
Denoising of Scintillation Camera Images Using a Deep
Convolutional Neural Network: A Monte Carlo Simulation
Approach

David Minarik1, Olof Enqvist2,3, and Elin Trägårdh4,5
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Scintillation camera images contain a large amount of Poisson noise.
We have investigated whether noise can be removed in whole-body

bone scans using convolutional neural networks (CNNs) trained with

sets of noisy and noiseless images obtained by Monte Carlo simula-
tion. Methods: Three CNNs were generated using 3 different sets of

training images: simulated bone scan images, images of a cylindric

phantom with hot and cold spots, and a mix of the first two. Each

training set consisted of 40,000 noiseless and noisy image pairs. The
CNNs were evaluated with simulated images of a cylindric phantom

and simulated bone scan images. The mean squared error between

filtered and true images was used as difference metric, and the co-

efficient of variation was used to estimate noise reduction. The CNNs
were compared with gaussian and median filters. A clinical evaluation

was performed in which the ability to detect metastases for CNN-

and gaussian-filtered bone scans with half the number of counts was
compared with standard bone scans. Results: The best CNN re-

duced the coefficient of variation by, on average, 92%, and the

best standard filter reduced the coefficient of variation by 88%.

The best CNN gave a mean squared error that was on average
68% and 20% better than the best standard filters, for the cylindric

and bone scan images, respectively. The best CNNs for the cylin-

dric phantom and bone scans were the dedicated CNNs. No sig-

nificant differences in the ability to detect metastases were found
between standard, CNN-, and gaussian-filtered bone scans. Conclusion:
Noise can be removed efficiently regardless of noise level with little

or no resolution loss. The CNN filter enables reducing the scanning

time by half and still obtaining good accuracy for bone metastasis
assessment.
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Scintillation camera images are inherently noisy because of the
specifics of the imaging process. Several filtering methods to remove
noise exist, which range from simple convolution with small filter

kernels to more complex filtering using wavelets or statistical meth-
ods (1–4). However, the trade-off for most types of denoising filters is
resolution loss.
Convolutional neural networks (CNNs), a machine learning

algorithm, have been shown to work well in denoising photo-
graphic images. These types of images generally contain only a
small amount of noise, making it easy to generate sets of noisy and
pristine photographic images to train a CNN. Scintillation camera
images, however, suffer from a larger amount of Poisson noise.
Thus, it is more challenging to acquire sets of noisy and pristine
image sets for training purposes.
It is believed that machine learning will change radiology and

nuclear medicine in the future (5). There have been recent publi-
cations on the use of machine learning algorithms for classifica-
tion and segmentation purposes (6–10). CNNs have been used to
obtain standard-dose CT and PET images from low-dose data
(11,12) and to enhance images by determining scatter correction
parameters (13) and CNN-augmented emission-based attenua-
tion correction (14) in PET. Recently, Gong et al. used computer-
simulated PET images to pretrain a denoising CNN and then
fine-tuned the CNN with patient data (15). The same group has
also implemented a CNN in the reconstruction process for PET
data (16).
This study investigated whether noise can be removed from

scintillation camera images using a CNN that has been trained
with sets of noisy and noiseless images obtained by Monte Carlo
simulation and whether the types of training images affect the
results. If a CNN is to be used for any type of medical image
enhancement, it is vital that no true information be removed or false
information added to the images. The CNN should recreate only
information that has been lost in the imaging process. The ques-
tion is whether a single CNN can be trained and used on mul-
tiple types of images or whether specialized CNNs that are trained
and used on only one type of images (e.g., bone scans) are
needed.
The aim of this study was to generate different CNNs using

different sets of training images and to evaluate the performance
of the CNNs on simulated images of a cylindric phantom and
simulated whole-body bone scan images. We compared the
CNN-filtered images with images filtered with gaussian and
median filters. As a proof of concept, we performed a pilot
clinical evaluation in which bone scans with half the number of
counts were filtered using the CNN and gaussian filter and then
compared with standard bone scans for the diagnosis of bone
metastases.
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MATERIALS AND METHODS

Training Images

Noiseless whole-body bone scan images were generated with the
Simind Monte Carlo program and the XCAT anthropomorphic

phantom (17,18). Three different phantoms were used, and 60 differ-

ent simulations were generated with random numbers and sizes of

bone metastases ranging from 1 to more than 50. The method used

to create and simulate phantoms with different tumor burdens was

previously described (8). Both anterior and posterior views were sim-

ulated, and the simulations included all physically degenerative effects

such as attenuation and scatter in the phantom, scatter in and penetra-

tion of the collimator, and depth-dependent resolution. The Simind

program was set up to mimic a Siemens Symbia g-camera using a

256 · 1,024 matrix with a pixel size of 2.21 mm and a 15% energy

window centered over the 140-keV peak. Next, 10,000 noiseless train-

ing images were created by randomly extracting a 256 · 256 patch from

either the anterior view or the posterior view of a simulated image,

applying a random shearing operation on the patch (to generate images

with various body shapes and sizes), and multiplying the patch by a

random number so that the total number of counts in the corresponding

whole-body image would range from 0.5 to 3 million counts (bone scan

guidelines recommend at least 1.5 million counts (19)). The patches

were then downsized to a matrix size of 128 · 128.

A second training set was created with the Simind Monte Carlo
program using a simple cylindric phantom with a homogeneous

activity distribution. Three phantoms with a length of 30 cm, a long

axis of 15 cm, and short axes of 5, 10, or 15 cm were simulated with

the same camera setup as for the bone simulation. Fifteen projections

evenly sampled in an arc of 0�–90�, with the starting angle parallel to

the short axis, were simulated for each phantom to create 45 different

images in total. For each cylinder, 3 different simulations with small

ellipsoids were performed in the same way with the ellipsoid in the

middle of the cylinder.
Next, 10,000 noiseless training images were created by randomly

selecting a projection from 1 of the 3 simulations. One or more hot spots

or cold spots were then added at random places in the image of the

cylinder by randomly choosing an image from the ellipsoid simulations,

multiplying it by a random number, translating it in a random manner,

and finally adding or subtracting it from the cylinder image. The

cylinder images were then multiplied by a random number to mimic

a range of intensity levels that are normally seen in nuclear medicine

images. Finally, a random affine transformation was applied, which

included translation, rotation, shearing, and scaling. Examples of the

sets of noiseless and noisy images are displayed in Figure 1.

CNN

A denoising CNN (20) has shown good results in denoising ordi-
nary color photographs, and hence, the same network structure was

used in this work. This type of network has 3 parts. The first is a

convolutional layer with 64 3 · 3 filters and a rectified linear unit

activation. There are also 19 convolutional layers, which each have 64

filters with a size of 3 · 3, batch normalization, and rectified linear

unit activation. Finally, a convolutional layer with a single 3 · 3 filter

produces the output image.

The CNNs were trained using a quadratic loss function in MATLAB
(MathWorks). Three different CNNs were evaluated: one using only

bone scan images for training (further called bone CNN), a second using

only cylinder images (cylinder CNN), and a third using a mix of images

(mix CNN). Each CNN was trained using 10,000 different images. Four

noisy patches per noiseless image were used for training, leading to a

total of 40,000 training images. Random Poisson noise was added to the

images corresponding to the intensity level of the images. Training was

performed on an nVidia GeForce RTX 2080 TI graphics processing unit.

Evaluation

A simulation of a cylindric phantom was used, which consists of a

15-cm-high cylinder with a radius of 15 cm, with the camera placed
perpendicular to the height direction of the cylinder. Several hot

spheres with radii of 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, and 1.4 cm and 4

cold spheres with radii of 0.5, 1.0, 1.5, and 2.0 cm were placed in the
middle of the cylinder in the height direction (Fig. 2). The activity

ratio of hot spot to background was 10:1, which yields a maximum
contrast of around 2.4 for the large hot spot, when accounting for

attenuation and overlapping background activity. Ten images with a
total number of counts ranging from 100,000 to 1 million were created,

and 40 noise realizations per image were generated. All the noisy im-
ages were filtered with the different CNNs and with 6 different gaussian

filters with full widths at half maximum of 3, 5, 7, 9, 11, and 13 mm,
respectively. Four different median filters were also used with quadratic

kernels of 9, 25, 49, and 81 pixels.
For each noisy and filtered image, the coefficient of variation was

calculated for pixel values in a circular region of interest (109 pixels)
placed in the homogeneous part of the middle of the phantom. The

mean squared error (MSE) (Eq. 1) was calculated for each filtered and
noisy image with the noiseless image as reference.

MSE 5
1
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+
N

1

+
M

1

�
Inoiselessðm; nÞ2 Inoisy=filteredðm; nÞ

�2
; Eq. 1

where N andM are the matrix size in the x and y direction, n and m are
the matrix indices of the image I. The CNNs were compared using 40

FIGURE 1. (Top row) Two examples from training batch with cylindric

phantoms. (Bottom row) Two examples from training batch with bone

scans. Images to left are noiseless, and images to right are noisy.

FIGURE 2. Simulated cylindric phantom. Images in top row have 1

million counts, and those in bottom row have 100,000 counts. From left

to right: noisy image; images filtered with bone CNN, cylinder CNN, and

mix CNN; and true image.
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simulated bone scans that were not part of the training data. For each

of the 40 bone scans, 10 images were created, which had different
noise levels ranging from a total number of counts in the posterior

view of 0.1 million to 1 million. All images were filtered with the
CNNs, the gaussian, and median filters. The MSE was calculated

for each filtered and noisy image, with the noiseless image as a
reference. An example is shown in Figure 3.

Clinical Evaluation

In a pilot clinical study, we compared mix CNN–filtered and gauss-

ian-filtered (full width at half maximum, 7 mm) half-time imaging
whole-body bone scans with standard scans. Images acquired with

half the acquisition time were generated by binominal subsampling
(21). Bone scans from 39 patients (3 women, 36 men) clinically re-

ferred to Skåne University Hospital, Malmö, Sweden, for assessment
of bone metastases were evaluated. The median age was 76 y (range,

52–92 y). Patients were injected with 600 MBq of 99mTc-hydroxydi-
phosphonate. The accumulation time was 2–4 h. All patients were

scanned on a Siemens Symbia g-camera with a low-energy high-
resolution collimator, a scan time of 15 cm/min, and a 256 · 1,024

matrix with a pixel size of 2.21 mm. One nuclear medicine physi-
cian (observer A) and 1 resident in nuclear medicine (observer B)

interpreted the images in a random and masked fashion and assessed
whether bone metastases were present. They were given only 1 set of

images (anterior and posterior views) at a time and were not aware
of their interpretation of the other image sets. After 2 mo, observer A

reinterpreted the images. The presence of bone metastases was
assessed separately for anterior and posterior views. The standard

bone scans were considered the reference method. Sensitiv-
ity and specificity for detecting bone metastases for the CNN- and

the gaussian-filtered images were calculated, as well as the area
under the receiver-operating-characteristic curve. Differences be-

tween the standard and the CNN- and the gaussian-filtered images
were assessed with the McNemar test using SPSS, version 25

(IBM).

Examples of bone scans and filtered equivalents are shown in
Figure 4.

The institutional review board at Lund University (2019-00644)
approved this retrospective study, and the requirement to obtain

informed consent was waived.

RESULTS

The calculation results of the coefficient of variation are
displayed in Table 1, and the results of the MSE evaluation are
presented in Tables 2 and 3. The best CNN reduced the coefficient
of variation by, on average, 92%, whereas the best standard filter
(mean filter with 81 pixels) reduced the coefficient of variation by
88%. The best CNN gave an MSE that was on average 68% and
20% better than the best standard filters (mean filter with 9 pixels
and gaussian filter with a full width at half maximum of 7 mm),
for the cylindric and bone scan images, respectively. The results
showed that there was a small difference between images denoised
with the different CNNs. The noise reduction in the specific case
shown in Table 1 was more than 10-fold for the cylinder CNN and
slightly less for the mix CNN. The cylinder CNN gave the lowest
MSE in the evaluation with the cylindric phantom. For the bone
scan evaluation, the best results were obtained for the bone CNN.
The CNN created with a mix of images was similar to the best
CNN for both cylindric phantom and bone scans. Among the
conventional filters, a median filter with a 3 · 3 neighborhood and
a gaussian filter with a full width at half maximum of 7 mm
produced the best MSE results for the cylinder and bone scans,
respectively.
The sensitivities, specificities, and areas under the receiver-

operating-characteristic curve are found in Table 4. There were no
significant differences between standard and CNN-filtered images
(P 5 0.99 and 1.0 for observer A and P 5 0.25 for observer B) or
between standard and gaussian-filtered images (P 5 0.45 and P 5
0.69 for observer A and P 5 1.0 for observer B).

DISCUSSION

We have trained and applied CNNs on simulated bone scans and
images of cylindric phantoms. We have also used the CNNs to
denoise real bone scans to verify the feasibility of using CNNs
trained on Monte Carlo images to remove noise, and we performed
a pilot clinical evaluation. We have shown that it is possible to
achieve an almost total removal of noise with little or no resolution
loss. The cylinder CNN even outperformed a median filter with a
9 · 9 neighborhood while still maintaining the resolution.
Other statistical filtering methods and other types of methods

require some form of optimization of input parameters, which may

FIGURE 3. Posterior view of simulation with 0.6 million counts. From

left to right: noisy image; noisy image filtered with bone CNN, cylinder

CNN, and mix CNN; and true image.

FIGURE 4. Posterior views of bone scan. From top to bottom: images

filtered with mix CNN, images filtered with gaussian filter of 7 mm in full

width at half maximum, and unfiltered images. From left to right: original

images and images with 75%, 50%, 25%, and 10% of original counts.
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not be valid for all intensity ranges encountered, such as those in
bone scans. In contrast, a trained bone scan CNN can handle all
types of scanning situations if the noise distribution in the training
images follows that of real images and the range of intensities in
the images reflects the whole spectra of observed intensities. This
is demonstrated in Figure 4, which shows original bone scans,

mathematically generated images representing the same image
acquired with 75%, 50%, 25%, and 10% of the imaging time,
and the corresponding CNN-filtered and gaussian-filtered images.
There are some small structural differences between the CNN-
filtered images, but the level of noise is almost the same, which
is not case for the gaussian-filtered images. The 10% CNN-filtered

TABLE 2
MSE Between Noisy and CNN-Filtered Cylindric Phantom Images with Noiseless Image as Reference

Total counts in millions

Image

type

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Original 61.57 1.64 68.01 1.46 76.85 1.92 87.17 1.74 102.04 1.70 121.82 2.52 153.81 3.03 204.72 4.98 305.88 8.41 610.56 14.50

B-CNN 11.10 0.51 11.65 0.49 12.45 0.66 13.17 0.49 14.42 0.61 16.01 0.97 18.11 0.94 20.86 1.38 25.61 1.50 39.68 2.47

M-CNN 6.57 0.34 6.95 0.39 7.54 0.43 8.16 0.48 9.06 0.52 10.39 0.83 12.43 0.93 15.11 0.83 20.71 1.25 36.36 2.17

C-CNN 5.84 0.35 6.22 0.44 6.81 0.46 7.53 0.47 8.36 0.51 9.62 0.78 11.55 0.86 14.25 0.71 20.40 1.12 40.08 2.78

Gaus3 59.42 1.58 65.64 1.41 74.18 1.86 84.14 1.68 98.50 1.64 117.58 2.44 148.46 2.92 197.58 4.79 295.22 8.14 589.30 13.96

Gaus5 27.19 0.84 29.79 0.77 33.34 0.91 37.37 0.76 43.42 0.92 51.09 1.38 63.82 1.50 83.86 2.16 123.75 3.76 245.17 6.14

Gaus7 22.12 0.70 23.12 0.73 24.66 0.72 26.27 0.68 28.92 0.85 31.84 1.15 37.26 1.31 45.31 1.64 61.48 2.10 112.09 3.99

Gaus9 31.19 0.78 31.67 0.81 32.67 0.78 33.63 0.83 35.32 0.93 36.90 1.15 40.30 1.38 45.02 1.66 54.58 1.74 85.06 3.35

Gaus11 48.87 0.91 49.06 0.92 49.81 0.90 50.46 1.03 51.68 1.06 52.57 1.20 54.93 1.51 58.01 1.79 64.29 1.71 84.41 3.07

Gaus13 69.29 1.01 69.33 1.01 69.95 0.98 70.45 1.16 71.41 1.19 71.94 1.25 73.75 1.62 75.98 1.92 80.60 1.78 95.22 3.01

Med9 17.58 0.86 19.08 0.91 20.92 0.86 23.24 0.99 26.20 0.98 29.97 1.40 36.50 1.55 46.13 2.26 65.22 2.52 123.37 5.07

Med25 32.22 1.55 33.15 1.50 34.05 1.48 35.23 1.48 36.43 2.19 38.38 1.66 41.37 2.14 46.94 2.87 56.36 2.98 88.63 4.29

Med49 72.97 2.43 73.62 1.92 73.81 2.45 75.03 1.94 74.95 2.76 76.09 2.85 78.27 3.15 82.50 3.58 89.85 4.23 116.64 5.18

Med81 117.12 2.68 117.55 2.44 117.19 2.55 117.62 2.42 118.11 2.71 118.92 2.68 120.67 3.12 124.07 3.51 131.24 3.51 159.07 5.13

B-CNN 5 bone CNN; M-CNN 5 mix CNN; C-CNN 5 cylinder CNN; Gaus 5 Gaussian filter; Med 5 median filter.

Values represent mean MSE of 40 noise realizations.

TABLE 1
Mean Coefficient of Variation in Percentage of 40 Noise Realizations

Total counts in millions

Image

type

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Original 6.41 0.43 6.80 0.40 7.08 0.44 7.50 0.55 8.25 0.53 8.91 0.59 9.88 0.61 11.67 0.77 14.33 1.04 10.17 1.64

B-CNN 1.71 0.30 1.85 0.26 1.77 0.30 1.94 0.31 2.05 0.34 2.23 0.43 2.33 0.45 2.51 0.42 2,78 0.60 3.01 0.94

M-CNN 0.98 0.16 1.02 0.16 1.00 0.17 1.02 0.12 1.09 0.15 1.16 0.17 1.24 0.15 1.36 0.14 1.50 0.17 2.60 0.69

C-CNN 0.46 0.11 0.48 0.09 0.53 0.20 0.53 0.08 0.56 0.07 0.60 0.11 0.64 0.07 0.78 0.10 0.95 0.18 1.56 0.27

Gaus3 6.29 0.42 6.67 0.40 6.95 0.44 7.38 0.54 8.09 0.52 8.76 0.59 9.69 0.60 11.44 0.75 14.04 1.02 19.78 1.64

Gaus5 4.00 0.31 4.28 0.28 4.40 0.31 4.69 0.34 5.10 0.36 5.59 0.41 6.15 0.45 7.24 0.46 8.95 0.66 12.64 1.17

Gaus7 2.50 0.29 2.73 0.26 2.74 0.29 2.95 0.27 3.19 0.33 3.52 0.41 3.86 0.44 4.50 0.39 5.62 0.52 8.07 1.09

Gaus9 1.88 0.28 2.08 0.26 2.05 0.28 2.24 0.26 2.42 0.32 2.66 0.42 2.94 0.42 3.41 0.37 4.26 0.51 6.17 1.06

Gaus11 1.49 0.26 1.65 0.26 1.61 0.27 1.79 0.25 1.92 0.29 2.11 0.40 2.33 0.37 2.72 0.34 3.39 0.50 4.92 0.98

Gaus13 1.24 0.24 1.39 0.25 1.34 0.26 1.50 0.24 1.61 0.28 1.75 0.38 1.95 0.34 2.30 0.33 2.84 0.50 4.12 0.91

Med9 2.55 0.36 2.73 0.39 2.77 0.35 2.98 0.35 3.17 0.46 3.47 0.48 3.98 0.47 4.61 0.58 5.62 0.79 8.26 1.29

Med25 1.48 0.28 1.62 0.34 1.61 0.30 1.71 0.32 1.82 0.36 2.00 0.40 2.32 0.44 2.72 0.46 3.29 0.61 4.80 0.79

Med49 0.99 0.20 1.08 0.25 1.12 0.26 1.13 0.25 1.18 0.30 1.29 0.29 1.58 0.36 1.82 0.43 2.25 0.49 3.28 0.72

Med81 0.77 0.19 0.79 0.20 0.89 0.23 0.83 0.20 0.92 0.24 0.96 0.24 1.22 0.32 1.36 0.37 1.71 0.39 2.49 0.52

B-CNN 5 bone CNN; M-CNN 5 mix CNN; C-CNN 5 cylinder CNN; Gaus 5 Gaussian filter; Med 5 median filter.
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image shows hot spots in the upper spine that are not seen in the
images with higher count rates. Therefore, use of the CNN filter on
images with only 10% of the counts might not be optimal, but this
possibility needs to be established in future clinical studies.
It seems that the type of images used to train the CNN

matters to some extent. The differences are most clearly seen in
Figure 2, where the images filtered with the bone CNN are
mottled. However, it seems that if a variety of images are used
(e.g., a mix of different types of images), the result can be
almost as good as if the CNN were trained using a specific set of
images.
As with other filtering methods, it is necessary to establish

whether the filtered images provide any benefits or improvements
regarding the confidence about what the reading physicians see
in the images. It is also necessary to establish that no false
information is added to the images. In our pilot clinical evaluation,
we showed that it is possible to reduce the scanning time by half
and then apply the CNN filter and still obtain high accuracy
for assessment of bone metastases. The observers were used to

interpreting original bone-scan images, not CNN- or gaussian-

filtered images. Since filtered images look different from original

bone scans, the filtered images are not expected to increase reader

confidence at this early stage. Whether CNN-filtered images can pro-

vide better accuracy in the detection of metastases than standard

bone scans and whether the acquisition time can be further

reduced need to be evaluated in larger clinical studies with a better

ground truth than the standard bone scan.
It is crucial to have a good model for generating data used for

training the CNN. Any error may lead to bias in the clinical

images. Our study showed that it is possible to use Monte Carlo–

simulated images for training the CNNs, if the training data are

carefully generated. An alternative could be to use real bone scan

images with high statistics as a substitute for noiseless images.

However, to receive reasonably noiseless images, the imaging

time needs to be long (more than 1 h) and few patients can lie

completely still for such a long time. Therefore, we propose using
Monte Carlo–simulated images instead.

TABLE 4
Performance of Filtered Images, Using Standard Bone Scans as Reference Method

Observer A Observer B

Parameter CNN filter Gaussian filter CNN filter Gaussian filter

Sensitivity 97.8%; 95.0% 95.6%; 95.0% 100% 100%

Specificity 97.0%; 94.7% 84.8%; 89.5% 93.6% 100%

Area under receiver-operating-

characteristic curve

0.97; 0.95 0.90; 0.92 0.97 1.0

Observer A interpreted images twice, 2 Mo apart.

TABLE 3
MSE Between Noisy and CNN-Filtered Simulated Bone Scan Images with Noiseless Image as Reference

Total counts in millions

Image

type

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Original 3.73 0.10 4.15 0.11 4.67 0.13 5.34 0.15 6.24 0.17 7.50 0.19 9.42 0.25 12.73 0.31 19.15 0.50 38.43 2.34

B-CNN 0.25 0.02 0.27 0.03 0.30 0.03 0.33 0.03 0.38 0.03 0.44 0.03 0.55 0.03 0.78 0.06 1.33 0.14 3.71 0.45

M-CNN 0.27 0.02 0.29 0.02 0.32 0.02 0.36 0.03 0.41 0.03 0.48 0.03 0.59 0.03 0.82 0.06 1.38 0.14 3.86 0.38

C-CNN 0.35 0.02 0.40 0.02 0.46 0.02 0.54 0.01 0.66 0.02 0.83 0.03 1.11 0.03 1.65 0.06 2.96 0.14 8.04 0.63

Gaus3 1.04 0.03 1.15 0.03 1.29 0.04 1.48 0.04 1.73 0.05 2.08 0.05 2.62 0.07 3.58 0.09 5.54 0.16 12.09 0.71

Gaus5 0.42 0.03 0.45 0.03 0.50 0.03 0.56 0.03 0.65 0.03 0.76 0.03 0.95 0.03 1.31 0.04 2.11 0.13 5.28 0.36

Gaus7 0.38 0.06 0.40 0.06 0.43 0.06 0.46 0.06 0.51 0.06 0.57 0.06 0.67 0.06 0.88 0.06 1.39 0.12 3.65 0.30

Gaus9 0.53 0.13 0.54 0.12 0.56 0.12 0.58 0.13 0.61 0.13 0.65 0.13 0.71 0.12 0.86 0.12 1.23 0.12 3.04 0.30

Gaus11 0.79 0.22 0.80 0.21 0.81 0.21 0.83 0.22 0.85 0.22 0.87 0.22 0.92 0.21 1.03 0.21 1.33 0.18 2.87 0.34

Gaus13 1.14 0.33 1.15 0.32 1.16 0.32 1.17 0.33 1.18 0.33 1.20 0.33 1.23 0.32 1.33 0.32 1.57 0.27 2.92 0.42

Med9 0.78 0.04 0.86 0.04 0.96 0.04 1.10 0.04 1.28 0.04 1.55 0.05 1.97 0.06 2.73 0.08 4.45 0.15 10.64 0.57

Med25 0.59 0.09 0.63 0.09 0.68 0.09 0.76 0.09 0.85 0.09 1.00 0.10 1.22 0.10 1.66 0.11 2.71 0.11 6.75 0.29

Med49 0.89 0.22 0.92 0.22 0.97 0.22 1.03 0.23 1.11 0.23 1.24 0.24 1.42 0.25 1.79 0.26 2.69 0.19 6.39 0.36

Med81 1.50 0.45 1.54 0.46 1.59 0.45 1.65 0.46 1.73 0.46 1.85 0.47 2.03 0.47 2.41 0.50 3.31 0.41 7.10 0.56

B-CNN 5 bone CNN; M-CNN 5 mix CNN; C-CNN 5 cylinder CNN; Gaus 5 Gaussian filter; Med 5 median filter.

Values represent mean MSE of 40 simulated bone scans.
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CONCLUSION

Noise can be removed efficiently using a CNN trained with
noisy and noiseless simulated images, regardless of the noise level
and with little or no resolution loss. The CNN filter makes it
possible to reduce the scanning time by half and still obtain good
accuracy for detecting bone metastases, but confirmation in large
clinical studies is needed.
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KEY POINTS

QUESTION: Can a noise-reducing CNN be trained with Monte

Carlo–simulated γ-camera images.

PERTINENT FINDINGS: The CNNs trained with Monte Carlo–

simulated images were able to reduce noise by a factor of 10 while

still maintaining the resolution.

IMPLICATIONS FOR PATIENT CARE: The results indicate that

noise in planar nuclear medicine images can be removed effi-

ciently with little or no resolution loss, thus enhancing the image

quality and enabling shorter scanning times with preserved ac-

curacy for detecting bone metastases.
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