


accumulation and the sensing of specific enzyme activity to the

selective binding of upregulated proteins on cancer cells (Supple-

mental Table 2) (1,2,12). Lymph node–seeking agents such as radio-

colloids are used to highlight sentinel lymph nodes (SLNs) as part

of cancer staging (13). The multifunctionality of colloidal and nano-

particles is attractive for both active and passive targeting of tumors

for image-guided surgery. The excitement about the targeting of
imageable cancer biomarkers has stimulated interest in the devel-

opment of many radiopharmaceuticals and fluorescent dye conju-

gates of tumor-targeting small molecules, peptides, and antibodies

(12,14). In general, contrast agents that have short half-lives (min-

utes) may not be suitable for MIGS for logistic reasons, including

time from the imaging suite to the OR. An ideal agent for surgical

guidance is expected to accumulate rapidly in tumors, have high

tumor-to-background contrast, and be retained in this state for at

least 4 h. The ability to optimize the pharmacokinetics of small- and

medium-sized molecules such as peptides (15–17) and antibody

fragments (18) makes them attractive for this purpose. Although

some researchers have argued against the use of antibodies for

imaging applications because of the long circulation time (up to

7 d), recent studies have leveraged the exceptional high tumor-as-

sociated receptors to identify small lesions (19). Moreover, with

improved dosing regimens, these molecules can provide adequate

tumor-to-background contrast within a few hours after injection. To

synergize the strengths of different imaging modalities, multimodal

contrast agents are beginning to find their way into the OR (1,20).

This trend bodes well for oncologic surgery, as the combination of

deep-tissue profiling to assess the extent of tumor infiltration and

highly sensitive detection schemes for superficial lesions will enable

rapid identification of cancer boundaries. In the future, we expect

the integration of endogenous with exogenous contrast mechanisms

to further improve the accuracy of cancer surgery and real-time

assessment of surgical margins.

DEVICES

The current standard of care requires surgeons to rely on visual
inspection, palpation, and tactile evaluation to identify cancer. Image

guidance would accelerate tumor identification and provide informa-

tion about possible infiltration, thereby enhancing the ability to

achieve a microscopically margin-negative (R0) resection with high

reproducibility, ease of use, and enhanced throughput. However, the

evolving landscape of surgical precision and rigor requires accurate

and efficient removal of tumors with negative margins. These cells

are typically microscopic and invisible to the naked eye. In some

tumor types, intraoperative assessment of surgical margins further

drives high contrast and quantitative invasive techniques to improve

surgical outcomes. Sensing this opportunity, many research groups

and companies are developing small-footprint imaging systems for

guiding oncologic surgery. Whereas g-cameras are optimized for

detecting radioactivity in the OR, detectors used in optical and

ultrasound imaging are diverse, differing in the sensor and the

wavelength ranges captured to the system configurations (Fig.

2), which determine MIGS sensitivity, user experience, and clin-

ical adoption potential.

Standalone
Standalone configurations are the most common design of

MIGS systems (Supplemental Table 3). They typically use an

articulating arm supporting illumination (in the case of optical)

and detection hardware, with image-processing and display

hardware integrated in a wheeled tower (19,21–23). Their fixed

arm position simplifies image alignment but provides only a top-

down field of view that requires surgeons to mentally correlate the

displayed molecular information to the anatomic region of interest

(ROI). Remote image display also forces surgeons to transiently

look away from the surgical bed, a subtle distraction that cumulatively

prolongs surgery. To address these issues, systems that project molec-
ular information directly on the anatomic ROI have been developed

(24). The simple design and image display of this platform is attractive

for MIGS, but the large size disrupts surgical workflow in the current

form. Future miniaturization of the system will overcome this imped-

iment and reduce cost.

Handheld
Handheld devices use a miniature, portable imaging-hardware

configuration that performs image processing and display on a

wheeled tower. Their design allows easier surgical workflow

integration and access for hard-to-reach anatomic ROIs than do

fixed standalone systems. A variety of these systems is currently

commercially available for MIGS (Supplemental Table 3). These

devices are generally less expensive than the standalone systems

and provide an intuitive user experience (21,25–27). However, the

system does not support hands-free surgery, implying that the

operation will stop when the system is used by the operating

surgeon. Furthermore, when held by a surgical team member or

fixed to an articulating arm, the image and the surgeon’s field of

view are mismatched. Familiarity with the system improves the

ease of use and adoption.

Wearable
Wearable devices use miniaturized imaging detectors, powerful

processors, and fast image-processing to display real-time molec-

ular information to surgeons via head-mounted displays. Direct

projection of the molecular information to the surgeon’s field of

view enables seamless integration to the intraoperative surgical

workflow (28,29). Head-mounted displays are increasingly used

FIGURE 2. Design conÞgurations for molecular image–guided surgical
devices, including standalone (22), handheld (25), wearable (arrow) (28),
minimally invasive (30), and robotic (36).
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MIGS (2–4). Many sources and mechanisms of contrast are available

for optical imaging methods, leading to the development of different

techniques for this modality (Fig. 4). Below, we have highlighted the

methods that are widely used in MIGS while acknowledging that other

newer methods are equally valuable.

Fluorescence
Autofluorescence. Autofluorescence imaging takes advantage of

naturally occurring fluorophores in the body, whose differential

expression in healthy and cancerous tissue provides contrast for

surgical guidance (Supplemental Table 5). Unlike methods that

rely on exogenous contrast agents, the path to clinical use of

autofluorescence-guided surgery is simpler, with instrument

optimization and data analysis methods as the primary optimiza-

tion task. Autofluorescence has seen strong application in detect-

ing head and neck cancers, especially in the oral cavity, by

visualizing loss of signal in cancerous tissue due to altered

metabolism (7). This principle enabled the use of a simple hand-

held autofluorescence imaging device to accurately detect oral

cancer in a pilot human study with high accuracy (47). Autofluor-
escence-guided surgical resection of oral cancer in a large single-
center trial detected occult precancerous lesions that were missed
by the operating surgeon and significantly reduced the locore-
gional rate of recurrence in patients with high-grade and early-
stage oral cancer, compared with conventional surgery (Fig. 4)
(48). Two-channel autofluorescence of dihydronicotinamide ade-
nine dinucleotide (NADH) and flavin adenine dinucleotide (FAD)
has also been used to accurately delineate a boundary between oral
cancer or precancerous lesions and healthy oral mucosa using
NADH/FAD and redox ratio (49). An emerging application of
autofluorescence is in lung cancer, for which a differential
NADH/FAD intensity ratio was observed in lung cancer versus
normal tissue in preserved patient surgical samples (8). Autofluor-
escence video bronchoscopy has emerged as a new tool for lung
cancer detection (50), has been shown to reveal a significantly
larger tumor extent, and has influenced changes in treatment de-
cisions in lung cancer patients when compared with conventional
white-light video bronchoscopy (51). This technique was recently
used to guide surgical resection in lung cancer and detected
cancerous tissue with higher sensitivity than white-light video
bronchoscopy, influencing changes in surgical decisions, and im-
proving treatment outcomes (52,53). Autofluorescence of frozen
brain tumor biopsy samples allowed a combination of 3 molecular
ratios to distinguish glioblastoma from healthy control tissue with
high sensitivity and specificity, which were further improved
through a combination of fluorescence lifetime, a measure of how
long a fluorophore remains in the excited state before returning to
the ground state after emitting a photon, with NADH/FAD and
porphyrin/NADH autofluorescence (54).
Exogenous Fluorescence. Exogenous fluorescence imaging uses

externally administered targeted fluorescent agents that accumu-
late in the anatomic ROI. The availability of a large selection of
contrast agents (55) and devices (21) makes exogenous MIGS
widely available to clinicians (Supplemental Table 5). Its clinical
impact was first demonstrated using 5-aminolevulinic acid, which
is a natural visible-range (350–700 nm) fluorophore that accumu-
lates in glioblastomas (56,57). 5-aminolevulinic acid fluorescence
MIGS increased progression-free survival in glioblastoma patients
(58) and has become the standard of care across European coun-
tries. Acriflavine and its principal component proflavine have been
applied for oral cancer detection using high-resolution microendo-
scopy (59,60). Combination of wide-field autofluorescence imag-
ing with proflavine-enhanced high-resolution microendoscopy has
enabled investigators to scan wide areas for suggestive lesions,
and then further examine the nuclear-to-cytoplasmic ratio within
a small area using high-resolution microendoscopy for added
specificity in detecting oral neoplasia (61–63). Folate receptor-a
conjugated fluorescein isothiocyanate was used to target epithelial
ovarian cancers in human patients, and targeted fluorescence in
ovarian and breast cancer tissue was observed intraoperatively
(64,65) and enabled the identification of ovarian cancer lesions
not detectable by the naked eye (65). It has also been successfully
used for lung cancer identification intraoperatively (66). Fluores-
cein has been used to guide resection of high-grade gliomas, as it
was found to accumulate in glioma tissue (67). Visible-dye con-
jugates for MIGS are advantageous because they are readily ac-
cessible and clinically translatable because of previous use in
human patients, and the shallow penetration of light in this region
allows visualization of lesions closer to the tissue surface without
interference from uninvolved deep fluorescent tissue. However,

FIGURE 4. Optical guided surgery: schematic representation (A) and
clinical examples of surgical guidance using autoßuorescence imaging
(48) (B), exogenous ßuorescence imaging (22) (C), Raman scattering (36)
(D), and diffuse reßectance spectroscopy (84) (E). a.u5 arbitrary units;
FV 5 ßuorescence visualization; WL 5 white light.
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faster than the speed of light (90). Most PET radiotracers can

generate Cerenkov luminescence with a maximum emission in-

tensity at 350 nm, thus allowing only superficial imaging. Additionally,

Cerenkov photons are about 1,000 times weaker than commonly

used fluorophores and can be imaged only by using long integra-

tion times with surgical lights turned off. Cerenkov luminescence

imaging does not need an excitation light source, thereby enhanc-

ing the detection of the weak light from deep tissue similar to

bioluminescence imaging. Cerenkov luminescence imaging has

enabled tumor resection assessment in breast cancer patients

(91) and endoscopic detection of gastrointestinal cancers (92).

By leveraging the light from radionuclides used in the standard

of care, Cerenkov luminescence imaging does not add to the cost

of radiopharmaceuticals. It is conceivable that the same system

might be used for both preoperative and intraoperative imaging,

particularly for shallow tumors. The high spatial resolution of the

optical cameras could further report the

extent of cancer heterogeneity, allowing

the surgeon to provide additional informa-

tion to a pathologist on special features of

the lesion. Despite these advantages, the

optical imaging sensors are optimized in

the visible and NIR regions of light, where

the photon counts for this technique are low.

For an intraoperative device, it may be valu-

able to harvest the largely unused photons in

the ultraviolet region via down-conversion

of nanoparticles for improved Cerenkov lu-

minescence imaging.

Photoacoustics
Photoacoustic imaging uses a short-

pulsed laser to excite intrinsic or extrinsic

absorbers, which can undergo thermoelastic

expansion after optical absorption and gen-

erate a pressure wave detectable by an

ultrasound transducer (Fig. 5). It combines

the high resolution of optical imaging with

the depth penetration of ultrasound (93,94).

This technology has been used in the clinic

for breast tumor margin assessment (93–

96), SLN mapping and assessment of the

metastatic status in breast cancer (97), mel-

anoma resection (98), and neurovascular

bundle identification during prostate surgery

(Supplemental Table 6) (99). Photoacoustic

microscopy has also been used for label-free

evaluation of breast tumor margins, with

images that were comparable to processed

histology slides (96). Recent studies have

extended intraoperative photoacoustic imag-

ing to colon and ovarian cancers, yielding a

wealth of information for determining

whether a tumor is benign or malignant

based on tumor-associated vascularity and

hypoxia (100,101). The seamless interplay

between contrast provided by endogenous

and exogenous contrast sources further en-

hances the quality and content of informa-

tion derived from this method. Furthermore,

the rapid image-processing features of new systems have boosted

real-time image acquisition and display, which will accelerate clin-

ical decisions in the OR. As newer handheld and cheaper systems

continue to emerge, the full potential of this technology for image-

guided surgery will be achieved. Still, the technology is more ex-

pensive than simple fluorescence MIGS systems. In addition, trans-

mission of sound requires direct contact of the probe with tissue, a

condition that may not be feasible in some surgical situations.

Nuclear Fluorescence
Nuclear and fluorescence imaging methods have complemen-

tary properties to capture quantitative depth-independent nuclear

information with high-resolution, real-time fluorescence images

(102). This approach enables both diagnostic imaging for surgical

planning and intraoperative surgical guidance (Fig. 5). A variety

of methods are available to achieve a complementary effect. An

obvious case is to combine the exogenous radiotracers with

FIGURE 5. Multimodal guided surgery: schematic representation (A) and clinical examples of
surgical guidance using Cerenkov luminescence imaging (91) (B), photoacoustic imaging (97) (C),
nuclear-ßuorescence imaging (105) (D), and multimodal optical imaging (112) (E). AU5 arbitrary
units; PA 5 photoacoustic; SNR 5 signal-to-noise ratio; US 5 ultrasound.
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endogenous tissue autofluorescence for presurgical or deep-tissue

imaging and real-time tumor boundary assessment, respectively,

in the OR. Alternatively, a radiotracer can be mixed with a fluo-
rescent molecule that targets the same tissue to achieve depth-

independent cancer localization and real-time, high-resolution

fluorescence-guided tumor resection. If both imaging agents are

approved for clinical use, the path to clinical translation is less

challenging than when new contrast agents are used (Supplemen-

tal Table 6). This method was first demonstrated using indocya-

nine green–99mTc-nancolloid for preoperative SPECT/CT and

intraoperative g- and NIR fluorescence imaging during laparo-

scopic SLN mapping in prostate (103,104), head and neck

(104,105), melanoma (104,106), penile (104), and vulvar cancer

(104) surgeries. It consistently detected more SLNs than blue dye

tracking alone for a variety of cancers (104). Although this method

is effective for SNL identification and biopsy, the disparate bio-

distribution profiles of each agent may decrease the accuracy of

colocalizing the images for tumor resection. A widely used ap-

proach to overcome this disparity is conjugation of the radionu-

clide and the fluorescent dye to a tumor-targeting carrier. Recently,
111In-DOTA-girentuximab-IRDye800CW was successfully used

for preoperative SPECT/CT-based tumor localization and intrao-

perative g-fluorescence imaging for tumor margin assessment of

clear cell renal cell carcinoma (107). 68Ga-IRDye800CW-BBN

has also allowed accurate glioblastoma detection and showed an

excellent correlation between preoperative PET and intraoperative

fluorescence signal localization (108). Multimodal imaging has

also been adapted for robotic surgery using an innovative drop-

in laparoscopic g-detector that improved SLN detection sensitivity

in prostate cancer patients (6). The future of this MIGS strategy

remains bright as more handheld or wearable devices capable of

capturing both nuclear and optical signals become available, pro-

viding a single system for acquiring presurgical, intraoperative,

and postsurgical images of anatomic ROIs.

Multimodal Optical
Multimodal optical imaging combines optical modalities for

accurate disease detection intraoperatively (Fig. 5; Supplemental

Table 6). Reflectance spectroscopy imaging was coupled with

fluorescence polarization imaging for accurate delineation of basal

cell carcinoma (109). Multimodal polarization, reflectance, and

fluorescence imaging methods were also used for intraoperative

detection of breast cancer (110). Trimodal optical imaging pro-

vided identification of oral cancer (111) using autofluorescence

spectroscopy, diffuse reflectance spectroscopy, and light-scattering

spectroscopy. A combination of exogenous fluorescence and pho-

toacoustic imaging has been used for intraoperative detection of

pancreatic cancer (112). Multimodal optical approaches have a

high potential impact on intraoperative surgical guidance based

on simpler hardware, high resolution, and their ability to make use

of many different sources of contrast depending on the optical

modality and type of contrast used. We expect multimodal optical

approaches to continue impacting this field and enable multi-

plexed surgical guidance, including identification of tumors, vas-

culature, nerves, and other important anatomy simultaneously.

CONCLUSION

MIGS is already improving surgical outcomes through nuclear
imaging modalities that have been the standard of care for several
subspecialties. As optical imaging matures further, more optical

modalities will be available to clinicians for use in their practice
and research, fueling the next wave of surgical innovation.
Adoption of multimodal approaches may be expected to increase
because of multidimensional information streams and potential
combination with machine-learning algorithms to gain new
insights to deliver better patient care. MIGS surgery will continue
to play a critical role as the state of the art in surgical practice
evolves in the future.
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