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Head motion degrades image quality and causes erroneous

parameter estimates in tracer kinetic modeling in brain PET studies.

Existing motion correction methods include frame-based image
registration (FIR) and correction using real-time hardware-based

motion tracking (HMT) information. However, FIR cannot correct for

motion within 1 predefined scan period, and HMT is not readily

available in the clinic since it typically requires attaching a tracking
device to the patient. In this study, we propose a motion correction

framework with a data-driven algorithm, that is, using the PET raw

data itself, to address these limitations. Methods: We propose a

data-driven algorithm, centroid of distribution (COD), to detect head
motion. In COD, the central coordinates of the line of response of all

events are averaged over 1-s intervals to generate a COD trace. A

point-to-point change in the COD trace in 1 direction that exceeded

a user-defined threshold was defined as a time point of head mo-
tion, which was followed by manually adding additional motion time

points. All the frames defined by such time points were recon-

structed without attenuation correction and rigidly registered to a
reference frame. The resulting transformation matrices were then

used to perform the final motion-compensated reconstruction. We

applied the new COD framework to 23 human dynamic datasets, all

containing large head motion, with 18F-FDG (n5 13) and 11C-UCB-J
((R)-1-((3-(11C-methyl-11C)pyridin-4-yl)methyl)-4-(3,4,5-trifluor-

ophenyl)pyrrolidin-2-one) (n 5 10) and compared its performance

with FIR and with HMT using Vicra (an optical HMT device), which

can be considered the gold standard. Results: The COD method
yielded a 1.0% ± 3.2% (mean ± SD across all subjects and 12 gray

matter regions) SUV difference for 18F-FDG (3.7% ± 5.4% for 11C-

UCB-J) compared with HMT, whereas no motion correction (NMC)
and FIR yielded −15.7% ± 12.2% (−20.5% ± 15.8%) and −4.7% ±
6.9% (−6.2% ± 11.0%), respectively. For 18F-FDG dynamic studies,

COD yielded differences of 3.6% ± 10.9% in Ki value as compared

with HMT, whereas NMC and FIR yielded −18.0% ± 39.2% and
−2.6% ± 19.8%, respectively. For 11C-UCB-J, COD yielded 3.7% ±
5.2% differences in VT compared with HMT, whereas NMC and FIR

yielded −20.0% ± 12.5% and −5.3% ± 9.4%, respectively. Conclu-
sion: The proposed COD-based data-driven motion correction
method outperformed FIR and achieved comparable or even better

performance than the Vicra HMT method in both static and dynamic

studies.

Key Words: PET; data-driven; motion detection; motion correction;

event-by-event

J Nucl Med 2020; 61:1397–1403
DOI: 10.2967/jnumed.119.235515

The spatial resolution of PET scanners has improved over the
years. For instance, the dedicated brain scanner high-resolution

research tomograph (HRRT; Siemens) has a resolution of less than

3 mm in full width at half maximum. However, head motion

during brain PET studies reduces image resolution (sharpness),

lowers concentrations in high-uptake regions, and causes bias in

tracer kinetic modeling. Existing motion correction methods in-

clude frame-based image registration (FIR) (1) and correction

using information from real-time hardware-based motion tracking

(HMT) (2). FIR cannot correct for motion within 1 scan period

(intraframe), and HMT is not routinely used in the clinic, since it

typically requires attaching a tracking device to the patient. Thus,

there is a need to develop a robust data-driven approach to detect

and correct head motion.
Several data-driven approaches (3–5) have been proposed. Thielemans

et al. (3) used principal-component analysis, and Schleyer et al.

(6) compared principal-component analysis with an approach that

used total-count changes with the aid of time-of-flight informa-

tion. However, for the real patient studies of Thielemans et al. and

Schleyer et al. (3,6), there lacked a comparison with a gold stan-

dard. In addition, the impact of motion correction on the accuracy

of absolute quantification was not explored by those investigators

(3,6). Feng et al. (5) proposed direct estimation of the head motion

using the second-moment information, with a thorough validation

study remaining to be performed. Additional articles (7,8) should

be consulted to provide the reader with a more complete review.
Here, we propose a data-driven algorithm, centroid of distribu-

tion (COD), to detect head motion and perform motion correction

within the list-mode reconstruction. A similar concept was previ-

ously proposed by other groups (9), and the COD method was also

previously developed for respiratory motion detection (10) and

voluntary body motion detection (11) with the aid of time-of-flight

information. In this paper, we extended the use of COD to a non–

time-of-flight scanner, HRRT, to detect head motion, followed by

event-by-event correction (12). The proposed approach was com-

pared with FIR and HMT using a Polaris Vicra (Northern Digital

Inc.) optical HMT device (13,14). Vicra-based correction provided

continuous head motion monitoring with event-by-event motion
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correction, which can be considered the gold standard. The pro-
posed method was evaluated using both SUV and model-based
quantification measures for 23 human dynamic scans, all contain-
ing large head motion, with 18F-FDG and 11C-UCB-J ((R)-1-((3-
(11C-methyl-11C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)
pyrrolidin-2-one) (15).

MATERIALS AND METHODS

Human Subjects and Data Acquisitions

Twenty-three previously acquired human PET dynamic studies with

2 different radiotracers were analyzed. The subjects belonged to
multiple diagnostic categories. These included 13 with 18F-FDG (in-

jected activity, 184 6 4 MBq) and 10 with 11C-UCB-J (363 6 178
MBq), a novel radiotracer that binds to the synaptic vesicle glycopro-

tein 2A (15), which has shown its potential as a synaptic density
marker in Alzheimer disease (16). The 23 datasets for this study were

chosen by identifying the subjects who exhibited the largest head
motion of 290 examined subjects. The head motion magnitude of

any point within the field of view was determined from the Vicra data
as twice the SD of motion of that point. To describe the motion of the

entire brain, 8 points were selected as the vertices of a 10-cm side-
length cube centered in the scanner field of view. The final motion

magnitude was the average of the values from the 8 points. More
details have been previously published (13). This study was approved

by the Yale University Human Investigation Committee and Radiation
Safety Committee.

A transmission scan, used for attenuation correction, was per-
formed before the PET emission acquisition. For both tracers, dynamic

scans of 90-min duration were performed on the HRRT scanner, with
the Vicra used for motion monitoring. Individual T1-weighted MR

images were segmented using FreeSurfer (17) to generate regions of
interest (ROIs), which were resliced to the individual PET space based

on the MR–PET rigid registration using mutual information.

COD Motion Detection and Event-by-Event

Motion Correction

Head motion information was extracted from the list-mode data
using the COD algorithm. In COD, for every list-mode event i, the line

of response is determined by the pair of detectors. The spatial coor-
dinates of the 2 detectors were recorded in millimeters from the center

of the scanner field of view, and the center of each event’s line of
response, (Xi, Yi, Zi), was determined. The (Xi, Yi, Zi) for each event

was averaged over a short time interval Dt—for example, 1 s in this

study—to generate raw COD traces in 3 directions: CX for lateral, CY

for anterior–posterior, and CZ for superior–inferior; a sample is shown

in Figure 1A. Next, we implemented a semiautomatic motion-detec-
tion algorithm based on the assumption that sharp changes in COD

represent head motion. The detection algorithm included 4 phases (the
Discussion section provides details of the parameter settings in the

algorithm).
The first phase was selection of the COD direction to use for motion

detection. The variance of each COD directional value was calculated
from 2 min after injection until the end of the scan. The direction with

the highest variance was chosen for motion detection (denoted C(t)).
An example is shown in Figure 1, where CZ contained the largest

variance.
The second phase was automatic detection of step motion. In this

phase, the algorithm includes applying a 1-dimension 15-s median filter
to obtain a new trace M(t); determining motion time points (ti, times

when motion occurs) by calculating the forward difference of M(t) (an
example is shown in Supplemental Fig. 1A; supplemental materials are

available at http://jnm.snmjournals.org) asD(t)5M(t1 Dt)2M(t) and
comparing D(t) with a user-defined threshold (as described in the

Discussion section) (if D(t) exceeded the threshold, time t was chosen

as a motion time point and added to a list ti); labeling each frame
between ti and ti11 as a motion-free frame (MFF); and, if a MFF was

shorter than 30 s, excluding data within this frame from further analysis.
This step ensures that the preserved MFFs contain sufficient counting

statistics for later motion estimation.
The third phase was visual assessment of the COD trace to identify

additional motion. Since we considered only forward differences, that
is, an abrupt change in COD over Dt 5 1 s in the second phase, we

may miss motion that was relatively slow, for example, lasting 2–3 s.
For that obvious missed motion, we manually added ti values based on

the visual observation of the COD changes. An example can be found

in Figure 1B.
The fourth phase was detection of slow motion. Some subjects

exhibited slow motion, in which case a ti value was automatically
added in the middle of each MFF that was longer than 10 min (as de-

scribed in the Discussion section).
Because of rapid changes in tracer distribution immediately after

injection, COD alters rapidly. It is therefore challenging for the pro-
posed method to detect motion within very early frames, such as

within the first 2 min after injection (Fig. 1). Thus, we did not attempt
to detect motion during the first 2 min of each study.

An example of the detection results is shown in Figure 1B. The
horizontal lines at the top of the graph define each MFF, and the blue

vertical lines indicate the automatically detected ti values. Gaps in the
horizontal lines at the top indicate frames discarded because of rapid

motion. Green lines show the manually added ti values in the third
phase. As a reference, Supplemental Figure 1B shows the averaged

distance of the 8 vertices of the reference cube (13) in the z direction
in comparison to the position during the transmission scan, computed

from the Vicra information.
Once the ti values were determined, motion between MFFs was esti-

mated and corrected using several steps. The first was to reconstruct each
MFF using ordered-subsets expectation maximization without attenuation

correction. The second was to smooth each MFF reconstruction using

FIGURE 1. (A) COD traces in 3 directions of 18F-FDG study. Arrows

denote abrupt changes in CZ, which indicate head motion. (B) Motion

detection results. Blue vertical lines indicate motion time points (MTPs)

from automated detection, and green vertical lines indicate manually

added points from visual assessment of undetected abrupt changes.

Top horizontal line segments indicate preserved MFF, and short bottom

line segments indicate discarded frames due to overly frequent motion.

1398 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 61 • No. 9 • September 2020

http://jnm.snmjournals.org/


a 3 · 3 · 3 median filter followed by a gaussian filter of 5 mm in full

width at half maximum. The third was to register each MFF image to a
reference frame rigidly, that is, in the first 2 min. The fourth was to

build a motion file for the entire study using each ti and the trans-
formation matrix to be used for all the events between ti and ti11. The

last was to use MOLAR (12) to perform event-by-event motion-com-
pensated ordered-subsets expectation maximization reconstruction (2

iteration ·30 subsets), based on the chosen frame timing. For the COD
method, no change in position is assumed during each MFF; however,

because there may be multiple MFFs within each reconstructed frame,
a final reconstructed frame may include data from multiple poses. In

addition, if any of the discarded frame periods from the second de-
tection phase overlap with each reconstructed frame, that portion of

list-mode data was not included in the reconstruction of that frame.
Therefore, COD results may be slightly noisier than other methods

because of the discarded data.
Between-frame registrations were performed using FLIRT (18)

with normalized mutual information as the similarity metric. Motion
between the transmission and emission scans was corrected through

manual registration between the MFF reference frame (without atten-

uation correction) and the transmission image. This transformation
was incorporated into the motion file (the fourth step, above).

Motion Correction Methods for Comparison

In this study, the COD-based method was compared with conven-
tional FIR and with Vicra-based event-by-event correction, which was

treated as the gold standard. For the FIR method, predefined dynamic
frames (10 · 30 s and 17 · 5 min) were first reconstructed using

ordered-subsets expectation maximization (2 iterations · 30 subsets)
and registered to a reference frame, that is, the first 10 min. For the

Vicra method, subject motion was recorded with a Vicra optical track-
ing system at 20 Hz; that is, a rigid transformation matrix was de-

termined every 50 ms, which was used for motion correction in the
MOLAR reconstruction (12). Thus, all 3 methods used the same re-

construction pipeline with the same frame timing, just with different

motion information, that is, none for FIR, 20 Hz for Vicra, and piece-
wise constant (during each MFF) with possible gaps for COD. For

Vicra, mean position information during the transmission scan was
used for correction between emission and attenuation images. For

FIR, no motion correction (NMC) was performed between emission
and attenuation images, consistent with typical practice.

Image Analysis

Twelve gray matter (GM) ROIs (17) were used to generate time–ac-

tivity curves: amygdala, caudate, cerebellum cortex, frontal, hippocampus,
insula, occipital, pallidum, parietal, putamen, temporal, and thalamus.

The proposed COD-based approach was compared with NMC, FIR, and
Vicra. The mean and SD of the SUV for the 0 to 10 min and the 60 to

90 min frames were computed for all GM ROIs. For each approach, the
MR was registered to each frame, that is, 0–10 min and 60–90 min. For

both 18F-FDG and 11C-UCB-J, tracer concentrations are higher in GM
than in white matter; SUV will therefore typically decrease in GM if

motion is present during the frame and if attenuation correction mis-
match is not considered. The effects of attenuation correction mismatch

can be complicated, depending on the motion direction and tracer dis-
tribution. In other words, a better motion correction method will, in

general, yield higher GM concentrations, unless large motion introduces
inter-GM region-of-interest (ROI) cross talk.

Dynamic analysis was also performed, and the effect of residual
motion was determined by its effect on fits to respective kinetic models.

For both tracers, the time–activity curves (27 frames: 10 · 30 s, 17 ·
5 min) for each ROI were computed for each correction method.

For 18F-FDG, Patlak analysis was performed (19), with t* set to
60 min and a 30-min scan duration being used. The slope Ki was

calculated for each GM ROI. A population-based input function was

used. To generate the population-based input function, arterial plasma
curves (in SUV units) from 40 subjects (not included in this study)

were averaged. The population-based input function was scaled for
each subject using the injected dose normalized by body weight.

For 11C-UCB-J, 1-tissue-compartment-model (20) fitting was ap-
plied to each ROI to generate the distribution volume, or VT—the

tissue-to-plasma concentration ratio at equilibrium, reflecting specific
plus nonspecific binding. The rate of entry of tracer from blood to

tissue, K1, was also estimated. K1 is governed mostly by the early
tracer kinetics, whereas VT is more affected by the late kinetics. Thus,

K1 is more sensitive to head motion in the early frames whereas VT is
affected more by late-frame motion. Metabolite-corrected arterial

plasma curves were used as the input function.
The estimated kinetic parameters were compared between methods,

using Vicra as the gold standard. In addition, the model-fitting
normalized residual error was calculated for each ROI, as follows:

Residual error 5 100%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
i

wiðCTðtiÞ2CTFðtiÞÞ2

+
i

wiC
2
TðtiÞ

vuuuut ;

where i is the frame number index, CTðtiÞ represents the mean ROI

concentration of frame i, CTFðtiÞ is the mean concentration value of
the fitted kinetic model of frame i, and wi is the weighting factor used

in the model fit. Uncorrected motion will cause increased residual
error. Two 11C-UCB-J studies underwent levetiracetam displacement

at 60 min; these 2 studies were excluded from K1, VT, and residual
error calculations.

RESULTS

COD computation time (mean 6 SD) was 9.36 5.1 min using a
single-core 2.4-GHz central processing unit. CX was selected
for automatic detection in 7 subjects, and CZ was selected for the
other 16 subjects. The user-defined threshold in the second step of
the first phase was 0.13 6 0.03 mm (COD units do not correspond
to actual distances) for 18F-FDG and 0.236 0.12 mm for 11C-UCB-
J. The larger threshold variation for 11C-UCB-J was due to greater
variability in injected dose (11C-UCB-J: 3636 178 MBq; 18F-FDG:
184 6 4 MBq). During the 90-min scans, for 18F-FDG, there were
27 6 7 MFFs (41 6 14 for 11C-UCB-J), which included 6.6 6 3.7
manually added MFFs (8.0 6 3.8 for 11C-UCB-J). The fraction of
scan time that was discarded was 6.4% 6 3.5% for 18F-FDG (7.1%
6 5.5% for 11C-UCB-J).
In Figure 2 (18F-FDG), transverse 60 to 90 min SUV images

from 3 subjects are shown. A coronal view of these studies is
shown in Supplemental Figure 2. In terms of SUVmean compared
with Vicra, the 3 subjects yielded 13.0% (ranked 2/13, second
best), 10.6% (6/13), and 22.7% (13/13) for the COD method.
Visually, COD and Vicra yielded very similar images for all 3
subjects. Detailed SUV results are shown in Supplemental Table
1. For the first 10 min, minimal SUV bias was observed among all
methods, thus indicating that motion was minimal during the early
scan. For the 60 to 90 min studies, NMC yielded a large negative
bias (215.7%) in SUV whereas FIR largely reduced the bias to
24.7% across all subjects and regions. The bias was calculated by
averaging the percentage difference between a given method’s
ROI results, for example, NMC, and the Vicra across all the sub-
jects, and these values were then averaged over all the ROIs. The
COD method yielded a positive bias for 9 of 12 ROIs, with the
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mean 1% higher than the Vicra, indicating that an excellent correction
performance was achieved by COD. Furthermore, the ROI-level
mean of intersubject variation (with respect to Vicra) was smallest
for COD (3.2%), compared with FIR (6.9%) and NMC (12.2%).
Time–activity curves for 3 representative ROIs, that is, frontal

(large), thalamus (medium), and hippocampus (small), in the se-
lected subjects are shown in Figure 3. For the first 10 min, the

time–activity curves for all methods highly overlapped, indicating
that minimal motion occurred, consistent with the numeric results
in Supplemental Table 1. For all regions and for most frames, FIR,
though outperforming NMC, yielded time–activity curves that
were noisier and lower in value than those obtained with Vicra.
COD yielded time–activity curves that highly overlapped with
those of Vicra for the first 2 subjects. For the frontal region of
the first subject, COD even exceeded Vicra. For the third subject,
in which COD performed worst, COD was slightly worse than
Vicra and similar to FIR for the last 30 min.
In Figure 4 (11C-UCB-J), the 60 to 90 min transverse SUV

images of 3 subjects are shown, ranking 2, 4, and 9 of 10 in the
COD method in terms of SUVmean bias compared with Vicra. A
coronal view of these studies is shown in Supplemental Figure 3.
Visually, compared with NMC, FIR substantially improved image
sharpness for all subjects. For the third subject, the NMC image
showed the large head motion, which was corrected by FIR. COD
further improved sharpness and quantitation for all subjects. As
compared with Vicra, COD yielded sharper and higher concentra-
tions for the first and second subjects, as can be seen in cortical
regions. For the Vicra method, the reflecting marker occasionally
failed to maintain a rigid attachment to the subject’s head, as may
explain the suboptimal performance of Vicra in these subjects (as
described in the Discussion section). Detailed SUV results are pro-
vided in Supplemental Table 2. For the first 10 min, COD (21.5%)
slightly outperformed FIR (23.4%) in terms of SUV bias compared
with Vicra. For 60–90 min, FIR (26.2%) yielded substantial im-
provement compared with NMC (220.5%), whereas COD
exceeded Vicra by 3.7%. Intersubject SD was smallest in COD

(5.4%), compared with FIR (11.0%) and
NMC (15.8%).
In Figure 5, time–activity curves for the

frontal, thalamus, and hippocampus regions
of the 3 selected subjects in 11C-UCB-J
studies are shown. Consistent with the visual
comparison shown in Figure 4, COD out-
performed Vicra by yielding higher-value
time–activity curves for the first and second
subjects but comparable curves for the third
subject. Bolus injection was used for only
the first 2 subjects, whereas bolus plus in-
fusion was used for the third.
For 18F-FDG dynamic studies, Ki results

are shown in Table 1. NMC yielded a large
negative bias (218%) with very high inter-
subject variation (39%) compared with
Vicra. FIR substantially reduced the bias
and intersubject variation to 22.6% 6
19.8%. The COD method outperformed
FIR, with 13.6% mean bias and 10.9%
intersubject SD. In terms of the residual
error of Patlak fitting, averaging over all
regions and subjects, NMC yielded 4.6%,
FIR reduced the error by half (2.6%)
whereas COD yielded better performance,
comparable to Vicra, at 1.5% versus 1.2%,
respectively. The residual error results are
shown in Supplemental Table 3.
For 11C-UCB-J dynamic studies, K1 and

VT results are shown in Table 2. For all
methods, a very small K1 bias was found

FIGURE 2. Sample slices in SUV units of motion-corrected recon-

structions of 18F-FDG studies (60–90 min). Studies from A, B, and C

ranked 2/13, 6/13, and 13/13 (worst) of COD-based approach, re-

spectively. Subtle motion blur at frontal region (arrow) can be seen

in COD (C).

FIGURE 3. Three time–activity curve examples of 18F-FDG studies for 3 regions (columns).

Studies from A, B, and C ranked 2/13, 6/13, and 13/13 (worst) of COD-based approach,

respectively.
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because K1 is sensitive to motion in the early frames, but there was
minimal motion from 0 to 10 min (Supplemental Table 2). COD
yielded the lowest intersubject variation (1.9%), compared with
FIR (6.2%) and NMC (9.0%). For VT, NMC yielded a large neg-
ative bias and intersubject variation (220.0% 6 12.5%), whereas
FIR showed great improvement in both (25.3% 6 9.4%). COD
yielded higher VT values (3.7% 6 5.2%) than Vicra. Since COD

yielded higher activity values than Vicra in SUV analysis (Sup-
plemental Table 2), VT estimated using COD will be higher, and is
likely to be closer to the truth. In terms of model-fitting residual
error, COD (2.5%) outperformed all other approaches, that is,
NMC (7.3%), FIR (4.6%), and Vicra (2.8%) (Supplemental Table
4). Therefore, COD yielded the best performance in motion cor-
rection for the 11C-UCB-J studies.

DISCUSSION

In this study, we proposed a data-driven head motion detection
method followed by rigid motion correction. The proposed method
was compared with a frame-based image registration method and a
hardware-based event-by-event Vicra method, which was treated
as the gold standard. For 18F-FDG and 11C-UCB-J, the proposed
method outperformed FIR and achieved results comparable to or
better than those of Vicra for both static and dynamic data.
In theory, the Vicra method should yield the best possible per-

formance. However, we found that COD yielded slightly higher
GM SUVs (1% for 18F-FDG, 3.7% for 11C-UCB-J), suggesting
that Vicra HMT was not ideal for this patient cohort with large
head motion. Ideally, the Vicra tool must be rigidly fixed to the
head, but this may fail in several ways. For instance, the tool may
permanently displace from its original location because of im-
perfect fixation. In this study, although we excluded scans con-
taining obvious Vicra failure based on the technologist report,
the positive percentage difference of COD over Vicra indicated
that imperfect Vicra HMT still existed. Thus, the excellent per-
formance by COD showed that a data-driven approach can be as
effective as HMT.

In this study, the COD method discarded
approximately 7% of the counts because of

excessive and frequent motion. In contrast,

Vicra used all the data. If these large-

motion periods affect the Vicra tracking,

such as by introducing nonrigid attachment

between the marker and the subject’s head,

then by excluding the same data, the per-

formance of Vicra may improve. If so, a

hybrid approach, that is, Vicra plus COD,

could be implemented in the future to fur-

ther improve Vicra tracking.
As an alternative to all the aforementioned

approaches, markerless motion tracking us-

ing camera systems requires no attachment

to a patient (21). However, the accuracy of

such methods remains to be thoroughly

tested, since the results can be affected

by nonrigid facial expression changes (21)

and performance may vary for different

populations.
The success of the proposed method can

be tracer-dependent. Here, we used 11C-

UCB-J and 18F-FDG for the following rea-

sons: 18F-FDG is the most clinically used

PET tracer, whereas 11C-UCB-J, as a very

novel tracer, has shown its efficacy for study-

ing multiple neurologic disorders (16,22) and

has great potential for wider clinical and re-

search use. In addition, the 20-min half-life of
11C added a challenge for the COD algorithm

FIGURE 4. Sample slices in SUV units of motion-corrected recon-

structions of 11C-UCB-J studies (60–90 min). Studies from A, B, and C

ranked 2/10, 4/10, and 9/10 of COD-based approach, respectively. Ar-

rows in A and B point to cortical regions, where COD showed sharper

and higher concentration values than Vicra. Arrows in C show large

magnitude of head motion in this subject.

FIGURE 5. Three time–activity curve examples of 11C-UCB-J studies for 3 regions (columns).

Studies from A, B, and C ranked 2/10, 4/10, and 9/10 of COD-based approach, respectively.

Subject A used bolus injection and underwent displacement at 60 min. Subject B used bolus

injection, whereas C used infusion paradigm.
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because of the high-noise condition for the late scan frames. How-
ever, we note that both tracers have a broad distribution in the
brain, with patterns that do not vary substantially over time. This
characteristic could make the image-registration step more robust
than for tracers with a heterogeneous and time-varying distribu-
tion, such as 11C-raclopride. In the future, we will evaluate COD
with a wider variety of tracers.
In this implementation of the algorithm, several user-defined

parameters were applied: the length of the median filter applied to

the COD trace, the threshold for motion determination, the
minimum duration of an MFF, the 5-min maximum length of an

MFF for slow-motion detection, and the smoothing kernel for

MFF reconstructions. These parameters were chosen empirically.

Here, we clarify the rationale behind the choice of parameters for

this algorithm: a 5-min maximum MFF was chosen as a tradeoff

among the sensitivity to slow motion, the computational cost, and

the registration accuracy, which is affected by noise and tracer

distribution change. The 30-s shortest MFF was chosen to be the

same length as the shortest dynamic frame. Another choice could

be a count-level based approach, in which the threshold could be

based on the minimal number of counts for each MFF. The 15-s

median filter and threshold were tested against human detection of

the abrupt changes in the COD curve for the same studies, and we

adjusted the threshold to best match the human observations. In

addition, in this study, we did not evaluate how much of the good

performance of the COD method was due to manually added MFFs.

In the future, further optimization of each parameter is required.
There are other limitations to this study. First, the COD method

cannot accurately detect motion early after injection because of

rapid changes in tracer distribution; therefore, data-driven motion

correction during this period will remain challenging. Also, here

we used list-mode reconstruction, but our approach can be ex-

tended to sinogram-based reconstruction (23) with minimal mod-

ification. In addition, we compared the COD-based approach with

conventional FIR, in which each frame was reconstructed with

attenuation correction. Thus, FIR suffered from not only intra-

frame motion but also attenuation mismatch artifacts. To minimize

the latter effect, motion estimation could be performed using im-

ages without attenuation correction (13,24). In this study, we did

not compare our approach with other data-driven approaches (3–

5); such a comparison is important to clarify what method will

provide the most robust and accurate method for motion detection

and correction. The current detection method may detect some

TABLE 1
18F-FDG Ki Difference (%) Compared with Vicra

Site NMC FIR COD

Amygdala 18.0 ± 60.4 −5.8 ± 22.4 3.1 ± 11.3

Caudate −11.3 ± 39.0 −0.8 ± 29.8 6.3 ± 18.2

Cerebellum −21.9 ± 38.2 −2.1 ± 12.4 2.6 ± 9.8

Frontal −36.0 ± 43.4 −2.6 ± 25.4 8.5 ± 12.0

Hippocampus −4.3 ± 40.9 −5.6 ± 19.7 −2.5 ± 13.3

Insula −11.7 ± 19.3 −3.9 ± 14.1 4.7 ± 8.1

Occipital −19.3 ± 27.5 3.4 ± 19.7 7.5 ± 11.8

Pallidum −9.4 ± 47.6 0.2 ± 15.2 0.9 ± 12.9

Parietal −27.6 ± 40.9 −1.4 ± 19.3 3.6 ± 8.6

Putamen −35.0 ± 48.3 −1.3 ± 23.9 6.0 ± 9.7

Temporal −27.5 ± 27.6 −3.6 ± 16.4 3.9 ± 7.4

Thalamus −30.3 ± 38.0 −8.4 ± 19.0 −0.9 ± 7.3

Average
difference (%)

−18.0 −2.6 3.6

Average SD (%) 39.2 19.8 10.9

SD is across all subjects.

TABLE 2
11C-UCB-J K1 and VT Difference (%) Compared with Vicra

Parameter
NMC FIR COD

K1 VT K1 VT K1 VT

Amygdala 0.8 ± 10.4 −24.6 ± 13.0 −1.2 ± 7.6 −7.5 ± 12.5 −0.7 ± 2.7 5.0 ± 6.2

Caudate −3.5 ± 11.3 −29.9 ± 12.6 −3.9 ± 7.2 −6.6 ± 8.6 −0.8 ± 2.0 5.4 ± 5.3

Cerebellum 0.0 ± 5.5 −10.4 ± 9.9 −0.8 ± 3.6 −4.6 ± 6.8 −0.4 ± 1.5 2.1 ± 4.4

Frontal 1.2 ± 12.8 −37.8 ± 12.9 −3.1 ± 8.0 −5.2 ± 8.7 0.3 ± 1.1 3.5 ± 2.9

Hippocampus −4.3 ± 6.7 −14.0 ± 12.9 −1.5 ± 6.5 −6.1 ± 10.2 0.5 ± 2.2 3.6 ± 5.7

Insula 2.1 ± 9.4 −21.1 ± 11.5 −0.7 ± 5.4 −6.7 ± 7.5 0.4 ± 0.7 2.1 ± 3.5

Occipital 0.3 ± 6.8 −10.5 ± 12.8 −0.3 ± 4.5 −0.6 ± 10.9 −0.9 ± 2.5 6.2 ± 7.5

Pallidum −0.7 ± 6.4 7.7 ± 19.3 −0.2 ± 7.1 −5.1 ± 10.5 0.4 ± 3.2 0.5 ± 7.0

Parietal 0.2 ± 10.5 −25.8 ± 10.3 −1.6 ± 6.5 −1.3 ± 11.2 −0.8 ± 2.4 5.5 ± 6.2

Putamen 1.3 ± 8.5 −29.9 ± 9.7 −1.2 ± 5.2 −7.8 ± 7.3 0.2 ± 1.1 2.5 ± 4.2

Temporal 0.8 ± 10.9 −27.2 ± 10.9 −1.1 ± 6.2 −5.6 ± 12.7 −0.1 ± 1.8 5.8 ± 5.6

Thalamus −2.4 ± 8.7 −16.7 ± 14.8 −2.2 ± 6.3 −6.0 ± 5.6 −0.6 ± 1.7 2.4 ± 4.2

Average difference (%) −0.5 −20.0 −1.5 −5.3 −0.2 3.7

Average SD (%) 9.0 12.5 6.2 9.4 1.9 5.2

SD is across all subjects.
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false-positive motion (in the absence of motion) purely due to
noise in the COD. However, such false-positive detected motion
should not substantially affect the reconstruction results despite
the fact that small errors may still occur since the registration is
subject to image noise. In addition, false-positive detection could
also occur because of very rapid tracer kinetics.

CONCLUSION

We proposed a data-driven method to detect head motion
followed by rigid motion correction. The proposed method was
compared with a frame-based image registration method and the
hardware-based Vicra method. For both 18F-FDG and 11C-UCB-J,
the proposed method outperformed FIR and achieved results com-
parable to or better than those for Vicra in both static and dynamic
studies.
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KEY POINTS

QUESTION: Can a data-driven head motion correction method

achieve performance similar to that of HMT?

PERTINENT FINDINGS: In a dynamic PET study of subjects with

large head motion using 18F-FDG (n 5 13) or 11C-UCB-J (n 5 10),

both static and dynamic measures showed that the proposed

data-driven head motion detection and correction method yielded

results comparable to or better than those of the hardware-based

approach.

IMPLICATIONS FOR PATIENT CARE: Data-driven head motion

correction can be reliably performed for clinical or research brain

PET scans for tracers with broad distributions.
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