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Total metabolic tumor volume (TMTV), calculated from 18F-FDG

PET/CT baseline studies, is a prognostic factor in diffuse large B-cell

lymphoma (DLBCL) whose measurement requires the segmentation of

all malignant foci throughout the body. No consensus currently exists
regarding the most accurate approach for such segmentation. Further,

all methods still require extensive manual input from an experienced

reader. We examined whether an artificial intelligence–based method
could estimate TMTV with a comparable prognostic value to TMTV

measured by experts. Methods: Baseline 18F-FDG PET/CT scans

of 301 DLBCL patients from the REMARC trial (NCT01122472) were

retrospectively analyzed using a prototype software (PET Assisted
Reporting System [PARS]). An automated whole-body high-uptake

segmentation algorithm identified all 3-dimensional regions of interest

(ROIs) with increased tracer uptake. The resulting ROIs were pro-

cessed using a convolutional neural network trained on an indepen-
dent cohort and classified as nonsuspicious or suspicious uptake. The

PARS-based TMTV (TMTVPARS) was estimated as the sum of the vol-

umes of ROIs classified as suspicious uptake. The reference TMTV
(TMTVREF) was measured by 2 experienced readers using independent

semiautomatic software. The TMTVPARS was compared with the

TMTVREF in terms of prognostic value for progression-free survival

(PFS) and overall survival (OS). Results: TMTVPARS was significantly
correlated with the TMTVREF (ρ 5 0.76; P , 0.001). Using PARS, an

average of 24 regions per subject with increased tracer uptake was

identified, and an average of 20 regions per subject was correctly

identified as nonsuspicious or suspicious, yielding 85% classification
accuracy, 80% sensitivity, and 88% specificity, compared with the

TMTVREF region. Both TMTV results were predictive of PFS (hazard

ratio, 2.3 and 2.6 for TMTVPARS and TMTVREF, respectively; P, 0.001)

and OS (hazard ratio, 2.8 and 3.7 for TMTVPARS and TMTVREF, respec-
tively; P , 0.001). Conclusion: TMTVPARS was consistent with that

obtained by experts and displayed a significant prognostic value for

PFS and OS in DLBCL patients. Classification of high-uptake regions

using deep learning for rapidly discarding physiologic uptake may

considerably simplify TMTV estimation, reduce observer variability,
and facilitate the use of TMTV as a predictive factor in DLBCL patients.
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Total metabolic tumor volume (TMTV) derived from 18F-
FDG PET/CT baseline studies is a promising prognostic factor

in diffuse large B-cell lymphoma (DLBCL) (1,2) and other types

of lymphoma (3–5). DLBCL is the most frequent non-Hodgkin

lymphoma, being present in about 30%–40% of non-Hodgkin

lymphoma cases worldwide. Although the prognosis of DLBCL

can be improved with immunochemotherapy, more than 30% of

patients are refractory or relapse after first-line treatment, with a

poor outcome (6,7). Therefore, there is a need to identify high-risk

patients who could benefit from intensive or novel therapies early.

Unfortunately, the role of current prognostic factors such as the

International Prognostic Index (8), Revised International Prognostic

Index (9), and National Comprehensive Cancer Network Interna-

tional Prognostic Index (10), based on tumor burden surrogates is

limited. Thus, baseline TMTV, which estimates the total metabolic

tumor burden at diagnosis, has been proposed as an alternative prog-

nostic tool for early risk stratification.
To date, TMTV is not yet routinely used in clinical lymphoma

patient management, in part because of a lack of consensus

throughout the literature. Several methods have been proposed to

calculate TMTV (11–13), and the cutoffs reported to detect high-

risk patients differed among methods and studies. However, recent

studies have suggested that, despite these differences, most meth-

ods yielded similar accuracy in predicting patient prognosis when

applied in similar patient groups (11,12), emphasizing the strong

prognostic power of baseline TMTV.
Regardless of the criteria used for delineating tumor regions, all

methods for deriving TMTV require extensive and time-consuming

manual input from an experienced reader. The reader either manually
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segments the tumor regions or, more commonly, uses an auto-
mated method to detect all regions with increased uptake and then
manually eliminates the regions of physiologic uptake and adds in
undetected tumor regions (13). Recently, a machine-learning al-
gorithm using a convolutional neural network (CNN) was trained
to differentiate physiologic from nonphysiologic uptake regions in
whole-body 18F-FDG PET scans acquired from an unselected pop-
ulation of more than 600 patients, including half who were lym-
phoma patients with different subtypes of diseases (14,15). This
CNN achieved a high degree of accuracy in characterizing increased
tracer uptake in the whole body as physiologic or nonphysiologic.
Such automated identification of nonphysiologic regions would fa-
cilitate TMTV measurement and clinical adoption. This study there-
fore sought to assess the ability of this CNN to identify regions from
which TMTV could be automatically calculated and to evaluate the
ability of the resulting TMTV in predicting patient outcome among
a large group of DLBCL patients included in an international phase
III trial wherein TMTV has already been demonstrated to be a
strong predictor of 4-y progression-free survival (PFS) and overall
survival (OS). To evaluate the CNN performance, regions with
elevated tracer uptake automatically identified as physiologic or
suspicious were compared with regions attributed to suspicious up-
take by an expert reader using a semiautomatic method.

MATERIALS AND METHODS

Patients

Patients from an ancillary study (16,17) of the REMARC trial

(NCT01122472) were retrospectively analyzed. This trial is a phase
III study that was designed to assess the efficacy of lenalidomide

versus placebo in responding elderly DLBCL patients (60–80 y old)
treated with the standard first-line rituximab, cyclophosphamide,

doxorubicin hydrochloride (hydroxydaunorubicin), vincristine sulfate,
and prednisone (R-CHOP) therapy approach (18). The institutional

review board approval and the informed consent of the REMARC
trial included all the ancillary studies. The ancillary study was con-

ducted by involving 301 patients who underwent baseline PET/CT
before R-CHOP and showed that TMTV was a strong prognosticator

of outcome in patients responding to first-line chemotherapy com-

bined with monoclonal antibody treatment.

Image Acquisition and Analysis

All baseline 18F-FDG PET/CT images from the ancillary study

were collected in an anonymized DICOM format. Patients whose
PET or CT DICOM series had incomplete axial slices or irregular

slice intervals were excluded. PET images were expressed in SUV
units, accounting for injected dose and patient body weight.

PET/CT images were analyzed using an investigational software
prototype (PET Assisted Reporting System [PARS]; Siemens Medical

Solutions USA, Inc.) that uses artificial intelligence. The prototype first
automatically located a cylindric reference region at the center of the

proximal descending aorta by applying a landmarking algorithm to the
CT image (19). This region was used to determine the mean blood pool

SUV and mean blood pool SUV standard deviation (SD), following
PERCIST recommendations (20). The 3-dimensional regions of the

PET image with increased tracer uptake were identified for each subject
using an automated whole-body high-uptake segmentation algorithm

(multi-foci segmentation, MFS) (21). In line with the PERCIST recom-

mendations, only the regions with SUVpeak greater than twice the mean
blood pool SUV plus twice the mean blood pool SUV SD were included.

Those regions were then further segmented according to 42% of the
SUVmax threshold, and the ones with volumes below 2 cm3 were dis-

carded. The resulting regions of interest (ROIs), called ROIPARS, were

then automatically processed by a CNN. Details of the training and

validation of this CNN were previously reported (15). The input of the
CNN was the PET/CT data together with the set of ROIPARS sites. For

each ROIPARS, the output of the CNN was the anatomic localization
among a set of possible anatomic sites relevant for staging and whether

the ROIPARS uptake was physiologic (e.g., due to unspecific bowel uptake,
muscle activation, inflammation, infection, or bone degeneration) or sus-

picious (i.e., due to lymphoma). The volumes of all ROIPARS sites clas-
sified as suspicious uptake were then summed to obtain the TMTVPARS.

The CNN was also used in combination with 2 other settings of the
initial high-uptake ROI segmentation: the first used an initial threshold

of 2.5 SUV instead of the blood-pool–based threshold, followed by
thresholding with 41% of SUVmax; the second also included ROIs

with a volume between 0.1 and 2 cm3.
The TMTV obtained by 2 experienced nuclear medicine physicians

in the context of a previous study (16,17) was used as a reference
(TMTVREF). The TMTVREF was obtained using the semiautomatic

version of the Beth Israel Fiji (ImageJ) software plugin (22), which
was previously used to demonstrate the prognostic value of TMTV in

various lymphoma subtypes (5,23). To calculate TMTVREF, the physi-

cian combined automated and manual steps as follows. First, volumes of
interest with high uptake in the PET images were segmented using an

automated method, which applied in sequence an algorithm based on
component trees and shape priors (24), a region growing, and a final

region delineation using 41% of the region SUVmax threshold (25).
Second, the resulting ROIs were manually reviewed by the reader, who

selected only the regions corresponding to lymphoma (ROIREF), adding
an ROIREF wherever a lymphoma lesion had been missed by the algo-

rithm by drawing a prism around that lesion and applying a 41% SUVmax

threshold. The volumes of all lymphoma ROIREF sites were summed to

obtain the reference TMTV (TMTVREF).

Statistical Analysis

To evaluate the performance of the CNN classification, for each

patient, each ROIPARS, having been labeled as presenting suspicious or
physiologic uptake by the CNN, was compared with all the ROIREF sites

of that patient taken together. The ROIPARS was considered to match the
ROIREF if at least 50% of its volume overlapped with one or several

ROIREF sites. ROIPARS sites classified as suspicious and matching one or
several ROIREF sites were considered true-positives, ROIPARS sites clas-

sified as physiologic and matching one or several ROIREF sites were
considered false-negatives, ROIPARS sites classified as physiologic and

not matching any ROIREF sites were considered true-negatives, and ROI-

PARS sites classified as suspicious and not matching any ROIREF sites

were considered false-positives. The sensitivity, specificity, and accuracy
of the uptake classification were calculated. The performance of the CNN

classification was also assessed in case a minimum overlap of 25% and
75% was required to consider an ROIPARS as matching the ROIREF.

To evaluate differences between TMTVPARS and TMTVREF, Bland–
Altman analysis was performed. Since the Shapiro–Wilk test revealed

a significant nonnormal distribution of the differences between
TMTVPARS and TMTVREF (P , 0.001), the median bias and limits

of agreement at the 2.5 and 97.5 percentiles were reported in the Bland–
Altman plot. To assess the correlation between ranked TMTV values, the

Spearman rank correlation coefficient was used. For each patient, the
agreement between the patient set of ROIPARS sites classified as suspi-

cious and the patient set of ROIREF sites was characterized using the Dice
score, precision (the fraction of voxels in the set of ROIPARS sites clas-

sified as suspicious that were also present in the set of ROIREF sites), and

recall (the fraction of voxels in the set of ROIREF sites that were also
present in the set of ROIPARS sites classified as suspicious).

Survival analysis was performed for both TMTVPARS and TMTVREF

with respect to PFS and OS. Receiver-operating-characteristic curves

were used to determine TMTV cutoffs to predict the occurrence of events
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within 4 y for both PFS and OS, by maximizing the Youden index

(sensitivity 1 specificity 2 1). Survival functions were computed by
Kaplan–Meier analyses and used to estimate survival time statistics

(such as 4-y PFS rate and 4-y OS rate) for low- and high-TMTV
groups. A log-rank test was used to assess whether differences be-

tween Kaplan–Meier survival curves were significant. Univariate Cox
regression was used to calculate hazard ratios between survival

groups. Statistical significance was set at a P value of less than
0.05. Statistical analysis was performed using R, version 3.6.1, with

survivalROC, version 1.0.3, and pROC, version 1.15.3 (26).

RESULTS

In total, 280 patients from 124 centers were included in the
analysis. Patient characteristics are reported in Table 1. All re-
ceived first-line treatment with R-CHOP and were responders at

the time of inclusion in the trial, 142 received a lenalidomide
regimen afterward as maintenance, and 138 received placebo.
After a median follow-up of 5 y, 86 patients presented with a
PFS event and 51 patients had an OS event; the 4-y survival rates
were 69% for PFS and 83% for OS. The 4-y survival rates were
comparable to those of the entire trial.
PET/CT images were acquired using different scanner models

from different vendors as summarized in Supplemental Table 1
(supplemental materials are available at http://jnm.snmjournals.
org). The delay between injection and acquisition time was
71.7 6 14.1 min (mean 6 SD). The SUVmean in the proximal
descending aorta cylindric region was 1.6 6 0.5 (mean 6 SD
across subjects), resulting in an SUVpeak threshold of 3.6 6 1.2
for detecting ROIs with increased tracer uptake.
The results below are described for the PERCIST-based setting of

the initial high-uptake ROI segmentation, whereas changes ob-
served with other settings are reported in Supplemental Tables 2–4.

Uptake Classification

In total, 6,737 ROIPARS sites exhibiting increased uptake were
obtained from the 280 subjects. There were 7,996 ROIREF sites in
the 280 subjects. Descriptive statistics for the number of ROIPARS
and ROIREF sites per subject are summarized in Supplemental
Table 5. Among the 6,737 ROIPARS sites with increased uptake,
2,831 (42%) were classified as having suspicious uptake by the CNN.
When compared with the ROIREF sites obtained by the experi-

enced reader, the identification of the ROIPARS sites with suspicious
uptake by the CNN yielded 3,317 true-negatives, 2,399 true-positives,
589 false-negatives, and 432 false-positives. Corresponding sensitiv-
ity was 80%, specificity was 88%, and accuracy was 85%.

FIGURE 1. Detection of regions of high 18F-FDG uptake and classifi-

cation as physiologic or suspicious. (A and D) Maximum-intensity-pro-

jection PET images of subjects with low TMTV (A) and high TMTV (D). (B

and E) ROIPARS obtained automatically using PARS software prototype.

ROIPARS sites detected by MFS algorithm are overlaid onto PET maxi-

mum-intensity projection. ROIPARS sites classified by deep-learning al-

gorithm as physiologic are shown in green, and ROIPARS sites classified

as suspicious are shown in yellow. (C and F) ROIREF obtained by an

experienced nuclear medicine physician using semiautomatic software.

TABLE 1
Patient Characteristics

Patient characteristics Data

Sex

Female 119 (42.5)

Male 161 (57.5)

Age (y)

Median 68

Range 58–80

Ann Arbor stage

I 1 (0.4)

II 25 (8.9)

III 57 (20.4)

IV 197 (70.4)

Performance status*

0 113 (40.4)

1 119 (42.5)

2 39 (13.9)

3 2 (0.7)

4 2 (0.7)

Missing 5 (1.8)

International Prognostic Index

1 6 (2.1)

2 73 (26.1)

3 97 (34.6)

4 81 (28.9)

5 19 (6.8)

Missing 4 (1.4)

Elevated lactate dehydrogenase†

No 111 (39.6)

Yes 165 (58.9)

Missing 4 (1.4)

*Eastern Cooperative Oncology Group.
†Greater than upper limit of normal set specifically for each

laboratory.
Data are n followed by percentage in parentheses, except for

age. Total n is 280.
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Additionally, the mean per-subject ROIPARS classification accu-
racy was 87% (median, 89%; interquartile range [IQR], 81%–
96%). There were an average of 20 correctly classified ROIPARS
sites per subject (median, 17 ROIPARS sites; IQR, 11–27 ROIPARS
sites) and an average of 4 incorrectly classified ROIPARS sites per
subject (median, 2 ROIPARS sites; IQR, 1–5 ROIPARS sites), which
were regions classified as suspicious by the CNN that did not
overlap with the set of ROIREF sites or regions classified as
physiologic by the CNN but overlapped with the set of ROIREF
sites. Two examples of uptake classification of ROIPARS sites
with corresponding ROIREF are shown in Figure 1. Results with
a minimum overlap of 25% and 75% required to consider a
ROIPARS as matching the ROIREF are reported in Supplemental
Table 6.

TMTV

After discarding the ROIPARS sites classified as physiologic
uptake by the CNN, a median TMTVPARS of 110 cm3 was obtained
(IQR, 33–281 cm3). The median TMTVREF was 240 cm3 (IQR, 80–
529 cm3) (Table 2).
There was a significant correlation between ranked TMTV

estimates (r5 0.76; P, 0.001). The median Dice score across all
patients between the patient set of ROIPARS sites labeled as sus-
picious and the patient set of ROIREF sites was 0.73 (IQR, 0.33–
0.86), the median recall of the patient set of ROIPARS sites labeled
as suspicious with respect to the patient set of ROIREF sites was
0.62 (IQR, 0.20–0.81), and the median precision was 0.96 (IQR,
0.86–0.99). The Bland–Altman plot comparing TMTVPARS and
TMTVREF (Fig. 2) showed wide limits of agreement.

Survival Analysis

The area under the receiver-operating-characteristic curve for
predicting the 4-y PFS was 0.63 for TMTVPARS and 0.69 for

TMTVREF (Fig. 3). The optimal cutoffs for predicting the 4-y

PFS were 171 cm3 for TMTVPARS and 242 cm3 for TMTVREF.

Kaplan–Meier survival curves are shown in Figure 4. The 4-y PFS

rates were 79% and 54% for the low- and high-TMTVPARS groups

and 83% and 55% for the low- and high-TMTVREF groups, re-

spectively. The log-rank test indicated a significantly longer PFS

time in the low-TMTV patient group for both TMTV estimation

methods (P , 0.001 for TMTVPARS and TMTVREF). Cox regression

for PFS resulted in hazard ratios (high-TMTV group vs. low-TMTV

group) of 2.3 (95% confidence interval, 1.5–3.6; P , 0.001 for Wald

test) for TMTVPARS and 2.6 (95% confidence interval, 1.6–4.1; P ,
0.001) for TMTVREF. The survival results are summarized in Table 3.
For the 4-y OS, the area under the receiver-operating-characteristic

curve was 0.65 for TMTVPARS and 0.68 for TMTVREF. The optimal
TMTV cutoffs for predicting the 4-y OS were 148 cm3 for
TMTVPARS and 223 cm3 for TMTVREF. The 4-y OS rates were
90% and 74% for the low- and high-TMTVPARS groups and 93%
and 74% for the low- and high-TMTVREF groups, respectively. The
log-rank test revealed a significantly higher OS time in the low-TMTV

patient group for both TMTV estimation methods (P , 0.001 for
TMTVPARS and TMTVREF). Cox regression for OS resulted in hazard
ratios (high-TMTV group vs. low-TMTV group) of 2.8 (95% confi-
dence interval, 1.6–5.1; P , 0.001) for TMTVPARS and 3.7 (95%
confidence interval, 1.9–7.2; P , 0.001) for TMTVREF.
The sensitivity, specificity, negative predictive value, positive

predictive value, and accuracy for predicting the occurrence of
survival events within 4 y, determined at the optimal TMTV cutoff
for each method, are reported in Supplemental Table 7 and were
similar for both PFS and OS.

DISCUSSION

Our main result was that a fully automated method combining a
region delineation method based on PERCIST recommendations
and a CNN-based algorithm to distinguish between regions with
elevated physiologic uptake and nonphysiologic regions was able
to generate, in a uniform population of DLBCL patients, TMTV
values predictive of 4-y PFS and OS with an accuracy comparable
to that obtained when TMTV is calculated by manual selection of
the tumor regions by medical experts. Although the CNN-based
algorithm was trained using images obtained on only 2 scanner
models from the same vendor, the algorithm was highly accurate
in classifying increased uptake in patients from an international
trial involving 124 centers that obtained images on different
scanner models from different vendors and with variable re-
construction settings. This accuracy underlines the robustness of
the CNN despite different image quality. Moreover, this algorithm
was not originally trained for TMTV computation and outcome

FIGURE 2. Bland–Altman plot comparing TMTV obtained using PARS

and TMTVREF obtained by nuclear medicine physician using semiauto-

matic software.

TABLE 2
Statistics for TMTV Using PARS and Reference Method

TMTV Estimation Mean SD Minimum Q1 (25%) Median Q3 (75%) Maximum

TMTVPARS (cm3) 235.2 347.6 0.0 32.9 110.2 280.8 2471.9

TMTVREF (cm3) 433.7 571.3 2.27 80.0 240.0 529.3 3832.7
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prediction and was developed with data from patients with
different lymphoma subtypes and lung cancer who underwent
PET at baseline and for response assessment. However, we showed
that the algorithm was successful in a group of patients with a
homogeneous lymphoma subtype scanned at baseline, enabling
the identification of a TMTV cutoff separating high-risk from low-
risk patients and predicting prognosis with accuracy comparable
to that of the reference method. No subject was excluded because
of failure of the initial high-uptake ROI segmentation, which

identified at least one high-uptake region in
all subjects. Furthermore, comparable re-
sults were obtained when different settings
of the initial high-uptake ROI segmentation
were applied using a lower threshold (2.5
SUV) than the PERCIST-recommended
blood-pool–based threshold (Supplemental
Tables 2 and 3), suggesting the robustness
of the algorithm to the initial segmentation
results. Additionally, the accuracy of the
high-uptake ROI classification was not sub-
stantially impacted when a different level
of overlap was required to consider an ROI
as matching the TMTVREF and when ROIs
with volumes of less than 2 cm3 were in-
cluded in the analysis (Supplemental Ta-
bles 4 and 6).
The median TMTVPARS and the result-

ing cutoff were lower than those observed
for TMTVREF. This finding could be due to multiple factors, in-
cluding the higher initial SUV threshold used for TMTVPARS

relative to the one used for TMTVREF, the manual addition of
suspicious regions with low uptake in TMTVREF, regions being
classified as physiologic in TMTVPARS but considered suspicious
in TMTVREF, and differences in the contouring of suspicious re-
gions between TMTVPARS and TMTVREF. However, the ability of
the TMTVPARS estimates to be predictive of PFS and OS despite
involving a TMTV range different from that of TMTVREF is con-

sistent with what has already been reported
(11,12) when comparing different TMTV
estimation methods. This result con-
firms both the validity of the CNN method
and the value of TMTV as a prognostic
indicator.
Our study had limitations. Since there

is currently no gold standard method for
TMTV calculation from 18F-FDG PET/
CT images (27), the reported figures of
merit supporting the uptake classification
performance and accuracy of the TMTV
segmentation are limited to the compari-
son with the reference method considered
in the study. Moreover, a uniform cohort
of lymphoma patients was evaluated in the
current study, and results may differ for
different lymphoma subtypes or different
cancer types.
In the present work, we evaluated a fully

automated application of PARS. However,
PARS was initially intended to be used in a
supervised manner, allowing the reader to
correct for potentially misclassified regions
when appropriate. In particular, pitfalls in
PET/CT image quality, such as misalign-
ment due to motion or image artifacts, may
influence the classification output of the
CNN algorithm, and the results should be
validated by an expert. This is especially
true when the labeling results are used to
derive a prognostic index such as TMTV
that can be used to stratify the risk and guide

FIGURE 3. Receiver-operating-characteristic curves for TMTVPARS and TMTVREF for 4-y PFS (A)

and 4-y OS (B). Areas under receiver-operating-characteristic curves (AUC) and optimal TMTV

cutoffs are reported.

FIGURE 4. Kaplan–Meier survival curves for PFS (A and B) and OS (C and D).
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personalized therapy. Nevertheless, this approach could be used
by expert readers to efficiently estimate TMTV, as the deep-
learning–based method is able to automatically identify several
relevant suspicious uptake sites and automatically discard phys-
iologic uptake sites, with the expert only having to correct the
potential improper classification of a limited number of regions
per subject, requiring limited user interaction and potentially
improving interreader variability. This approach may introduce
bias in the TMTV estimation process by relying on pregenerated
results. However, this risk should be marginal, especially when a
careful revision of the results is performed by an experienced
reader.
To our knowledge, this was the first study showing that

an artificial intelligence method can generate a TMTV value
prognostic of outcome in a large series of patients with DLBCL,
with results comparable to other currently used methodologies.
Other machine-learning–based approaches for TMTV estimation
in lymphoma patients, including some involving CNN, are being
developed and evaluated (28). The automated method for TMTV
segmentation assessed in the present study combined a region-
delineation method based on PERCIST recommendations and a
deep-learning–based classification scheme for rapidly discard-
ing physiologic uptake. Further efforts toward developing a
stricter definition of TMTV, standardizing volume-segmenta-
tion methods, and establishing guidelines for the inclusion of
tumor-bearing anatomic regions are ongoing, and these will con-
stitute a prerequisite for the optimization of a complete automated
method (13).

CONCLUSION

We showed that TMTV can be estimated fully automatically
using a deep-learning approach. The resulting TMTV was con-
sistent with that obtained by independent experts and showed
significant prognostic value for PFS and OS in a large cohort of
DLBCL subjects.
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KEY POINTS

QUESTION: Can deep learning be used to obtain an automated

estimation of TMTV in baseline 18F-FDG PET/CT for risk stratifi-

cation in DLBCL patients?

PERTINENT FINDINGS: In a cohort of 280 DLBCL patients from

the REMARC trial, a deep-learning algorithm could classify regions of

interest with elevated uptake in 18F-FDG PET/CT as physiologic or

suspicious in good agreement with expert human reader assess-

ment. By aggregating the regions of interest classified as suspicious

uptake by the deep-learning algorithm, the automated TMTV esti-

mates were significant for PFS and OS prediction.

IMPLICATIONS FOR PATIENT CARE: Estimation of TMTV with

an automated method using deep learning may contribute to re-

producible and accurate identification of high-risk patients with

DLBCL.
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