
Preclinical PERCIST and 25% of SUVmax Threshold:
Precision Imaging of Response to Therapy in Co-clinical
18F-FDG PET Imaging of Triple-Negative Breast Cancer
Patient–Derived Tumor Xenografts

Madhusudan A. Savaikar1, TimothyWhitehead1, Sudipta Roy1, Lori Strong1, Nicole Fettig1, Tina Prmeau2, Jingqin Luo3,
Shunqiang Li2, Richard L. Wahl1, and Kooresh I. Shoghi1,4

1Department of Radiology, Washington University School of Medicine, St. Louis, Missouri; 2Division of Oncology, Department of
Medicine, Washington University School of Medicine, St. Louis, Missouri; 3Department of Surgery, Washington University School of
Medicine, St. Louis, Missouri; and 4Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri

Numerous recent works highlight the limited utility of established

tumor cell lines in recapitulating the heterogeneity of tumors in pa-
tients. More realistic preclinical cancer models are thought to be

provided by transplantable, patient-derived xenografts (PDXs).

The inter- and intratumor heterogeneity of PDXs, however, presents

several challenges in developing optimal quantitative pipelines to
assess response to therapy. The objective of this work was to de-

velop and optimize image metrics for 18F-FDG PET to assess

response to combination docetaxel and carboplatin therapy in a

co-clinical trial involving triple-negative breast cancer PDXs. We
characterized the reproducibility of standardized uptake value

(SUV) metrics to assess response to therapy, and we optimized a

preclinical PERCIST paradigm to complement clinical standards.

Considerations in this effort included variability in tumor growth rate
and tumor size, solid tumors versus tumor heterogeneity and a

necrotic phenotype, and optimal selection of tumor slices versus

whole tumor. Methods: A test–retest protocol was implemented
to optimize the reproducibility of 18F-FDG PET SUV thresholds,

SUVpeak metrics, and preclinical PERCIST parameters. In assessing

response to therapy, 18F-FDG PET imaging was performed at base-

line and 4 d after therapy. The reproducibility, accuracy, variability,
and performance of imaging metrics to assess response to therapy

were determined. We defined an index called the Quantitative Re-

sponse Assessment Score to integrate parameters of prediction

and precision and thus aid in selecting the optimal image metric
to assess response to therapy. Results: Our data suggest that a

threshold of 25% of SUVmax (SUV25) was highly reproducible (,9%

variability). The concordance and reproducibility of preclinical PER-
CIST were maximized at α 5 0.7 and β 5 2.8 and exhibited a high

correlation with SUV25 measures of tumor uptake, which in turn

correlated with the SUV of metabolic tumor. Conclusion: The

Quantitative Response Assessment Score favors SUV25 followed
by SUVpeak for a sphere with a volume of 14 mm3 (SUVP14) as

optimal metrics of response to therapy. Additional studies are war-

ranted to fully characterize the utility of SUV25 and preclinical PER-

CIST SUVP14 as image metrics for response to therapy across a
wide range of therapeutic regimens and PDX models.
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Co-clinical trials are an emerging area of investigation in
which a clinical trial is coupled with a corresponding preclinical

trial to inform the corresponding clinical trial (1–7). The preclin-

ical arm of the co-clinical trial generally uses genetically engi-

neered mouse models of human cancer or patient-derived

xenografts (PDXs) to aid in assessing therapeutic efficacy, strati-

fying patients, and designing optimal treatment strategies (8,9).

The emergence of genetically engineered mouse models and

PDXs as co-clinical platforms is largely motivated by the realiza-

tion that established cell lines do not recapitulate the heterogeneity

of human tumors or the diversity of tumor phenotypes (10) and

that better oncology models are needed to support high-impact

translational cancer research. To that end, the NCI Patient-Derived

Models Repository (https://pdmr.cancer.gov), the EuroPDX Con-

sortium (https://www.europdx.eu), academic institutions, and nu-

merous commercial entities have launched wide-ranging PDX and

genetically engineered mouse model repositories to advance the

biologic and molecular basis for cancer prevention and treatment

toward realization of precision medicine. Importantly, the Na-

tional Cancer Institute recently launched the Co-Clinical Imaging

Research Resources Program Network (https://nciphub.org/

groups/cirphub) to advance the utility of oncology models of hu-

man cancers in preclinical imaging.
The use of PDXs in preclinical imaging offers numerous

advantages in translational imaging research. Chief among them

is retention of human tumor heterogeneity, which can be exploited

to develop image metrics for heterogeneity and response to

therapy. Unlike established tumor cell lines, PDXs also exhibit

significant variability in growth profiles both within and between

patient-generated PDXs. In addition to biologic variability (due to

genotypic variability), the gross phenotype of PDX tumors is also

highly variable, with some exhibiting a necrotic phenotype. Clinically,
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patients with triple-negative breast cancer (TNBC) have shown high
sensitivity to the addition of carboplatin to anthracycline and taxane-
based neoadjuvant chemotherapy (11). With that in mind, we designed
a co-clinical trial to assess the efficacy of 18F-FDG PET in predicting
response to docetaxel and carboplatin therapy (Fig. 1A, ClinicalTrial.gov
identification number NCT02124902). The clinical arm aims to predict
the response to a combination of docetaxel and carboplatin therapy
using 18F-FDG PET. The preclinical arm uses tumor biopsies derived
from patients in the trial to generate PDXs, which are then used, among
other objectives, to optimize 18F-FDG PET imaging biomarkers of re-
sponse to therapy.
Through this framework, we identified 6 TNBC subtypes,

including 2 basallike subtypes, an immunomodulatory subtype, a
mesenchymal subtype, a mesenchymal stem–like subtype, and a
luminal androgen receptor subtype (Supplemental Fig. 1; supple-
mental materials are available at http://jnm.snmjournals.org). A
subset of these PDXs was used to develop optimal quantitative
imaging strategies to assess the response to combination docetaxel
and carboplatin therapy in TNBC PDXs. We characterized the
reproducibility and precision of SUV metrics to assess therapeutic
response, and we optimized a preclinical PERCIST paradigm to
complement clinical PERCIST standards (12). The performance
of SUV quantiles for the whole tumor, a high-intensity single
slice, SUVmax, and SUVpeak to assess response to therapy was
determined. This work addressed a central effort within the imag-
ing community and the National Cancer Institute to reach a con-
sensus on the reproducibility and utility of imaging metrics for
response to therapy in oncology animal models.

MATERIALS AND METHODS

Generation of TNBC PDXs

Gene expression analyses of 93 TNBC PDXs (29,657 unique genes

and probes) was performed to identify 6 TNBC subtypes, including 2
basallike subtypes, an immunomodulatory subtype, a mesenchymal

subtype, a mesenchymal stem–like subtype, and a luminal androgen
receptor subtype (Supplemental Fig. 1) as described previously (13).

Details on the animals, surgeries, and tumor xenografts were reported

previously (14). All animal experiments complied with the Guidelines
for the Care and Use of Research Animals established by Washington

University’s Animal Studies Committee.

Characterization of PDX Tumor Growth

After inoculation, the mice were examined 3 times per week for

palpable tumors. When a palpable tumor was observed, caliper
measurements were made of the major (length) and minor (width)

axes biweekly. Tumor volume was calculated as 1/6 · length · width2.
The natural growth curves were constructed for each PDX subtype

using the daily average and SD for all mice. Tumor size doubling

times were determined using the exponential growth region for each
mouse individually. The time scale was shifted to the start of expo-

nential growth, and the tumor volumes were normalized to the volume
at that time. The mean logarithm of volume fold change from start of

exponential growth was plotted against time in exponential growth,
and the doubling time was calculated from the slope.

Preclinical Studies

Three distinct experiments were performed. In the first, test–retest

studies were performed on consecutive days (Day 1 vs. Day 2) to
assess the reproducibility of PET image metrics. Typically, 8–12

PDX mice for each TNBC subtype were used in the study. Care
was taken to repeat the exact imaging conditions on days 1 and 2,

including the scanner utilized. In total, 46 PDX mice were used in this
cohort.

In the second experiment, a cohort of 8 PDX (n 5 8) was used to
assess the impact of animal handling and imaging on survival using

the study design depicted in Figure 1A. A separate cohort of 8 PDX
mice (n 5 8) was administered treatment weekly, but no imaging was

performed. Our results suggested that repeat imaging impacted sur-
vival (Supplemental Fig. 2), and for that reason we excluded an 11-d

imaging time point from the study design. Previous studies have re-
ported that animal handling has dramatic effects on the biodistribution

and image metrics for 18F-FDG uptake (15). This observation has
broad implications in developing best practices for therapeutic imag-

ing studies, as it suggests that in designing preclinical therapeutic-
imaging protocols, the complexity of a combined therapeutic-imaging

FIGURE 1. Co-clinical study design and heterogeneity of PDXs. (A) PDXs were generated from patient biopsies derived at baseline. In a preclinical

arm, after baseline imaging, PDXs were treated weekly for 4 wk. Tumor volumes were measured by calipers biweekly. Initially, we tested mid-therapy

imaging at 4 and 11 d after baseline. In therapy arm, only 4-d time point was used. (B) Growth profile of immunomodulatory, basallike, mesenchymal,

and luminal androgen receptor subtypes. (C) Log of volume fold change from start of exponential growth. (D) Histogram of tumor volumes for

subtypes used in test–retest studies. B5 baseline; BL15 basallike subtype 1; BL2 5 basallike subtype 2; F3 5 third generation of PDX from original

(F0) PDX; IM 5 immunomodulatory; LAR 5 luminal androgen receptor; ln 5 natural logarithm; M 5 mesenchymal; “M” 5 measured; NP 5 necrotic

phenotype; Tx 5 treatment; T2x 5 doubling time; μ 5 preclinical.

CO-CLINICAL IMAGING • Savaikar et al. 843

http://ClinicalTrial.gov
http://jnm.snmjournals.org/


study should be minimized so as not to impact the overall objectives of

a given investigation.
The third experiment involved a therapeutic arm with imaging. The

study design of the therapeutic arm is depicted in Figure 1A.
Preclinical imaging was performed at baseline and 4 d after therapy.

In all therapeutic studies, docetaxel (20 mg/kg intraperitoneally) and
carboplatin (50 mg/kg intraperitoneally) were administered at baseline

(after imaging) and weekly for 4 wk. Tumor volumes were measured
biweekly as a surrogate measure of response to therapy.

Preclinical Imaging and Image Analysis

Four hours before the imaging session, food was removed from the

metabolism cages, whereas water was given ad libitum. The mice

were anesthetized with 2%–2.5% isoflurane by inhalation via an in-

duction chamber. Anesthesia was maintained throughout the imaging

session by delivering 1%–1.5% isoflurane via a custom-designed nose

cone. A heat lamp was used to maintain body temperature. The mice

were injected with 18F-FDG (6.66–8.14 MBq) by the tail vein imme-

diately before a dynamic small-animal PET acquisition from 0 to

60 min. PET images were acquired on a microPET Focus 220 scanner

(Concorde Microsystems Inc.) or on an Inveon small-animal PET/CT

scanner (Siemens Medical Solutions), and the CT images were ac-

quired on the Inveon. CT-based attenuation correction was used. The

PET scanners were cross-calibrated according to our standard operat-

ing procedures.
Data from 50 to 60 min after injection of 18F-FDG were used in the

analysis. The PET/CT image data from all mice were processed in 2

steps. In the first step, the coregistered PET/CT images were analyzed

using the Inveon Research Workplace software (Siemens Health-

care). Regions of interest (ROIs) were manually drawn on coregis-

tered PET/CT images. The corresponding voxels were further

processed in MATLAB (MathWorks Inc). ROIs and individual voxels

were normalized to SUV using the following relation: SUV 5 [activity

(Bq/mL)] · [animal weight (g)]/[injected dose (Bq)]. Multiple analytic

pipelines were pursued. The first analysis was the use of image histo-

gram reproducibility analysis (IHRA) to compute tumor thresholds. At

each percentage threshold, SUV was calculated as the percentage of

SUVmax (i.e., threshold · SUVmax/100). The threshold SUV represents

the mean of the voxels with a SUV greater than the threshold SUV. The

second analysis was of the SUVmax and SUVpeak for 3 distinct volumes

centered on SUVmax. The third analysis was of whole tumor and single

slices. The fourth analysis pipeline entailed optimization and evaluation

of preclinical PERCIST.

Preclinical PERCIST. The tumor threshold based on PERCIST
(12) is provided by the following formula: a · [mean concentration

of liver ROI] 1 b · [SD of liver ROI]. Liver ROIs were determined

50–60 min after injection of 18F-FDG. Optimization of a and b

entails maximizing the Lin concordance correlation coefficient

(LCC) while minimizing the repeatability coefficient (RC)

(which would minimize the 95% confidence interval [CI], hence

maximizing reproducibility); thus, the objective function to max-

imize is the ratio of LCC (16) to RC. A range of values for a and b

was evaluated and optimized. Implementation of preclinical PER-

CIST relies on evaluation of SUVpeak.
IHRA. IHRA was performed to determine the percentage threshold

of SUVmax. At a 100% threshold, SUV corresponds to high-intensity

voxels (or SUVmax). At the limit, as the threshold reaches 0%, SUV is

identical to SUVmean. At each threshold, the mean of the voxels at the

threshold is computed by taking the average over all the voxels in the

defined tumor region or threshold. At a threshold of 25%, for example,

the mean of voxels greater than or equal to 0.25 · SUVmax is calcu-

lated. Therefore, as the percentage threshold decreases, the volume of

the tumor region under consideration increases with the addition of

lower-intensity voxels. This process is repeated for the whole tumor

and for the metabolically active tumor region for each mouse.
Analysis of a Single Slice. To facilitate analysis, results obtained

from whole-tumor analysis were compared with those obtained from a

single slice. The single slice with the maximum mean activity (the

hottest slice) was selected for processing to investigate the reproduc-

ibility of the data. The data for the hottest slice were processed using

the same procedure as for the whole-tumor-volume data to compute

different thresholds of interest.
SUVpeak Analyses. SUVpeak denotes the mean of all the voxels in a

sphere centered on the hottest voxel. Three different spheric volumes
were considered: spheres with volumes of 4 mm3 (SUVP4), 14 mm3

(SUVP14), and 33 mm3 (SUVP33), corresponding to spheres with
radius of 1, 2, and 3 voxels, respectively. SUVpeak was further inves-

tigated in the reproducibility and treatment response studies, first to
compute the limits of agreement and later to evaluate their perfor-

mance in assessing the response to therapy.
Image datasets and protocols are available through https://

c2ir2.wustl.edu/ by contacting the corresponding author.

Statistical Analysis

The reproducibility analysis included image data from the immu-
nomodulatory and basallike subtype 1 and 2 PDXs. The optimization

of preclinical PERCIST, assessment of response to therapy, and

performance of image metrics in assessing response to therapy

included image data from the immunomodulatory, luminal androgen

receptor, mesenchymal, and basallike subtype 1 and 2 PDXs.
Growth Profile of PDXs. Coincidence tests (17) were used to com-

pare the slopes between passages within a PDX subtype and between
PDX subtypes. GraphPad Prism, version 7, was used to perform these

tests.
Reproducibility Statistics. PDXs were imaged on consecutive days

to assess reproducibility. Two methods for assessing reproducibility

were used, LCC (16) and Bland–Altman plotting (BA) (18). LCC,

being the product of the Pearson correlation coefficient (PCC) and

the bias correction factor (BCF), accounts for both precision and

accuracy. The method outlined by Watson and Petrie (19) was fol-

lowed to calculate these metrics. The procedure used to calculate the

statistical parameter for the BA plots was summarized by Galbraith

et al. (20) and Raunig et al. (21). The day 1 versus day 2 absolute

differences were shown to be independent of the means using the

Kendal t test for correlation (20), with Stata, version 12.1.

The SD for the mean difference is calculated using Supplemental
Equation 1, and the within-mouse SD is calculated using Supple-

mental Equation 2, in which D denotes the within-mouse difference

between the measurements and n denotes the number of paired

measurements.
The 95% CI in the BA plots is the limits of agreement, defined as the

mean difference6 the RC (Supplemental Eq. 3). These limits are indepen-
dent of the sample size, so that the result from an individual test–retest

experiment is expected to fall within these boundaries 95% of the time.
Assessment of Response to Therapy. A decrease in tumor volume of

greater than 20% was considered a response to therapy; no change or an
increase in tumor volume was considered not responsive. The change

in image metrics between 4 d after treatment and baseline scan was used as
the predictive criterion. To assess the applicability of these parameters, the

differences between the baseline and posttreatment values were plotted
against the mean of the 2 values on the BA plot for all PDX tumors. If the

change in image metric was within the 95% CI, the change was considered
indistinguishable from metric variability and the prediction was not evalu-

ated. The two class labels used to assess response to therapy were response
and no response (22,23). Endpoint caliper-measured volume changes were

considered binary indicators of response to therapy.
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Performance Analysis of Image Metrics. The performance of image

metrics is tabulated in Supplemental Table 1, and the accuracy of the
image metrics by subtype is tabulated in Supplemental Table 2.

Standard performance binary classification metrics were used to
assess the response to the therapy including: sensitivity, or the number

of positive responses that are correctly classified as positive;
specificity, or the number of negative responses that are correctly

classified as negative; precision, or the probability that a prediction of
positive is actually positive; negative predictive value, or the proba-

bility that a prediction of negative is actually negative; accuracy, or the
fraction of correct prediction to the total number of observation; and F

score, or the harmonic mean of precision and sensitivity (22,23). The
evaluations were categorized as true-positive when the outcome was a

positive response (true) and the SUV change also predicted a positive
response (true); false-negative when the outcome was a positive re-

sponse (true) but the SUV change predicted a nonresponse (false);
true-negative when the outcome was a nonresponse (true) and the

SUV change also predicted a nonresponse (true); and false-positive
when the outcome was a nonresponse (false) but the SUV change

predicted a positive response (true).
Quantitative Response Assessment Score (QRAS). We defined the

index QRAS to integrate parameters of prediction, performance and

precision and thus aid in selecting optimal image metrics. QRAS is
defined as (RC) � (Uncertainty)/(F score), with lower scores favorable.

Evaluation of Dynamic Range of SUV Metrics. Let D denote the

difference in SUV metric between 4 d and baseline. The percentage
relative difference is defined as 100 � [D# 2Dmean]/Dmean, where

D# represents D25, DP4, or DP14.

RESULTS

Variability in PDX Tumor Growth

The caliper volume growth curves for immunomodulatory,
basallike subtype 1, basallike subtype 2, mesenchymal, and

luminal androgen receptor PDX tumors are depicted in Figure 1B,
and the average logarithmic growth curves are in Figure 1C. Co-
incidence tests for the slopes of the logarithmic growth curves
indicated that the immunomodulatory subtype equaled basallike
subtype 1, that basallike subtype 2 equaled the mesenchymal type,
and that these groups differed from each other and from the lumi-
nal androgen receptor subtype (P , 0.0001 for all comparisons).
The average doubling times are depicted in Figure 1C. The day-of-
scan distribution of PET tumor volumes used for test–retest stud-
ies is depicted in Figure 1D.

IHRA to Optimize Image Metrics for Reproducibility

Selected tumor phenotypes are depicted in Figure 2 for basal-
like subtypes 1 and 2. Normalized line-intensity profiles across
individual slices from distinct PDX tumors (Fig. 2B), and when
centered at zero (Fig. 2C), illustrate the heterogeneity in the tumors.
The minima along the line profiles in Figure 2C vary from 0% to
;25% of the hottest voxel. Representative samples of hematoxylin
and eosin staining for each of the PDXs is depicted in Figure 2D.
The test–retest PET-derived volume measures are depicted in

Figure 3A. There is excellent agreement between the day 1 and
day 2 volume measures (R2 5 0.92). The IHRA for solid tumors is
depicted in Figure 3B. For SUVmax (i.e., 100% of SUVmax), re-
producibility was low (LCC 5 ;0.58); with increasing quantiles,
LCC saturated at the 25% tumor quantile (LCC 5 0.77, PCC 5
0.80, and BCF 5 0.97). Thus, metabolic tumor volume defined by
SUV25 is an inflection point at which the PCC, BCF, and LCC
saturate and show a negligible change thereafter. These observations
are better reflected by the BA plots of the quantile boundaries shown
in Figures 3C and Figure 3D. The 95% CIs of agreement for SUVmean

(RC, 0.20) are significantly tighter than those for SUVmax (RC, 0.34).
Overall, 21 PDX tumors exhibited a necrotic-core phenotype

(low 18F-FDG uptake at the core) with varying tumor dimensions.

FIGURE 2. Image analytics. (A) Representative 18F-FDG PET coronal slices of PDXs. (B) Representative tumor slices at center coronal plane for

immunomodulatory subtype (top), basallike subtype 1 (middle), and basallike subtype 2 (bottom). Red lines denote intensity line profiles along slice

center (white lines) normalized to maximum intensity in respective slice (displayed as percentage of maximum intensity). (C) Intensity line profiles of

all tumors in A, with their minima centered at zero position to highlight variability in threshold of necrotic phenotype. (D) Representative hematoxylin-

and eosin-stained slices of immunomodulatory subtype and basallike subtypes 1 and 2. BL1 5 basallike subtype 1; BL2 5 basallike subtype 2;

IM 5 immunomodulatory; T 5 tumor.
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In contrast, solid tumors (n5 13) were defined as having no visual
necrotic phenotype. PET-derived volumes ranged from approxi-
mately 85 to 1,400 mm3. Despite the range, there was excellent
agreement in the day 1 and day 2 concordance plot (Fig. 3E), with
a slight bias at high tumor volumes due to a large tumor, at
1,400 mm3, which skewed the linearity. The IHRA for these tu-
mors is depicted in Figure 3F. SUVmax image metrics exhibited
poor concordance (LCC, 0.52) with high RC (approaching 0.50).
As the intensity quantile reached 25%, both PCC and LCC
achieved a value of approximately 0.79 and the LCC peaked
(LCC 5 0.81) for SUVmean (at 0% IHRA). The BA plots for
SUVmean and SUVmax are shown in Figures 3G–3H. The 95%
CI range for SUVmax (RC, 0.44) was approximately 3-fold higher
than that for SUVmean (RC, 0.15), suggesting poor reproducibility
for SUVmax.

High-Intensity-Slice Versus Whole-Tumor Analysis

IHRA implemented on a single slice and on the total tumor
volume is depicted in Figure 4. All 3 metrics for performance—
PCC, BCF, and LCC—peaked at 25% thresholding of SUVmax,
with an LCC of 0.88 for a single slice and 0.93 for the total tumor
volume. There was a negligible change at quantiles lower than
25%, as the remaining low-intensity voxels in the ROI were in-
cluded in the analysis (Fig. 4A). The BA plots for a single slice
and the whole tumor showed similar statistics (Fig. 4B). There was
an excellent correlation between day 1 and day 2 measures, as
indicated in Figure 4C.

Optimization of Preclinical PERCIST

The IHRA plot of Figure 5A depicts LCC and RC as a function
of a and selected b values. Figure 5B depicts the surface plot of
the objective function LCC/RC, which is maximized at a 5 0.7
and b 5 2.8. The tumor SUV BA plot for an optimized liver
threshold is depicted in Supplemental Figure 3. Figure 5C depicts
the correlation between tumor SUVmean and liver threshold de-
fined by preclinical PERCIST parameters (a 5 0.7, b 5 2.8)

and SUV25, whereas Figure 5D depicts the correlation between
SUV25 and SUV of metabolic tumor. There was an excellent
correlation between liver-threshold tumor uptake and SUV25

FIGURE 4. Concordance and reproducibility analysis of all PDXs in

test–retest cohort: IHRA (A), BA plots (B), and concordance plot (C)

for single slice and whole tumor. In all 3 cases, PCC, BCF, and LCC

show similar trends and LCC approaches plateau at SUV25.

FIGURE 3. Concordance and IHRA for solid and necrotic tumor phenotypes. (A) Day 1 vs. day 2 metabolic (PET) tumor volume concordance plot

for solid tumors. (B) IHRA depicting BCF, PCC, LCC, and RC as function of percentage (threshold) of SUVmax. (C and D) BA plots for SUVmean and

SUVmax. (E–H) Similar parameters for tumors with necrotic phenotype. D1 and D2 denote Day 1 and Day 2, respectively.
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(R2 5 0.98) and between SUV25 and SUV of metabolic tumor
(R2 5 0.98), with a slope not significantly different from identity
(Supplemental Fig. 4 shows the correlation of SUVmean and
SUVmax to SUV of metabolic tumor). The BA plots corre-
sponding to SUVmax and the 3 distinct SUVpeaks are depicted
in Figures 5E–5H. With increased peak ROI volumes, there
was less variability in test–retest measures as denoted by a
reduced RC.

Prediction of Response to Therapy

In Figure 6, we depict the BA plots of response to therapy for
SUVmean and SUV25 using whole tumor (Fig. 6A) and a single slice
(Fig. 6B), whereas Figure 6C depicts the BA plots of response to
therapy using SUVpeak metrics. The performance of imaging metrics
in predicting the response to therapy for data points outside the limits
of agreement is summarized in Supplemental Table 1, along with the
percentage of datapoints within the limits of agreement. Importantly,

FIGURE 5. Optimization of preclinical PERCIST. (A) IHRA of preclinical PERCIST depicting LCC and RC as function of α and select β values. (B)

Surface plot of objective function LCC/RC, which is maximized at α 5 0.7 (dashed line in A) and β 5 2.8. (C) Correlation between optimized liver

threshold for preclinical PERCIST and SUV25. (D) Correlation between SUV25 and SUV of metabolic tumor (SUVmetabolic). (E–H) BA plots for SUVmax

and SUVpeak with SUVP4, SUVP14, and SUVP33.

FIGURE 6. BA plots of image metrics for response assessment. (A) Response to therapy for SUVmean for whole tumor (top) and SUV25 (bottom). (B)

Measures similar to those in A but for single high-intensity slice. (C) SUVmax, SUVP4, SUVP14, and SUVP33. Open circles represent test–retest data

points; filled circles are posttherapy data points. In general, metrics for response to therapy are outside limits of agreement (test–retest). Dotted lines

represent zero bias lines. BL1 5 basallike subtype 1; BL2 5 basallike subtype 2; IM 5 immunomodulatory; LAR 5 luminal androgen receptor; M 5
mesenchymal; Tx 5 treatment; B 5 baseline; 14 5 day 4.
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the accuracy of predicting response conditioned by subtype is tabulated
in Supplemental Table 2. Figure 7 depicts the percentage difference
between SUV25 and SUVpeak relative to SUVmean in assessing response
to therapy. The figure suggests that all metrics have a higher dynamic
range (on the order of 2- to 4-fold) than that of SUVmean to assess
response to therapy. Table 1 shows the performance parameters for
SUVmax, SUV25, and SUVpeak and the calculated QRAS. Measures
of SUV25 scored the lowest (best), followed by SUVP14.

DISCUSSION

We generated 5 PDX subtypes of TNBC as a preclinical platform
to develop and optimize image metrics for response to therapy. PDXs
provided a wide range of phenotypes, which we exploited to develop
and test image metrics for response to therapy. In light of the
heterogeneity of tumors, we took a top-down image-data–centric ap-
proach in optimizing image metrics for reproducibility and response
to therapy. We stratified PDX tumors to those exhibiting a solid
phenotype and to those exhibiting a necrotic phenotype and imple-
mented IHRA in each group and the combined groups to define
optimal measures of 18F-FDG PET uptake in PDXs. For both solid

tumors and tumors exhibiting a necrotic phenotype, reproducibility
peaked at SUV25. Similarly, in the combined dataset, measures of
reproducibility plateaued at SUV25. Thus, SUV25 was optimal to
maximize reproducibility. Wu et al. (24) performed extensive histo-
logic analyses of coregistered preclinical 18F-FDG PET images in
an effort to define tumor boundaries. In agreement with our findings,
Wu et al. (24) concluded that a minimum threshold of up to 30% of
maximum tumor voxel counts is needed to define viable tumors.
Clinically, PERCIST (12) is widely used to assess response to

therapy (25–28). Wu et al. (24) additionally optimized a PERCIST-
motivated cutoff of a · [mean concentration of liver ROI] 1 b ·
[SD of liver ROI] with a 5 6 and b 5 2 to define viable tumors in
vivo. To harmonize preclinical efforts with clinical standards of
response to therapy assessment, we similarly optimized preclinical
PERCIST parameters to maximize concordance and reproducibility.
Our data suggest that LCC/RC is maximized at a 5 0.7 and b 5 2.8.
Liver-threshold tumor uptake exhibited a high correlation with SUV25,
which in turn highly correlated with the SUVmean of metabolic
tumor, suggesting that liver-threshold tumor uptake and SUV25

provide measures of viable metabolic tumor. The clinical utility of
PERCIST is that it provides an internal patient-specific reference
across diverse subjects. We used a homogeneous population of mice
(all being NSG mice of the same approximate weight); thus, variabil-
ity across species and strains needs to be explored.
In assessing response to therapy, the optimal imaging metric

needs to take into account reproducibility, the extent of uncertainty
in predicting response to therapy, and the performance of an
imaging metric in assessing response to therapy, which led to the
development of QRAS. QRAS analysis suggests that SUV25 (whole
tumor and single slice), followed by SUVP14, are the optimal met-
rics to assess response to therapy. When one uses whole-tumor or
single-slice measures of uptake, inclusion of low-intensity voxels
attributed to the necrotic phenotype is expected to lower the image
metrics for 18F-FDG PET uptake and bias against measures of
tumor response to therapy. Thus, it is expected that exclusion of
tumor voxels attributed to the necrotic phenotype will improve the
sensitivity of imaging biomarkers in assessing response to therapy.
Indeed, these metrics have a wider dynamic range than SUVmean

(;2- to 4-fold) in predicting response to therapy. The choice be-
tween SUV25 and SUVP14 may depend on the dynamic range of
response assessment but will ultimately require additional valida-
tion in other animal models and therapeutic interventions, and with
consideration of confounding factors (e.g., anesthesia). Finally, the
accuracy in predicting response to therapy is dependent on the PDX
subtype, suggesting that with a priori knowledge of the TNBC
subtype, one can define confidence in predicting response to ther-
apy. The timing of response assessment may be a function of sub-
type as well (which we were unable to investigate in this work).
This notion underscores the premise of precision medicine and pre-
cision imaging, that is, integrating genomic signatures (defining a
subtype in this case) to enhance prediction of response to therapy.

CONCLUSION

The work addressed a central effort within the imaging commu-
nity and the National Cancer Institute to reach a consensus on the
reproducibility and utility of imaging metrics to assess response to
therapy in more realistic models of human cancers (e.g., PDXs
and genetically engineered mouse models), thus enhancing the
translational impact of preclinical imaging studies. In a co-clinical
study design using patient-derived tumors, our data suggest that

FIGURE 7. Dynamic range of SUV25, SUVP4, and SUVP14 relative to

SUVmean. Data represent mean ± SEM. *Significant difference (ANOVA).

RD 5 relative difference.

TABLE 1
Parameters in Selecting Optimal Image Metrics for

Response to Therapy

SUV metric RC

F

score

Uncertain

fraction QRAS

DSUVmax 0.73 0.73 0.45 0.45

DSUV25 0.28 0.72 0.31 0.12

DSUV25

(single slice)
0.33 0.74 0.34 0.15

DSUVP4 0.59 0.77 0.48 0.37

DSUVP14 0.47 0.74 0.34 0.22

DSUVP33 0.45 0.69 0.41 0.27

F score is derived from performance evaluation of response to

therapy. “Uncertain fraction” is fraction of data points within limits
of agreement for a given image metric QRAS5RC � (uncertain

fraction)/(F score). Lower QRAS value is favorable.
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SUV25
18F-FDG PET measures are highly reproducible. Impor-

tantly, QRAS scores favor SUV25, followed by SUVP14, as the
optimal metrics for response to therapy. The choice between
SUV25 and SUVP14 may depend on the dynamic range of response
assessment. Additionally, SUV25 correlated with optimized pre-
clinical PERCIST measures of tumor uptake and SUV of meta-
bolic tumor, suggesting that both may provide image metrics for
viable tumor. Further studies are warranted to fully characterize
the utility of SUV25 and optimized implementation of preclinical
PERCIST via SUVP14 as image metrics for response to therapy
across a wide range of therapeutic regimens and animal models of
human cancer.
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KEY POINTS

QUESTION:What is the optimal 18F-FDG PET SUV image metric for

response to therapy in TNBC PDXs?

PERTINENT FINDINGS: In a co-clinical study design using

PDXs, our data suggested that SUV25 is highly reproducible.

QRAS scores favored SUV25, followed by SUVP14 (for imple-

mentation of preclinical PERCIST), as the optimal metrics

for response to therapy. The choice between SUV25 and SUVP14

may depend on the dynamic range of response assessment.

IMPLICATIONS FOR PATIENT CARE: This work addressed a

central effort within the imaging community and the National Cancer

Institute to reach a consensus on the reproducibility and utility of

imaging metrics to assess response to therapy in more realistic

models of human cancers (e.g., PDXs and genetically engineered

mouse models), thus enhancing the translational impact of pre-

clinical imaging studies.
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