, there is a nonlinear
relationship between NLR and risk of
death. If we apply a quadratic transfor-
mation to NLR (by including a continu-
ous NLR term and its squared term in the
regression model), there is a highly sig-
nificant statistical association between
NLR and risk of death (likelihood ratio

FIGURE 1. Hypothetical relationship between biomarker M and clinical outcome. (A) Green line

depicts linear relationship between biomarker and outcome. Risk of outcome increases linearly with

increasing biomarker values. Dashed lines illustrate effect of dichotomizing biomarker, assuming that

discontinuity in risk occurs at cut point c (patients whose biomarker values are below cut point are

conferred the same risk, which is lower by magnitude D than that conferred to patients whose biomarker

values exceed cut point). c* represents the biomarker value of a patient whose true risk is highest in the

high-risk subgroup. (B) Quadratic relationship between biomarker and outcome. Risk of outcome de-

creases with biomarker up to point m and increases linearly after m.
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test, 37.91; P, 0.0001). However, this association dissipates if NLR
is dichotomized at its sample median (Fig. 2B; hazard ratio [HR], 1.16
[95% CI, 0.89–1.52]; log-rank P5 0.27). This example illustrates that
arbitrary dichotomization of a continuous biomarker can distort its true
relationship with outcome, resulting in significant information loss. The
HR estimate of 1.16 suggests that an NLR above the sample median—
that is, a high NLR—confers a 16% increase in the hazard of death,
compared with a low NLR. In contrast, if NLR is modeled as a
continuous variable in the Cox regression model, the resultant HR is
1.23, suggesting that a 1-unit increase in NLR is associated with a 23%
increase in the hazard of death. When interpreting the prognostic effect
of a continuous biomarker, it is important to pay attention to its range
(in the Mayo triple-negative breast cancer dataset, NLR ranged from
0.14 to 10.50) since the magnitude of a 1-unit increase is relevant to
the underlying scale of the biomarker.
Because of the haphazard discretization of continuous bio-

markers, the literature is plagued with biomarker cut points that
are rarely reproducible, making comparison of biomarker effects
across different studies impossible. For example, S-phase fraction,
the percentage of tumor cells in the S phase obtained by cell cycle
analysis, was of considerable scientific interest as a potential
prognostic biomarker in breast cancer, but a review by Altman et
al. found that a wide range of S-phase fraction cut points—from
2.6 to 15.0—has been reported as optimal in the literature, ren-
dering the effect of S-phase fraction inconsistent among studies
(6). Another example is the nuclear proliferation biomarker Ki-67.
Ki-67 is of interest for various applications in research and clinical
management of breast cancer. For instance, clinical decision mak-
ing regarding treatment options for breast cancer often relies on
the application of a Ki-67 cut point to classify patients into high-
risk or low-risk groups. However, in a metaanalysis of 85 studies
that included 32,825 patients with early breast cancer, Stuart-
Harris et al. reported that Ki-67 cut points ranging from 0% to
28.6% have been investigated (7). This lack of consensus regarding
the optimal cut point for Ki-67 in various settings has hindered its
ability to facilitate clinical decision making or direct comparisons
of Ki-67 results across laboratories and clinical trials (8).
In general, when the goal is to explore whether a biomarker is

singly prognostic, it would be preferable not to categorize the

biomarker at all. A preferred approach to
characterizing the relationship between a
continuous biomarker and time-to-event
outcome is by modeling the biomarker as
a continuous variable in a univariate Cox
regression model without introducing any
cut point. This method has the considerable
advantage of retaining valuable information
in the data and will improve the ability to
directly compare results from different stud-
ies. When linearity assumption (i.e., the risk
increases or decreases linearly as the bio-
marker increases) is called into question,
modern statistical techniques such as regres-
sion splines or fractional polynomial models
can be used to effectively model nonlinear
relationships between values of the bio-
marker and risk (5,9). The relationship be-
tween biomarker values and risk is

represented by the fitted regression function
and its associated confidence bands. Cut points for the biomarker,

if desired, can then be based on the nature of the relationship.

Cut Point Search via the Minimal-P-Value Approach

Another common approach for identifying biomarker cut point
is to examine a range of biomarker values and select the cut point
that yields the smallest P value. Altman et al. referred to this
method as the minimal-P-value approach (6). Several authors have
demonstrated that this naı̈ve approach is associated with a consid-
erable inflation of the type I error due to the well-known problem
of multiple testing (6,9,10). Using the NLR example above, Figure
3A displays the log-rank P values (testing the association between
dichotomized NLR and recurrence-free survival) based on a range
of NLR cut points. We excluded the top and bottom 20% of NLR
and used 200 cut points. The NLR cut point associated with the
smallest P value is 3.95. It can be seen that the P values are highly
unstable (range, 0–0.53) and that a minor change in the NRL cut
point can lead to drastically different P values. As such, if P value
were to be reported, some statistical adjustment for multiplicity is
necessary. Altman described a formula to compute a corrected P
value (6). When we apply this adjustment to the NLR example,

FIGURE 2. Dichotomy of continuous biomarker (NLR example). (A) Nonlinear relationship be-

tween NLR and patient survival in Mayo Clinic triple-negative breast cancer dataset using re-

stricted spline method. (B) Effect of dichotomizing NLR at its sample median. Association

between NLR and survival is no longer significant (log-rank P 5 0.27). AIC 5 Akaike’s information

criterion; L.R. 5 likelihood ratio.

FIGURE 3. Minimal-P-value approach (NLR example). (A) Highly un-

stable P values of log-rank test as function of cut point used for NLR in

Mayo Clinic triple-negative breast cancer dataset. Top and bottom 20%

of NLR values were excluded, and 200 cut points were used. (B) Strong

inverse correlation between estimated HRs and log-rank P values for

NLR in Mayo Clinic triple-negative breast cancer dataset. Smallest P

value corresponds to most extreme HR estimate.
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the resulting P value is 4.7 · 1025, substantially larger than the
uncorrected P value, 0.14 · 1026.
We conducted simulation studies to investigate the severity of

type I error inflation and how the type I error rate changes as a
function of the number of cut points and sample size. Specifically,
we simulated a continuous biomarker that follows a uniform
distribution between 0 and 1 (the biomarker takes any value
between 0 and 1 with equal probabilities) and a survival outcome
that follows an exponential distribution with rate 0.0289 (translating
to median survival of 24 mo) with no censoring. This data-
generating mechanism ensures that the continuous biomarker and
the survival outcome have no association. In each simulated dataset,
we excluded 10% of the smallest and largest biomarker values as
potential cut points, applied a fixed number of biomarker cut points,
computed the 2-sided P value from the log-rank test associated with
each cut point, and identified the cutoff that yields the minimal P
value. We considered a variety of scenarios, varying the sample size
(100, 300, 500) and number of biomarker cut points (50, 150, 300).
For each sample size, 5,000 datasets were simulated as described
above, and the type I error (the percentage of simulations for which
the minimal P value is less than a nominal level of 5%) was
recorded. The results of these simulations are shown in Figure 4.
For a fixed number of cut points, the type I error hardly changed
with the sample size. However, for a fixed sample size, the type I
error increased with an increasing number of biomarker cut points.
For example, for a sample size of 300, the type I error increased
from 37.3% with 50 cut points to 43.3% with 300 cut points. No-
tably, in all scenarios considered, the type I errors exceeded 37%.
These simulations confirmed that when a series of significance tests

is performed on the same dataset, each with a prespecified nominal
type I error rate of, for example 5%, the minimal-P-value approach
leads to a global false-discovery rate that may be much higher than
5%. In particular, this approach may yield a ‘‘statistically sig-
nificant’’ result (P , 0.05) with a probability greater than 37%
for a biomarker that has no association with outcome at all
when the number of attempted cut points exceeds 50.
Another problem with the minimal-P-value approach concerns

estimation of the biomarker effect. Specifically, this approach
gives an exaggerated sense of association between the biomarker
and the outcome because when there is an association between the
continuous biomarker and outcome, the P values derived from the
significance tests (e.g., log-rank) are associated with the effect
estimates (e.g., HR). As such, the smallest P value would corre-
spond to the most extreme HR estimate (e.g., positive association
for HR , 1; negative association for HR . 1). Figure 3B illus-
trates the association between HR estimates and P values using the
NLR example. The minimal P value corresponds to an HR esti-
mate of 0.45 (i.e., NLRs above the cut point of 3.95 confer a 55%
reduction in the hazard of death compared with NLRs below
3.95); this effect is overestimated. Several authors have proposed
strategies to correct for overestimation of the effect of a biomarker
using the same dataset (11,12). The best and clearly unbiased
approach to estimating the biomarker effect is to apply the cut
point identified from the current study to other independent data-
sets. This approach guarantees that no optimistic bias is intro-
duced to the effect estimation by the data-derived cut point.

Comparison of Clinical Outcomes Using Data-Driven

Cut Point

Other methods exist for identifying cut points of continuous
biomarkers. In the radiology literature, for example, a common
measure of discrimination for binary outcomes (e.g., alive vs.
dead, cancer vs. noncancer) is the receiver-operating-characteristic
(ROC) curve. Discrimination quantifies how well a biomarker
differentiates subjects at higher risk of having an event from those
at lower risk. More specifically, a biomarker with good discrimination
would predict a higher probability of having an event among subjects
who will develop the event. The ROC curve consists of plotting the
pairs of sensitivity and (1 2 specificity) (13), with a natural tradeoff
between these 2 quantities. The area under the ROC curve (AUC) is a
measure of discrimination, with values close to 0.5 indicating dis-
crimination no better than chance alone (i.e., having equal probability
of classifying to an event category those subjects with events vs. those
without). AUCs close to 0 or 1 indicate that the biomarker almost
always correctly predict the subject’s event status. Many methods
are available for identifying a biomarker cut point that optimizes
its discriminant performance. The index proposed by Youden
(14), defined as ([sensitivity 1 specificity] – 1), is an example.
This index, ranging from 0 to 1, gives equal weight to false-
positive and false-negative values. Graphically, the Youden index
represents the height above the 45� chance line (representing an
AUC of 0.5). The biomarker value associated with the largest
Youden index may be chosen as the optimal cut point. Other meth-
ods exist for identifying cut points from the ROC (15).
In some disease settings, a multitude of biomarkers or clinico-

pathologic variables may be of prognostic potential. It is some-
times useful to combine these prognostic factors via statistical
modeling strategy (e.g., logistic regression model for binary
endpoints, Cox proportional-hazards model for time-to-event
endpoints) to form a risk system (also sometimes referred to as

FIGURE 4. Type I error inflation as function of number of cut points

and sample size using minimal-P-value approach. In each simulation,

10% of smallest and largest biomarker values were not considered as

potential cut points. Two-sided P value from log-rank test was com-

puted for each cut point applied. Each plotted point represents percent-

age of 5,000 simulations for which minimal P value is less than nominal

5% level based on assumption that there is no association between bio-

marker and time-to-event outcome (i.e., type I error). No censoring in out-

come was assumed.
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a prognostic signature). For individual patients, the composite risk
score (or prognostic index) can be computed by adding up the
weighted factors (with the weights being the estimated regression
coefficients). The prognostic indices then represent a new variable
combining the information from all prognostic factors that can be
used for prognostication. For example, Haybittle et al. developed a
prognostic index, the Nottingham Prognostic Index, from a Cox
proportional-hazards model for patients with primary operable
breast cancer. The prognostic index for each patient was expressed
as a linear function, [0.17 · (tumor size in cm)] 1 [0.76 · (lymph
node stage)] 1 [0.81 · (tumor grade)], where tumor grade 5 1 or 2
or 3 and lymph-node stage5 1 or 2 or 3 (the lymph node stages are
defined by Haybittle et al. in their publication (16)). The larger the
value of the Nottingham Prognostic Index, the worse the patient
prognosis. Three risk groups were then defined on the basis of the
range of the Nottingham Prognostic Index. The choice of a cut point
for the continuous prognostic index can be based on the ROC
methodology as described above for a single continuous biomarker.
In practice, it is not uncommon for investigators to use the

selected cut point of the model score to categorize patients and
then compare the nonparametric survival curves of the 2 risk groups
via the log-rank test using the same dataset. This approach tends to
exaggerate the P value and overestimates the effect of the model.
Optimizing a biomarker or risk model based on outcome and then
claiming good discriminatory value based on the survival curves on
that same dataset is a prevalent problem in the medical literature.
Subramanian and Simon used the term resubstitution statistics to
refer to a risk-model performance evaluation (e.g., discrimination)
that is done using the same data utilized for some form of optimi-
zation (e.g., cut point selection or model development) (17). The
separation between Kaplan–Meier curves for low- and high-risk
patients as defined by the cut point derived from the same dataset
is an example of resubstitution statistics. Subramanian and Simon
maintain the importance of separating the data used for any aspect
of optimization from the data used for performance assessment.
Some complex statistical approaches (such as bootstrap, jackknife,
and permutation tests) may be useful in providing a more unbiased
assessment of the true utility of the dichotomized biomarker. These
methods belong to a class of resampling methods (18). One simple
form of resampling method is the sample split. With sample split,
one portion of the dataset is used for cut point optimization or
model development and the remaining (independent) data are used
to evaluate the discriminatory power of the biomarker or model
developed with the first portion (19). However, resampling methods
represent interval validation and do not reflect many sources of
variabilities present in broader practice settings. Therefore, large
independent studies will still be required to confirm the results.
Consider the studies by Lin et al. (20) and Casasnovas et al.

(21), both aiming to assess the prognostic value of early 18F-FDG
PET using SUVs in patients with diffuse large B-cell lymphoma.
A clinical endpoint of interest was event-free survival, defined by
Lin et al. as months from study enrollment until first evidence of
progression, relapse, or death due to any cause. To apply standard
ROC methodology, the investigators first replaced the continuous
event-free survival variable with a binary one (i.e., event vs. no
event). The approach of using a binary outcome status (e.g., vital
status 5 dead or alive) in place of a continuous outcome variable
such as event-free survival has the drawback of information loss,
because it ignores the varying length of follow-up among patients.
For example, a patient who has survived for 5 y would have the
same binary outcome status as another patient who has survived

for 1 y (i.e., for both patients, the vital status would be ‘‘alive’’).
Statistical methods exist that extend the standard ROC methodol-
ogy to accommodate time-to-event outcomes such as event-free
survival (22). The investigators then applied the ROC methodol-
ogy to identify an optimal cut point for SUV (65.7% for Lin et al.
and 66% for Casasnovas et al.). Study subjects were then catego-
rized into 2 risk groups based on the selected cut point, and the
significant P values from log-rank testing (P 5 0.028 for Lin et al.
and P , 0.0001 for Casasnovas et al.) and notable separation in
the Kaplan–Meier survival curves (Fig. 2B) in both studies were
cited as strong evidence supporting the prognostic value of SUV.
Again, because the cut point was preselected to distinguish out-
come by some measure, the resultant estimated biomarker effect
and P value obtained from the same dataset are optimistically
biased and should not be interpreted as a confirmation of the
prognostic utility of SUV.
The magnitude of resubstitution bias is further exacerbated as

the number of covariates in the risk model increases. This problem
is known as overfitting, in that a complex statistical model
containing a sufficiently large number of variables having no true
association with clinical outcome can spuriously provide an
excellent fit to a small dataset. We performed a simulation to
illustrate this bias in estimated discrimination. We simulated a
sample dataset with 200 patients and a population dataset with
10,000 patients. The latter represents the target population at
large, and hence, the performance of the model evaluated in the

FIGURE 5. Effect of number of covariates (k) in risk model on resub-

stitution bias in AUC. Population box plot represents true AUC distribu-

tion in interested population at large. Sample box plot represents

distribution of AUC derived from sample dataset used to construct risk

model. Each box plot was based on 1,000 simulations. When k 5 5,

there is slight upward (optimistic) bias in sample AUC distribution com-

pared with true population. Degree of optimistic bias increases drasti-

cally when k increases to 50.

EVALUATION OF BIOMARKER CUT POINTS • Polley and Dignam 609



population is regarded as the true value. In each simulated dataset,
we randomly generated a set of k continuous variables, denoted as
X5 (X1, X2,. . ., Xk), each following a standard normal distribution
(with mean 0 and SD 1). We assumed that two of the k variables
are associated with the binary endpoint Y. Specifically, the corre-
lation between (X1, X2,. . ., Xk) and Y is induced by a multivariable
logistic regression with intercept 0 and regression coefficients B5
(b1 5 1.2, b2 5 1.2, b3 5 0,. . ., bk 5 0). Correspondingly, the
association between (X1, X2) and Y is characterized by an odds
ratio of exp(1.2) 5 3.32 whereas the remaining (k-2) variables,
(X3, X4, ..., Xk), have no association with the outcome (i.e., odds
ratio 5 1). We considered 2 scenarios: k 5 5 (small number of
biomarkers) and k 5 50 (large number of biomarkers). For each k,
we generated 1,000 datasets as described above and compared the
distributions of AUC between the sample datasets and the popu-
lation datasets. To arrive at the AUC estimate in a sample dataset,
we fit a multivariable regression model of X on Y and obtained k
regression coefficient estimates. The prognostic scores for individ-
ual patients were calculated as the linear combination of the var-
iables weighted by the regression coefficients. The AUC was then
estimated from the ROC for the new continuous score variable.
The regression model was constructed using only the sample

dataset; the resultant regression coefficients were then fixed and
applied to the population dataset to obtain individual prognostic
scores and the true AUC (i.e., with no further model building or
refinement).
Figure 5 displays side-by-side box plots of the distributions of

AUCs from the simulated sample datasets and the population
datasets for k 5 5 and k 5 50. When k 5 5, AUCs were slightly
biased upward in the sample distribution compared with the true
population (median, 0.75 and 0.73 for samples and populations,
respectively). The degree of optimistic bias increased drastically
when the number of variables increased to 50 (median, 0.87 and
0.64 for samples and populations, respectively). This simulation
exercise underscores the fact that the performance of a risk model
is overestimated when the evaluation is performed using the same
dataset as used to construct the model, and the degree of the op-
timistic bias increases with the number of variables in the model.
These results highlight the importance of evaluating the perfor-
mance of a risk model using a dataset that is independent from that
used for model development.

BIOMARKER CUT POINT IN THE PRESENCE OF ESTABLISHED

PROGNOSTIC FACTORS

For many cancers, certain prognostic
factors are known and well established.
For example, tumor size and the number of
positive lymph nodes are well-known prog-
nostic factors in breast cancer. For patients
with advanced non-Hodgkin lymphoma, the
International Prognostic Index was a risk
system developed to predict patient survival
(23). The components of the International
Prognostic Index were based on clinical fea-
tures—including age, tumor stage, serum
lactate dehydrogenase concentration, per-
formance status, and number of extranodal
disease sites—that are easy to measure and
prognostically important. In these settings,
it is more pertinent to determine whether a
new biomarker adds prognostic information
to that already provided by standard prog-
nostic factors alone. Statistical models such
as the Cox proportional-hazards regression
model are often used to study the joint prog-
nostic influence of multiple factors. To as-
sess the independent prognostic influence of
the new biomarker above and beyond rec-
ognized factors, 1 reduced multivariable
model can be fitted containing only the
standard factors and 1 full multivariable
model can be simultaneously fitted, with
both models containing the new biomarker
and standard factors. The difference in how
well the 2 nested models fit the data pro-
vides a measure of the statistical signifi-
cance of whether the new factor contains
additional prognostic information (e.g., via
the likelihood ratio test) (24). If there are
multiple new factors, this approach accounts
for the number of new variables in the calcu-
lation of statistical significance. For example,

FIGURE 6. Schema for biomarker cut point analysis and evaluation.
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Cheang et al. studied the additional prognostic information of a 5-
biomarker panel (estrogen receptor, progesterone receptor, hu-
man epidermal growth factor receptor 2, epidermal growth factor
receptor, and cytokeratin 5/6) above and beyond a 3-biomarker
panel (estrogen receptor, progesterone receptor, and human epider-
mal growth factor receptor 2) in the presence of standard clinical
variables for predicting breast cancer death-specific survival (25). To test
the statistical significance of the 2 additional biomarkers, 2 Cox regression
models were fitted, and a likelihood ratio test of the difference between the
2 models was used to evaluate the additional prognostic contribution of
epidermal growth factor receptor and cytokeratin 5/6.
When the cut point of a biomarker is preselected on the basis of

clinical outcome (e.g., via the minimal-P-value approach or the ROC
methodology), the corresponding dichotomized biomarker will impart
an inflated effect on the multivariable regression model, thus dimin-
ishing the relative importance of other known prognostic factors.
Kaplan–Meier curves showing the difference in survival between risk
groups correspond to univariate statistical tests (e.g., log-rank) and thus
do not indicate the effect of the biomarker after accounting for the
other variables that may influence survival. In fact, in the presence of
existing prognostic factors, determination of a cut point for the new
biomarker alone is not as relevant. Instead, a more holistic approach
would be to develop a prognostic model incorporating both known
prognostic factors and the new biomarker. Prognostic categories can
then be based on the model-predicted prognostic indices of individual
patients. For example, Paik et al. developed the Oncotype Dx assay, a
21-gene recurrence score, to quantify the likelihood of distant recur-
rence in women with node-negative, estrogen-receptor–positive breast
cancer who have been treated with tamoxifen (26). The cut points were
determined on the basis of the results of National Surgical Adjuvant
Breast and Bowel Project trial B-20 and were validated using data
from trial B-14. The cut points classified patients into 3 risk categories
based on predicted 10-y distant recurrence rate: low risk (recurrence
score, 18), intermediate risk (18# recurrence score, 31), and high
risk ($31). The authors also demonstrated that the model based on
age, tumor size, and recurrence score provided significantly inde-
pendent prognostic information compared with the model including
age and tumor size alone (P , 0.001 by the likelihood ratio test).

CONCLUSION

Discovery of biomarkers has been steadily increasing over the
past decade. Although a plethora of biomarkers and associated cut
points has been reported in the biomedical literature, few have been
sufficiently validated for broader clinical applications. In contrast to the
abundance of classic clinical-trial principles for guiding the design,
conduct, analysis, and reporting of studies, relatively fewer guidelines
exist for biomarker research (27,28). In this article, we have attempted
to identify some common methodologic issues related to biomarker cut
point identification and evaluation. We strongly advocate that discreti-
zation of continuous biomarkers be avoided. If cut point identification
is performed, it should be handled with statistical care. Biased resub-
stitution should either not be reported or be clearly noted as an unreli-
able representation of the true discriminant value of the biomarker.
When feasible, large independent datasets are ideal for confirmation
of the prognostic value of the biomarker and its cut point. A schema for
the consideration of biomarker analysis and cut point evaluation is
proposed in Figure 6. We hope that the discussions here will draw
attention to critical statistical issues associated with development and
evaluation of biomarker cut points and will, in turn, help improve
methodologic rigor in this line of research.
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