Discussions with leaders: JNM editor-in-chief Johannes Czernin, with Thomas Hope, continues a series of interviews with leaders in nuclear and molecular imaging and therapy with a conversation with John J. Sunderland, PhD, MBA, about advancing 68Ga-DOTATOC through the FDA. Page 477

The academic NDA: Sunderland outlines the story of the 68Ga-DOTATOC new drug application process, including clinical trials, structured content of the NDA document, and associated first-hand experiences from the University of Iowa. Page 480

Introduction to radiomics: Mayerhofer and colleagues provide an educational overview of standard radiomics workflow, the basic concepts of radiomic feature classes, and common limitations and pitfalls in radiomics studies. Page 488

Travel after 177Lu-DOTATATE: Kendi and colleagues look at challenges to gastroenteropancreatic neuroendocrine tumor patients whose residual radiation after 177Lu-labeled DOTATATE treatment sets off alarms at U.S. borders and points of entry. Page 496

PET tracer accuracy in gliomas: de Zwart and colleagues detail the results of a systematic review and metaanalysis comparing the diagnostic accuracies of different PET tracers in differentiating tumor progression from treatment-related changes in patients with high-grade gliomas. Page 498

18F-FET PET in recurrent glioma: Maurer and colleagues investigate the effectiveness of 18F-FET PET imaging in differentiating glioma progression from treatment-related changes. Page 505

89Zr-Df-1AB22M2C anti-CD8 minibody PET: Pandit-Taskar and colleagues report on first-in-human studies of the safety of this radiolabeled minibody against CD8+ T cells for imaging of these cells in patients with cancer. Page 512

177Lu-PP-F11N for radionuclide therapy: Rottenburger and colleagues determine, using advanced 3-dimensional dosimetry in a first-in-human study, whether this minigastrin analog with therapeutic properties and a γ-ray component for imaging is a suitable agent for treatment of medullary thyroid carcinoma. Page 520

18F- versus 68Ga-PSMA imaging: Kuten and colleagues compare the diagnostic accuracy of 18F-PSMA-1007 with that of 68Ga-PSMA-11 PET/CT in the same group of patients with newly diagnosed intermediate- or high-risk prostate cancer. Page 524

Interpretation criteria for 68Ga-PSMA-11 PET: Torihiara and colleagues compare interreader, intrareader, and intercriteria agreement in 3 recently introduced international criteria for interpretation of 68Ga–prostate-specific membrane antigen-11 PET data in prostate cancer. Page 533

PSMA PET/CT and biopsy for LN staging: Hinsenfeld and colleagues determine the diagnostic capabilities of combined prostate-specific membrane antigen PET/CT and sentinel node biopsy in PSMA PET/CT–negative patients for primary lymph node staging in prostate cancer. Page 540

18F-DCFPyL PET/CT in prostate cancer: Song and colleagues present their institutional experience assessing the positivity rate of PET/CT with this prostate-specific membrane antigen–targeting agent in patients with biochemical recurrence of prostate cancer. Page 546

Imaging AUC in BCR prostate cancer: Jadvar and members of a multiorganizational workshop provide a consensus document on the appropriate use of imaging in diagnostic evaluation of patients with biochemical recurrence of prostate cancer after definitive primary treatment. Page 552

Theranostics targeting FAP: Watabe and colleagues use 64Cu and 225Ac, with long half-lives, to label fibroblast activation protein inhibitors in mice with human pancreatic cancer xenografts to assess the potential of α-therapy targeting FAP in cancer stroma. Page 563

Imaging β-cell mass with 11C-(+)-PHNO: Bini and colleagues describe pancreatic PET imaging parameters with this dopamine D2 and D3 receptor agonist to differentiate healthy controls from individuals with type 1 diabetes mellitus. Page 570

18F-Fluorocholine in PHPT: Cuderman and colleagues compare the efficiency of established scintigraphic imaging modalities with 18F-fluorocholine PET/CT imaging in preoperative localization of hyperfunctioning parathyroid glands in patients with primary hyperparathyroidism. Page 577

11C-Choline PET in hyperparathyroidism: Liu and colleagues assess the value of 11C-choline PET in patients with primary hyperparathyroidism and negative or discordant results on 99mTc-sestamibi imaging and neck ultrasound. Page 584

18F-FDG inflammation imaging after aortic constriction: Glasenapp and colleagues determine whether inflammation can be serially imaged with 18F-FDG PET in early stages of pressure-overload-induced heart failure and compare the time course with functional impairment assessed by cardiac MRI. Page 590

Prediction of conversion to AD: Blazhenets and colleagues examine the predictive values of amyloid PET, 18F-FDG PET, and nonimaging predictors (alone and in combination) for development of Alzheimer dementia in a large population of patients with mild cognitive impairment. Page 597

TSPO versus P2X7 for neuroinflammation: Van Weehaeghe and colleagues compare imaging with 18F-DPA714, a second-generation translocator protein tracer, with 11C-JNJ717, a novel P2X7 receptor tracer, in vitro and in vivo in amyotrophic lateral sclerosis. Page 604

Dose–response in 166Ho radioembolization: Bastiaanet and colleagues investigate the absorbed dose–response relationship and its association with overall survival for 166Ho-microsphere radioembolization in patients with liver metastases. Page 608

Oral administration of 18F-FDG: Srinivasan and colleagues compare human biodistribution and dosimetry for 18F-FDG after sequential oral and intravenous administrations in the same subjects to determine dosimetry and potential suitability of oral 18F-FDG as an alternative to intravenous administration. Page 613