Discussions with leaders: JNM editor-in-chief Johannes Czernin talks with Howard Soule, of the Prostate Cancer Foundation, about supporting and encouraging research in an environment of rapidly changing scientific knowledge and clinical practice. Page 774


Bombesin imaging in cancer: Baratto and colleagues offer a state-of-the-art overview of the bombesin receptor family, with a focus on gastrin-releasing peptide receptors and on applications in prostate and breast cancers. Page 792

Molecular imaging of bone metastases: Cook and Goh provide an educational review of the role of new molecular and hybrid methods, including SPECT/CT, PET/CT, and whole-body MR, for imaging bone metastases. Page 799

Aromatase imaging in breast cancer: Biegon and colleagues validate and optimize PET imaging with 11C-vorozole for in vivo measurement of aromatase expression in individual breast cancer lesions in postmenopausal women. Page 807

PET/CT radiomics in lung cancer SBRT: Dissaux and colleagues develop and evaluate a prognostic 18F-FDG PET/CT radiomic signature in early-stage non–small cell lung cancer patients treated with stereotactic body radiotherapy. Page 814

18F-FDG PET/CT and hyperprogressive cancer: Castello and colleagues use 18F-FDG PET/CT to investigate the prevalence of hyperprogressive disease as a pattern of response during treatment of non–small cell lung cancer with immune checkpoint inhibitors. Page 821

11C-Choline PET/CT in recurrent prostate cancer: Michaud and colleagues report on the performance of 11C-choline PET/CT in detecting biochemically recurrent prostate cancer in a large non-European cohort and describe patterns of recurrence. Page 827

Integrated roadmap for fluorescence guidance: Meershoeq and colleagues detail the role of positional data from SPECT/CT in providing a 3D preoperative imaging road map for fluorescence-guided surgery in prostate cancer. Page 834

Co-clinical imaging: Savaikar and colleagues develop and optimize image metrics for 18F-FDG PET to assess response to combination docetaxel and carboplatin therapy in a co-clinical trial involving triple-negative breast cancer patient–derived xenografts. Page 842

PARP-1–targeted Auger therapy: Lee and colleagues assess the cytotoxicity of chromatin-targeted Auger therapy in preclinical models of high-risk neuroblastoma and discuss the potential for use in micro-metastatic disease. Page 850

177Lu-PSMA-617 in prostate cancer: Violet and colleagues report longer-term outcomes in an expanded cohort from a trial of this prostate-specific membrane-targeting radioligand in men with metastatic castration-resistant prostate cancer. Page 857

3-Year freedom from progression in BCR: Emmett and colleagues describe the predictive value of 68Ga-prostate-specific membrane antigen PET for 3-y freedom from progression in men with biochemically recurrent prostate cancer undergoing salvage radiotherapy. Page 866

68Ga-PSMA PET/CT and PTEN–loss PCa: Wang and colleagues explore the value of 68Ga-prostate-specific membrane antigen PET/CT for detection of phosphatase and tensin homolog–loss prostate cancer. Page 873

18F-DCFPyL PET/CT in prostate cancer: Mena and colleagues investigate the lesion detection rate of this prostate-specific membrane antigen–targeted PET agent in patients with biochemically relapsed prostate cancer after primary local therapy. Page 881

64Cu-DOTATATE in NETs: Delpassand and colleagues prospectively determine the lowest optimal dose of this tracer and evaluate its diagnostic performance and safety in a phase III study of patients with somatostatin receptor–expressing neuroendocrine tumors. Page 890

68Ga-DOTA-JR11 in NETs: Zhu and colleagues compare PET/CT results with this somatostatin receptor subtype 2–specific antagonist with those from 68Ga-DOTATATE in patients with metastatic, well-differentiated neuroendocrine tumors. Page 897

Glucose transport in neuroendocrine prostate cancer: Bakht and colleagues evaluate the association between neuroendocrine gene signature and 18F-FDG uptake–associated genes in prostate cancer, including glucose transporters and hexokinases. Page 904

18F-PI-2620 tau PET in humans: Mueller and colleagues assess the ability of imaging with this PET tracer to detect tau pathology in patients with Alzheimer disease and report on associated safety and tolerability. Page 911

18F-PI-2620 kinetics and quantification: Bullich and colleagues detail the biodistribution, dosimetry, quantitative methods, and test–retest variability of this next-generation tau PET tracer in the human brain. Page 920

Brain nicotine uptake and E-cigarettes: Solingapuram Sai and colleagues use 11C-nicotine PET to describe brain nicotine uptake and kinetics after inhalation from electronic cigarettes and compare these with results from smoking combustible cigarettes. Page 928

Accuracy of 2-FDG determinations: Barrio and colleagues look at potential limitations of assuming 2-FDG as a surrogate for glucose metabolic rate and potential reasons for variability in the lump constant. Page 931