Distribution Volume of ¹⁸F-BMS-986192 in NSCLC Patients

TO THE EDITOR: In an interesting article, Dr. Huisman et al. recently investigated the optimal kinetic model for an ¹⁸F-labeled anti-programmed cell death ligand 1 (anti-PD-L1) adnectin, namely, ¹⁸F-BMS-986192, to quantify PD-L1 expression in non-smallcell lung cancer (NSCLC) patients (1). A single-tissue-reversible (STR) compartment model, additionally including blood-volume fraction, was found to be the most preferred model for fitting the tumor time-activity curves. Its specific outcome measure is the distribution volume (V_T ; mL.cm⁻³) that is the equilibrium ratio of forward/reverse transport-rate constants, that is, K_i/k_b, between blood and reversible-trapping compartment (2). V_T was then used to validate simplified methods, the best correlation being obtained with body weight-normalized SUV (SUV_{BW}) at 50-80 min after injection ($R^2 = 0.92-0.91$), whereas a lower correlation was obtained with SUV normalized to plasma concentration (SUV/ C_{plasma} , presumably at 50 min after injection; $R^2 = 0.84$). The authors conclude that SUVBW at 60 min after injection is an accurate simplified parameter for uptake assessment of 18F-BMS-986192 baseline studies.

We would like to further analyze the latter lower correlation since, under postinjection time conditions we address in this letter: (i) V_T may be assessed by the ratio of tissue/plasma tracer concentration, i.e., C_{tissue}/C_{plasma} ; and (ii) the SUV_{BW}/C_{plasma} ratio may be also proportional to V_T since SUV_{BW} is proportional to C_{tissue} . To clarify this issue, we have fitted the ¹⁸F-BMS-986192 input function with a triexponentially decaying function and then fitted a PD-L1–positive tumor time–activity curve by using a 3-compartment 3-parameter kinetic model (data extracted from Figs. 3 and 4 in Huisman with the Web-Plot-Digitizer software; $R^2 = 0.996$ and 0.998, respectively) (I,3). Estimates of K_i and k_b were provided, leading to the computation of V_T as $K_i/k_b = 4.7$ mL.cm⁻³. This analysis also allowed us to perform both decay-corrected tissue- and decay-uncorrected trapped-tracer time–activity curves (supplemental data, available at http://jnm.snmjournals.org).

Let us first consider the rate of decay-corrected trapped tracer per tissue volume unit (at steady state): $dC_{trapped}(t)/dt = K_i \times C_{plasma}(t) - k_b \times C_{trapped}(t). \text{ At peak time of decay-corrected } C_{trapped} \text{ time-activity curve, } dC_{trapped}(t)/dt = 0 \text{ and then } C_{trapped}(t_{peak})/C_{plasma}(t_{peak}) = K_i/k_b = V_T. \text{ Assuming } C_{tissue}(t_{peak}) \approx C_{trapped}(t_{peak}) \text{ (i.e., neglecting free tracer in blood and interstitial volume), } t_{peak} \text{ was estimated to be 87 min from decay-corrected } C_{tissue} \text{ time-activity curve, leading to } C_{tissue}/C_{plasma} = 4.5 \text{ mL.cm}^{-3} \text{ (versus } K_i/k_b = 4.7 \text{ mL.cm}^{-3} \text{). Second, considering decay-uncorrected data, the differential equation becomes } dC_{trapped}(t)/dt = K_i \times C_{plasma}(t) - k_b \times C_{trapped}(t) - \lambda \times C_{trapped}(t), \text{ where } \lambda \text{ is the } {}^{18}\text{F physical-decay-rate constant. As a consequence, at peak time of decay-uncorrected-C_{trapped} time-activity curve, C_{trapped}(t_{peak})/C_{plasma}(t_{peak}) = K_i/(k_b + \lambda). \text{ The ratio } K_i/(k_b + \lambda) \text{ was calculated as } 2.1 \text{ mL.cm}^{-3},$

whereas, at decay-uncorrected- $C_{trapped}$ t_{peak} of 53 min after injection, the ratio C_{tissue}/C_{plasma} (that may involve decay correction or not) was found to be 2.2 mL.cm⁻³.

We therefore suggest that the SUV/C_{plasma} ratio (or, equivalently, the C_{tissue}/C_{plasma} ratio) is actually correlated with $V_T = K_i/k_b$ when assessed within 85–90 min after injection. However, the authors acknowledged that their results were only valid within 50–80 min after injection (1). Furthermore, we suggest that the SUV/C_{plasma} ratio assessed within 50–55 min after injection should be correlated with $K_i/(k_b + \lambda)$, instead of K_i/k_b (1). This alternative ratio reports on what is actually occurring at decayuncorrected-C_{trapped} t_{peak}, that is, an equilibrium between uptake and release plus physical decay. It is worth noting, regarding the part of postinjection time in its measurement uncertainty, a +13% increase occurs in the 50–55 min time range, whereas, for comparison, C_{tissue} alone, and, hence, SUV_{BW} , shows a +3% increase.

In conclusion, investigating potential clinical biomarkers and relevant simplified metrics is of upmost importance for selecting NSCLC patients who could benefit from immune checkpoint-inhibitor treatment. In $^{18}\text{F-BMS-986192}$ PET imaging, Huisman et al. convincingly showed that SUV_BW, at 60 min after injection, may be a relevant simplified parameter to quantify tumor uptake for baseline PET studies. We additionally suggest that the ratio SUV_BW/C_plasma might be probed as a complementary possible simplified parameter, that is correlated with $K_i/(k_b + \lambda)$ within 50–55 min after injection.

DISCLOSURE

No potential conflict of interest relevant to this article was reported.

REFERENCES

- Huisman M, Niemeijer AL, Windhorst B, et al. Quantification of PD-L1 expression with [18F]BMS-986192 PET/CT in patients with advanced stage non-small-cell lung cancer. J Nucl Med. February 14, 2020 [Epub ahead of print].
- Innis RB, Cunningham VJ, Delforge J, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007; 27:1533–1539.
- Laffon E, Calcagni ML, Galli G, et al. Comparison of three-parameter kinetic model analysis to standard Patlak's analysis in ¹⁸F-FDG PET imaging of lung cancer patients. *EJNMMI Res.* 2018;8:24–32.

Eric Laffon* Roger Marthan

*Service de Médecine Nucléaire, Hôpital Haut-Lévèque Avenue de Magellan 33604 Pessac, France E-mail: elaffon@u-bordeaux.fr

Published online May 22, 2020. DOI: 10.2967/jnumed.120.248484

COPYRIGHT © 2021 by the Society of Nuclear Medicine and Molecular Imaging.