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Receptor tyrosine kinase (RTK) coexpression facilitates tumor re-

sistance due to redundancies in the phosphatidylinositol-3′-kinase/
protein kinase B and KRAS/extracellular-signal–regulated kinase

signaling pathways, among others. Crosstalk between the oncogenic

RTK hepatocyte growth factor receptor (MET), epidermal growth

factor receptor (EGFR), and human epidermal growth factor receptor
2 (HER2) are involved in tumor resistance to RTK-targeted therapies.

Methods: In a relevant renal cell carcinoma patient–derived

xenograft model, we use the 89Zr-labeled anti-RTK antibodies

(immuno-PET) onartuzumab, panitumumab, and trastuzumab to
monitor MET, EGFR, and HER2 protein levels, respectively, during

treatment with agents to which the model was resistant (cetuximab)

or sensitive (INC280 and trametinib). Results: Cetuximab treatment
resulted in continued tumor growth, as well as an increase in all RTK

protein levels at the tumor in vivo on immuno-PET and ex vivo at the

cellular level. Conversely, after dual MET/mitogen-activated protein

kinase inhibition, tumor growth was significantly blunted and corre-
sponded to a decrease in RTK levels. Conclusion: These data show

the utility of RTK-targeted immuno-PET to annotate RTK changes in

protein expression and inform tumor response to targeted therapies.
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Dysregulated receptor tyrosine kinase (RTK) signaling in cancer
represents an important contributor to oncogenesis and, accordingly,
a valuable therapeutic and imaging target (1–3). Members of the
human epidermal growth factor receptor (HER or ErbB) family of
RTKs include epidermal growth factor receptor (EGFR)/ErbB1,
HER2/ErbB2, HER3/ErbB3, and HER4/ErbB4 and are involved
in the activation of downstream oncogenic pathways, including

the KRAS/extracellular-signal–regulated kinase and phosphatidy-
linositol-39-kinase/protein kinase B (PI3K-AKT) pathways (4).
Activation of the ErbB pathway typically results from either ErbB
gene amplification or activating somatic mutations, which have
been described in several solid tumors (1,5). Antibodies and
small-molecule inhibitors targeting the membrane domain and
tyrosine kinase domains of RTKs, respectively, are used in cancer
therapy and imaging (2,4,6). The EGFR-specific antibodies cetux-
imab and panitumumab have been widely used in the treatment of
EGFR-expressing and KRAS wild-type colorectal cancer; and the
HER2-targeting antibody trastuzumab has been successful in im-
proving the outcomes of patients with HER2-expressing breast
cancer (4,5,7). Most recently, trastuzumab–drug conjugates have
been used to deliver cytotoxic drugs to breast cancers (8,9).
The hepatocyte growth factor receptor (MET, c-Met, or HGFR)

is an RTK that is activated by the binding of its cognate ligand,
hepatocyte growth factor (HGF) (10). High MET expression levels
have been detected in several malignancies, such as breast, pan-
creatic, lung, bladder, and kidney cancers and gliomas (11–13).
Onartuzumab is a MET-specific monoclonal antibody that inhibits
activation by blocking HGF binding to MET (14). MET syner-
gizes with members of the ErbB family of RTKs to boost cellular
division and oncogenesis (15). In tumors coexpressing EGFR and
MET, stimulation of EGFR enhances stability of MET protein and
facilitates phosphorylation and activation of MET. MAPK appears
to further enhance EGFR-dependent phosphorylation of MET
(16). MET pathway activation is an important mechanism of
resistance to ErbB-directed therapies (17–20). Specifically, coex-
pression of ErbB and MET allows PI3K/AKT oncogenic signaling
to be sustained independent from ErbB downregulation or inhibi-
tion. In fact, the coexpression of several RTKs supports these
acquired mechanisms of tumor resistance (21). Given the interde-
pendence and cross-activation of oncologically relevant RTKs,
determining which kinases are coexpressed in the same tumor
may inform RTK-directed therapies and improve outcomes. Ex
vivo immunohistochemical staining, gene amplification, and acti-
vating mutations of RTKs are critical for defining targetability
with biologics or small-molecule drugs but may not represent an
accurate measure of target protein availability in vivo. In fact,
gene amplification and activating mutations of a certain RTK are
poor predictors of response to RTK-targeted therapies (22). Methods
allowing real-time, in vivo monitoring of RTK dynamics may in-
form treatment choice and response.
RTK-specific PET allows in vivo imaging of expression of

RTKs in real time (2,3,23–27). PET imaging with RTK-targeted
radiolabeled antibodies, known as immuno-PET, is a powerful

Received Mar. 16, 2020; revision accepted Jun. 10, 2020.
For correspondence or reprints contact: Patricia M.R. Pereira, Department

of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New
York, NY 10065.
E-mail: ribeirop@mskcc.org
*Contributed equally to this work.
Published online Jul. 9, 2020.
Immediate Open Access: Creative Commons Attribution 4.0 International

License (CC BY) allows users to share and adapt with attribution, excluding
materials credited to previous publications. License: https://creativecommons.
org/licenses/by/4.0/. Details: http://jnm.snmjournals.org/site/misc/permission.
xhtml.
COPYRIGHT© 2021 by the Society of Nuclear Medicine and Molecular Imaging.

366 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 62 • No. 3 • March 2021

mailto:ribeirop@mskcc.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://jnm.snmjournals.org/site/misc/permission.xhtml
http://jnm.snmjournals.org/site/misc/permission.xhtml


method to select patients for specific therapies, can predict patient
response to RTK-targeted inhibition therapy when used in the right
context, and can determine the in vivo dynamics of RTKs (3,19,28).
In this study, we used MET-, EGFR-, and HER2-targeted immuno-
PET to detect RTK protein levels after targeted therapy in a renal cell
carcinoma (RCC) patient–derived xenograft (PDX) model (29).

MATERIALS AND METHODS

PDXs

PDXs (collecting-duct carcinoma, an RCC subtype) were minced,

mixed with Matrigel (Corning), and implanted subcutaneously in the
right flank of 4- to 6-wk-old female NSG mice (Jackson Laboratories)

(29). Once established, tumors were maintained and expanded by
serial subcutaneous transplantation. Mouse studies were initiated once

tumors reached 100–150 mm3 in size.

Conjugation and Radiolabeling of Antibodies

We adhere to the nomenclature rules for radiopharmaceutical

chemistry (30). Panitumumab, trastuzumab, and cetuximab were
obtained from the Memorial Sloan Kettering hospital pharmacy. Onar-

tuzumab was provided by Genentech. The antibodies were conjugated
with the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine

(DFO-Bz-NCS; Macrocyclics) and then radiolabeled with 89Zr in ac-
cordance with previously reported methods (28). The antibodies were

conjugated with p-SCN-Bn-DFO in a 5:1 DFO:antibody molar ratio at
37�C for 90 min. After reaction, the conjugates were purified via a

PD-10 column using Chelex (Bio-Rad) phosphate-buffered saline (0.5
g/L Chelex resin) at pH 7.4. The 89Zr-oxalate (supplied in 1.0 M

oxalic acid at Memorial Sloan Kettering Cancer Center (28)) was
neutralized to pH 7.0–7.5 with 1.0 M Na2CO3 followed by addition

of the corresponding DFO–antibody conjugate in Chelex phosphate-

buffered saline (pH 7.4). The mixture was incubated at 37�C for 1 h on

an agitating heating block. [89Zr]Zr-DFO-antibody and radiochemical
purity was determined by instant thin-layer chromatography, and the

product was used for in vivo studies.

PET Imaging, Biodistribution, Autoradiography Studies, and

Ex Vivo Analyses

Mice were randomized into groups, and treatments were initiated

(5 mice per group for biodistribution and 3 mice per group for PET
imaging).

PET Imaging and Biodistribution Studies at Different Time Points

with [89Zr]Zr-DFO-Onartuzumab. Mice were given [89Zr]Zr-DFO-

onartuzumab (2.7 MBq, 15 mg, 750 mg/kg), and PET imaging was

performed at 24, 48, 72, 96, and 120 h after injection. Biodistribution
studies were performed at 24, 72, and 120 h after injection of [89Zr]Zr-

DFO-onartuzumab. Additional biodistribution studies were performed
on PDX-bearing mice that were blocked with a 25-fold mass excess

of unlabeled onartuzumab 48 h before injection of [89Zr]Zr-DFO-
onartuzumab to confirm target specificity.

PET Imaging and Biodistribution Studies After Treatments. INC280, a
MET-selective tyrosine kinase inhibitor, and trametinib, a mitogen-

activated protein kinase kinase (MEK) inhibitor, were obtained from
the Neal Rosen research group at Memorial Sloan Kettering. PDX-

bearing mice were treated with cetuximab or with INC280 and
trametinib following previously reported methods (29). Briefly, cetux-

imab was intravenously administered (50 mg/kg) twice a week for 10 d.

INC280 (10 mg/kg) and trametinib (1.5 mg/kg) were orally admin-
istered daily for 10 d. [89Zr]Zr-DFO-onartuzumab (2.7 MBq, 15 mg),

[89Zr]Zr-DFO-panitumumab (11.0 MBq, 50 mg), and [89Zr]Zr-DFO-
trastuzumab (8.14 MBq, 80 mg) were administered by tail vein in-

jection on day 10. PET imaging and biodistribution studies were

performed 120 h after injection of [89Zr]Zr-DFO-antibodies.
PET imaging, acute biodistribution, and

autoradiography studies were performed at
120 h after intravenous injection of [89Zr]Zr-

DFO-antibody according to previously reported
methods (24,25,31).

Western Blot Analysis

Whole-protein extracts from PDXs were

obtained in radioimmunoprecipitation assay

buffer as previously described (25). After

electrophoresis and transfer to nitrocellulose

membranes (IB23001; Thermo Fisher Sci-

entific), the blots were incubated in 5% w/v

bovine serum albumin (A7030; Sigma) in

Tris-buffered saline with polysorbate (9997S;

Cell Signaling Technology) and probed with

mouse anti-b-actin, 1:20,000 (A1978; Sigma);

rabbit anti-HER2, 1:800 (ab131490; Abcam);

rabbit anti-phosphorylated HER2 (anti-pHER2),

1:800 (ab53290; Abcam); rabbit anti-EGFR,

1:1,000 (ab52894; Abcam); rabbit anti-MET,

1:1,000 (ab51067; Abcam); and anti-phosphory-

lated MET (anti-pMET), 1:1,000 (ab68141;

Abcam). After antibody incubation and washing,

the membranes were incubated with the sec-

ondary antibodies IRDye 800CW anti-rabbit

(925-32211) or anti-mouse (925-32210) IgG,

1:15,000 (LI-COR Biosciences), and imaged

on the Odyssey Infrared Imaging System

(LI-COR Biosciences), followed by densi-

tometric analysis using Fiji software (https://

imagej.net/Fiji) (32).

FIGURE 1. Representative maximum-intensity-projection (MIP) and coronal 89Zr-labeled onar-

tuzumab PET images at 24, 48, 72, 96, and 120 h after injection of [89Zr]Zr-DFO-onartuzumab

without and with unlabeled onartuzumab blocking in NSG mice bearing subcutaneous MET-over-

expressing PDX RCC. [89Zr]Zr-DFO-onartuzumab (2.7 MBq, 15 μg, 750 μg/kg) was administered

by tail vein injection. Blocking experiments were performed by administering 25-fold mass excess

of unlabeled onartuzumab 48 h before injection of [89Zr]Zr-DFO-onartuzumab.
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ELISA for Human HGF Protein Levels in Serum and Tumor

Homogenates of PDX-Bearing Mice

The human HGF ELISA kit (KAC2211; Invitrogen) was used for

quantitative determination of human HGF in serum and tumor homog-
enates of PDX-bearing mice as previously described (27).

Statistical Analysis

Data are expressed as mean 6 SEM. Groups were compared using
the Student t test.

Study Approval

All animals were treated according to the guidelines approved by

the Research Animal Resource Center and Institutional Animal Care

and Use Committee at Memorial Sloan Kettering Cancer Center. PDX

models were established, by the Antitumor Assessment Core, from

tumor specimens collected under an institutional review board protocol

approved by the same committee.

RESULTS

MET-Targeted Immuno-PET Detects MET-Expressing

RCC PDXs

Previous preclinical studies have demonstrated the potential of 89Zr-
labeled onartuzumab to image MET-expressing tumors (23,26,33). To
determine the ability of 89Zr-labeled onartuzumab to image a MET-
overexpressing tumor model sensitive to MET-targeted therapy, our pre-
clinical studies used the MET-overexpressing human RCC PDX (29).
HGF, theMET ligand, was detected by ELISA in the plasma and tumors
of immunodeficient NOD-SCID g (NSG) mice implanted subcutane-
ously with RCC PDX, confirming autocrine production of HGF in
this model (Supplemental Table 1; supplemental materials are
available at http://jnm.snmjournals.org).
In vivo PET imaging studies with 89Zr-labeled onartuzumab

confirmed excellent target localization in subcutaneous RCC
PDXs (Fig. 1). Ex vivo biodistribution of the radioimmunoconju-
gate demonstrated a gradual accumulation into the MET-positive
tumors between 24 and 72 h. Percentage injected dose per gram
(%ID/g) was 15.9 6 7.3 at 24 h and 47.3 6 8.3 at 72 h (Fig. 2;
Supplemental Fig. 1; Supplemental Table 2). Tumoral uptake of
89Zr-labeled onartuzumab peaked at 72 h and persisted to at least
120 h (47.3 6 8.3 %ID/g at 72 h and 40.0 6 16.4 %ID/g at 120 h;
Fig. 2; Supplemental Fig. 1; Supplemental Table 2). Furthermore,
the accumulation of 89Zr-labeled onartuzumab in RCC PDXs
could be blocked using coinjection of a 25-fold mass excess of
unlabeled onartuzumab antibody, confirming target specificity
(Figs. 1 and 2; Supplemental Figs. 1 and 2). Autoradiography
analysis of tumors from mice administered 89Zr-labeled onartuzu-
mab or 89Zr-labeled onartuzumab in the presence of an excess of
unlabeled onartuzumab confirmed our findings from in vivo PET
imaging and ex vivo biodistribution (Supplemental Fig. 3).
Taken together, these studies support that 89Zr-labeled onartu-

zumab can image MET-overexpressing RCC PDXs and detect
MET protein levels in vivo.

Immuno-PET Detects Changes in RTK Protein Levels After

RTK-Targeted Therapy

Given that RTK coactivation plays an important role in tumor
response to RTK-targeted therapy (19,29,34), we sought to use mo-
lecular imaging to understand and visualize the interplay between
MET, EGFR, and HER2 receptor dynamics in our PDX model,
which expresses all 3 receptors. Previous studies have demonstrated
that the MET-overexpressing RCC PDX harbors activating BRAF
(G466A and D594N) mutations and is sensitive to both MET

(INC280, or capmatinib) and MEK (trametinib) inhibition. Although
noted to have significant EGFR expression, the RCC PDX was ob-
served to have resistance to cetuximab treatment, likely due to RAS-
RAF pathway activation (29). We exploited the known resistance to
cetuximab of this model, and the sensitivity to combined INC280 and
trametinib, to ascertain whether we could use immuno-PET to non-
invasively assess response to therapy.
In our in vivo studies, we used 89Zr-labeled anti-HER2 (trastu-

zumab), 89Zr-labeled anti-EGFR (panitumumab), or 89Zr-labeled
anti-MET (onartuzumab) antibodies to monitor RTK protein levels
in RCC PDXs after targeted therapy. Mice were treated with
cetuximab or with combined INC280 and trametinib for 10 d (Sup-
plemental Fig. 4). Cetuximab treatment did not alter tumor volume
(Supplemental Fig. 5), consistent with previous reports that this
PDX is resistant to cetuximab (29). Mice treated with combined
INC280 and trametinib showed significant tumor growth inhibi-
tion over 10 d (Supplemental Fig. 5). Longitudinal PET imaging
(Fig. 3) and ex vivo biodistribution (Fig. 3; Supplemental Figs.
6–8; Supplemental Tables 2–4) at 120 h after injection of 89Zr-
labeled anti-RTK antibodies demonstrated a significant difference
in tumor uptake of the radioimmunoconjugate between control and
cetuximab-treated tumors and between INC280 and trametinib-
treated tumors (Fig. 3; Supplemental Figs. 6–8). Control tumors
had an 89Zr-labeled trastuzumab uptake of 16.33 6 0.32 %ID/g,
an 89Zr-labeled panitumumab uptake of 16.51 6 0.40 %ID/g, and
an 89Zr-labeled onartuzumab uptake of 43.52 6 0.12 %ID/g. Tu-
mors treated with cetuximab showed higher uptake of tracers than
did control treated tumors: 18.90 6 0.95 %ID/g for 89Zr-labeled

FIGURE 2. Biodistribution at 24, 72, and 120 h after injection of [89Zr]

Zr-DFO-onartuzumab without and with unlabeled-onartuzumab block-

ing in NSG mice bearing subcutaneous MET-overexpressing PDX RCC.

[89Zr]Zr-DFO-onartuzumab (2.7 MBq, 15 μg, 750 μg/kg) was adminis-

tered by tail vein injection. Blocking experiments were performed by

administration of 25-fold mass excess of unlabeled onartuzumab 48 h

before injection of [89Zr]Zr-DFO-onartuzumab.
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trastuzumab, 24.33 6 0.58 %ID/g for 89Zr-labeled panitumumab,

and 50.88 6 0.01 %ID/g for 89Zr-labeled onartuzumab. In tumors

of mice treated with a combination of INC280 and trametinib, we

observed a lower tumor uptake than that seen in control treated

tumors: 8.536 0.68 %ID/g for 89Zr-labeled trastuzumab, 12.186
0.28 %ID/g for 89Zr-labeled panitumumab, and 31.97 6 0.95

%ID/g for 89Zr-labeled onartuzumab.
These results demonstrate the potential of immuno-PET to

visualize changes in MET, EGFR, and HER2 during RTK-targeted

therapy in vivo. Additionally, our results show an increase in RTK

protein levels during therapy with cetuximab. Therapy with com-

bined MET/MEK inhibition decreases anti-RTK antibody accu-

mulation in tumors from RCC PDXs, suggesting that a decrease in

the plasma membrane levels of MET, EGFR, and HER2 corre-

sponds to therapeutic benefit.

In Vivo RTK-Targeted Immuno-PET Correlates with Ex Vivo

Changes in MET, EGFR, and HER2 Protein Levels

Having found changes in tumor uptake of 89Zr-radiolabeled anti-
bodies after treatment with cetuximab or with INC280 and trametinib,

we next investigated changes in MET, EGFR, and HER2 protein

levels at the cellular level. We performed immunoblot studies of

tumor digests to detect changes in MET, pMET, EGFR, HER2, and

pHER2 on cetuximab or INC280 and trametinib treatments. We ob-

served a decrease in MET, pMET, EGFR, HER2, and pHER2 in

tumors of mice treated with INC280 and trametinib (Fig. 4). Con-

versely, tumors of mice treated with cetuximab showed a compensa-

tory increase in MET, EGFR, and HER2 protein when compared with

control mice (Fig. 4). The changes observed in RTK protein levels in

tumors of mice treated with cetuximab or with INC280 and trameti-

nib were consistent with those observed for 89Zr-labeled antibody

tumor uptake and collectively suggest a mechanism of resistance of

this EGFR-expressing PDX to cetuximab
(Fig. 3; Supplemental Fig. 5). The changes

observed in RTK/pRTK in Figure 4 are con-
cordant with previous observations of down-
stream oncogenic signaling in RCC PDX
cells using RTK arrays (29). In the PDX
cells, ERK signaling is sensitive to MET in-

hibition but not to cetuximab. Additionally,
the combination of METandMEK inhibition
(INC280 and trametinib) blocks ERK signal-
ing and cell growth.
These results confirm that in vivo RTK-

targeted immuno-PET correlates with changes
in MET, EGFR, and HER2 protein at the
cellular level and may noninvasively anno-
tate early response to targeted therapy.

DISCUSSION

Precision medicine involves identification
of certain gene mutations and expressions, as

well as characterization of proteomic and
epigenetic features, that contribute individual
tumor signatures. However, the spatial dis-
tribution, dynamics, and heterogeneity of
RTKs can influence the response of tumor

populations to RTK-targeted inhibitors.
RTK gene amplification, enhanced protein
expression, and specific mutations result

in RTK dimerization and clustering at the cell membrane that can
trigger ligand-independent or kinase-independent activation of

RTKs of the same family or collaborating RTKs. RTK crosstalk
and activation maintain oncogenic signaling networks, including
RAS-ERK and PI3K-AKT. These processes have immediate
effects on the way that tumors respond to RTK-targeted therapy,
such as cetuximab, an antibody that competes with the EGF

ligand for binding to EGFR (7). Indeed, tumor response to mono-
therapy with EGFR-targeted antibodies is relatively low (;10%),
with a significant yet modest improvement in overall survival
restricted to patients with KRAS wild-type tumors (35). Cross-
talk between EGFR and other members of the HER family or

unrelated RTKs, as mediated by coexpression of RTKs in the
same tumor, neutralize the growth-inhibitory properties of
EGFR-targeted therapies due to redundancy in mechanisms of
PI3K-AKT and RAS-ERK activation (16–18,36). Preclinical and
clinical studies with combinatorial RTK inhibition have been

explored in tumors for which MET activation occurs as a mech-
anism of acquired resistance to EGFR-targeted therapies (4).
These studies suggest an abrogation of resistance by inactivating
multiple RTKs upstream from key oncogenic nodes and support
the idea that patients could benefit from those combinatorial

strategies. Amplification of the MET gene, along with subse-
quent protein activation, has been observed in RCC, and MET
overexpression is known to be a negative prognostic biomarker
(12,37–39). Given that RTK coactivation plays an important role
in tumor response to targeted therapy (19,29,34), we sought to use

molecular imaging to understand and assess the interplay between,
and the dynamics of, MET, EGFR, and HER2.
We extended our prior work using immuno-PET for imaging

RTK membrane dynamics and crosstalk, and we assessed its
utility in an RCC PDX model known to express MET, EGFR, and

FIGURE 3. Representative coronal PET images and tumor uptake as determined by ex vivo

biodistribution at 120 h after injection of [89Zr]Zr-DFO-onartuzumab, [89Zr]Zr-DFO-panitumumab, or

[89Zr]Zr-DFO-trastuzumab in NSG mice bearing subcutaneous PDX RCC and treated with saline

(control), cetuximab, or both INC280 and trametinib. Cetuximab was intravenously administered

(50 mg/kg of body weight) twice weekly for 10 d. INC280 (10 mg/kg) and trametinib (1.5 mg/kg) were

orally administered daily for 10 d. [89Zr]Zr-DFO-onartuzumab (2.7 MBq, 15 μg, 750 μg/kg), [89Zr]Zr-
DFO-panitumumab (11.0 MBq, 50 μg, 2.5 mg/kg), and [89Zr]Zr-DFO-trastuzumab (8.14 MBq, 80 μg,
4 mg/kg) were administered by tail vein injection on day 10 (Supplemental Fig. 4). PET images

and biodistribution studies were performed at 120 h after injection of 89Zr-labeled antibodies. *P ,
0.05. **P , 0.01. P values are based on Student t test and compared with control.
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HER2 (29). Although the PDX used in our studies does not harbor
activating MET mutations or increased MET copy number, it dem-
onstrates sensitivity to inhibition of MET (INC280) and MEK (tra-
metinib) as monotherapy or in combination (29). These findings
underscore that MET overexpression alone may identify tumors that
may be susceptible to RTK-targeted therapy in the appropriate setting.
The RCC PDX model harbors RAS-pathway activation via BRAF
mutations (G466A and D594N), with corresponding ERK signaling
activation, which may partially explain its insensitivity to cetuximab
treatment (29). We exploited this differential response to targeted
therapy and confirmed that immuno-PET could noninvasively an-
notate resistance and response to treatment.
We found that immuno-PET with the 89Zr-labeled anti-RTK

antibodies onartuzumab, trastuzumab, and panitumumab can
serve as a sensor to MET, EGFR, and HER2, respectively, in vivo.
Tumors of animals treated with combined MET/MEK inhibition
showed growth suppression, as expected, and exhibited lower up-
take on quantitative MET immuno-PET. These findings corre-
sponded to changes at the cellular level, where we observed
decreased MET protein levels and MET phosphorylation in tumors.
Interestingly, uptake of EGFR and HER2 immuno-PET tracers was
also lower in tumors treated with combined MET/MEK inhibition,
which also corresponded to decreased total levels of HER2, EGFR,
and pHER2 in tumor digests, suggesting that treatment may also
interfere with the MET-HER2 cross activation (40).
Conversely, tumors of animals treated with cetuximab showed

increased pan-RTK immuno-PET tracer uptake, which was mirrored
by protein levels of tumor digests. These increases in MET, EGFR,
and HER2 protein levels might represent a possible mechanism of
resistance of this EGFR-expressing PDX to cetuximab and are con-
sistent with previous reports of cetuximab-resistant cells arising
from alterations in HER trafficking and protein degradation (41).
Admittedly, implementing 3 separate immuno-PET tracers with the

long-lived 89Zr to provide readouts of treatment response stretches the
limits of clinical feasibility. Engineered therapeutic antibodies target-
ing multiple RTKs may present a possible immuno-PET approach to
visualizing changes in RTKs as a class after treatment with kinase-
directed therapies. Lower-molecular-weight targeting biomolecules
and radionuclides with shorter blood and physical half-lives, respec-
tively, may offer time frames more congruent with current clinical work-
flows and should be investigated. Additionally, visualizing cellular
signaling nodes, which are activated by several RTKs, as was recently

performed by Pratt et al. using 124I-labeled tra-
metinib is being investigated and could achieve
similar treatment-response readouts (42).

CONCLUSION

Our results highlight the potential of
RTK-targeted immuno-PET as a functional
sensor of plasma membrane levels of RTKs
in tumors and, importantly, identified tu-
mor features associated with treatment
response and resistance to systemic therapy.
Such data can inform RTK-directed thera-
pies, cellular therapy (e.g., chimeric antigen
receptor T cells), and biologics (e.g., anti-
RTK antibodies, antibody–drug conjugates,
and targeted molecular radiotherapy), for ex-
ample. Studies to better define specific cir-
cumstances in which RTK-targeted immuno-

PET can annotate genetic and proteomic features of tumors associated
with sensitivity or resistance to targeted therapies ab initio are ongoing.
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KEY POINTS

QUESTION: Can functional imaging with immuno-PET assess

changes in protein levels of RTKs of tumors?

PERTINENT FINDINGS: Indeed, immuno-PET can visualize RTKs,

reflects cellular protein levels, and can detect post–targeted-therapy

RTK changes that correspond to sensitivity to treatment.

IMPLICATIONS FOR PATIENT CARE: Immuno-PET imaging

of oncogenic RTKs can serve as a noninvasive biomarker for

treatment stratification and can provide early insights on tumor

response to target therapy.
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