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We propose a new deep learning–based approach to provide more

accurate whole-body PET/MRI attenuation correction than is pos-

sible with the Dixon-based 4-segment method. We use activity and
attenuation maps estimated using the maximum-likelihood recon-

struction of activity and attenuation (MLAA) algorithm as inputs to a

convolutional neural network (CNN) to learn a CT-derived attenua-
tion map. Methods: The whole-body 18F-FDG PET/CT scan data of

100 cancer patients (38 men and 62 women; age, 57.3 ± 14.1 y)

were retrospectively used for training and testing the CNN. A modified

U-net was trained to predict a CT-derived μ-map (μ-CT) from the
MLAA-generated activity distribution (l-MLAA) and μ-map (μ-MLAA).

We used 1.3 million patches derived from 60 patients’ data for training

the CNN, data of 20 others were used as a validation set to prevent

overfitting, and the data of the other 20 were used as a test set for
the CNN performance analysis. The attenuation maps generated

using the proposed method (μ-CNN), μ-MLAA, and 4-segment

method (μ-segment) were compared with the μ-CT, a ground truth.

We also compared the voxelwise correlation between the activity
images reconstructed using ordered-subset expectation maximiza-

tion with the μ-maps, and the SUVs of primary and metastatic bone

lesions obtained by drawing regions of interest on the activity im-
ages. Results: The CNN generates less noisy attenuation maps and

achieves better bone identification than MLAA. The average Dice

similarity coefficient for bone regions between μ-CNN and μ-CT
was 0.77, which was significantly higher than that between μ-MLAA
and μ-CT (0.36). Also, the CNN result showed the best pixel-by-pixel

correlation with the CT-based results and remarkably reduced dif-

ferences in activity maps in comparison to CT-based attenuation

correction. Conclusion: The proposed deep neural network
produced a more reliable attenuation map for 511-keV photons

than the 4-segment method currently used in whole-body PET/MRI

studies.
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Although PET/MRI is an emerging hybrid imaging modality
(1–4), the PET attenuation maps (m-maps) used in whole-body
PET/MRI studies have limited accuracy (5,6). In brain PET/
MRI studies, attenuation correction has advanced greatly through
the use of pseudo CT images generated by segmenting ultrashort
echo time or zero echo time MR images and by registering an atlas
generated from transmission or CT scans to individual data (7–9).
However, these techniques used in brain PET/MRI have not been
successfully applied in whole-body PET/MRI studies. The Dixon
sequence–based 4-segment approach used as a standard method in
whole-body PET/MRI systems (10) underestimates PET activity
in bone structures because of the lack of bone information in at-
tenuation maps (11,12). Although a model-based approach (13)
has been suggested to add bone structures to 4-segment maps (14),
inaccurate registration between PET images and bone models may
cause errors in PET activity quantification.
Although algorithms for simultaneous reconstruction of activity

and attenuation have been greatly improved by the incorporation
of time-of-flight (TOF) information (15,16), their accuracy is still
far from the clinically relevant level. The maximum-likelihood
reconstruction of activity and attenuation (MLAA) algorithm, a
simultaneous reconstruction algorithm, has the advantage of pro-
viding attenuation maps (17,18). MLAA-generated attenuation
maps allow the use of image-domain priors to improve the algorithm
accuracy and convergence (19,20). However, mainly because of
the insufficient timing resolution of clinical PET systems, the MLAA
suffers from slow convergence, high noise levels in attenuation
maps, and crosstalk between activity and attenuation distribution (21).
Deep learning–based approaches have been suggested to im-

prove the accuracy of regional PET attenuation correction. In
our recent work (22), to mitigate the limitations of MLAA in brain
PET, deep convolutional neural networks (CNNs) were trained to
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learn a true CT-derived attenuation map with the MLAA activity
and attenuation maps as their inputs. The CNNs generated less
noisy and more uniform attenuation maps than original MLAA,
resulting in only 5% errors in activity and binding ratio quantifica-
tion in the most challenging brain PET cases for simultaneous
image reconstruction (dopamine transporter imaging). Another no-
table application of deep learning for this purpose is CNN-based
PET attenuation map generation from the zero echo time and Dixon
MRIs (23). In pelvis PET/MRI studies, this multiparametric MRI–
based approach reduced the PET quantification error in bone lesions
by a factor of 4 in comparison to the conventional Dixon sequence–
based 4-segment approach. However, this approach requires additional
zero echo time MRI acquisition with a relatively long scan time.
In this study, we investigated the feasibility of the deep learning–

based approach to whole-body PET/MRI attenuation correction
without use of zero echo time or ultrashort echo time data. Similarly
to our previous work on the brain PET studies (22), we use MLAA-
based activity and attenuation maps as inputs to CNN to learn a CT-
derived attenuation map. However, we conducted 3-dimensional (3D)
patch-based learning instead of 2-dimensional slice-by-slice map-
ping because whole-body structures are more complex than head
region and 3D learning allows better continuity of image intensity
in the axial direction. The CNN was trained and tested using
oncologic whole-body 18F-FDG PET/CT scan data. Then, the sim-
ilarity of the CNN-generated attenuation map and the CT-derived
map was evaluated. Also, the attenuation-corrected PET images pro-
duced using the conventional 4-segment method and new CNN
outcomes were compared with ground truth (CT).

MATERIALS AND METHODS

Subjects and Image Acquisition

The whole-body 18F-FDG PET/CT scan data of 100 cancer patients
(38 men and 62 women; age, 57.3 6 14.1 y) acquired using a Biograph

mCT 40 scanner (effective timing resolution, 580 ps; Siemens Health-
care) fromMarch 2017 to May 2017 were retrospectively analyzed. The

retrospective use of the scan data and waiver of consent were approved
by the Institutional Review Board of our institute. For all patients, PET/

CT imaging was performed 60 min after intravenous injection of 18F-
FDG (5.18 MBq/kg). The patients’ upper bodies from head to upper

thigh were covered by a 6- to 8-bed-position emission scan (scan time,
1 min/bed position).

Sinograms of prompt PET counts and correction factors were
generated using the e7 toolkit. The CT images were reconstructed in a

512 · 512 · 100 matrix with the voxel size of 1.52 · 1.52 · 2.03 mm
and converted into the m-map for 511-keV photons (200 · 200 · 109;

4.07 · 4.07 · 2.03 mm). We reconstructed PET datasets using the
MLAA with the TOF information (6 iterations and 21 subsets, 5-mm

gaussian postprocessing filter). The matrix size of MLAA-reconstructed
images was 200 · 200 · 109 (4.07 · 4.07 · 2.03 mm voxel size) for

each bed position.

Simultaneous Activity and Attenuation

Reconstruction Algorithm

In each iteration n, a standard maximum-likelihood expectation

maximization algorithm updates activity distribution l for a current
attenuation coefficient m as follows:
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where lij is the length of intersection between LOR i and voxel j, and

cijt is the TOF system matrix element between LOR i, TOF bin t, and
voxel j. Also, y is the measured emission projection and s is the

additive correction factor that contains scatter and random events.
After updating activity distribution, the attenuation coefficient is

updated by a maximum-likelihood-for-transmission-tomography al-
gorithm as follows:

"i : cn
i 5 ani+

jt

cijtl
n1 1
j

"j : mn1 1
j 5 mn

j 1
+ilij

cn
i

cn
i 1 si

�
cn
i 1 si 2 yi

�

+ilij
ðcn

i Þ2
cn
i 1 si

+klik

:

To resolve the nonunique global scaling problem in MLAA, the boundary

constraint was applied during the attenuation image estimation in
MLAA, following the original TOF MLAA paper (17).

Data Set

The data of 60 patients were used for training the CNNs, that from

20 others as a validation set to prevent overfitting, and the other 20 as
a test set (Table 1) for the CNN performance analysis. For the CNN

training and testing, activity and attenuation maps derived from
MLAAwere used as input to the CNN, and an attenuation map converted

from CT (m-CT) as label data (Fig. 1). We generated the attenuation map
based on a 4-segment approach (m-segment) from m-CT by classifying

each patient’s body parts into 4 segments using 3 different thresholds
applied to m-CT. The thresholds between air, lung, fat, and water were

0.015, 0.04, and 0.09. The mean m-value for each segment was then
calculated from 60 m-CT images and assigned to the body segment of

each patient.

TABLE 1
Demographic Data of Patients Included in Test Set

Patient Sex

Height

(cm)

Weight

(kg) Diagnosis

1 M 172 70 Thymic cancer

2 F 161 53 Breast cancer

3 F 152 53 Lung cancer

4 F 152 41 Lymphoma

5 F 150 56 Lung cancer

6 F 160 49 Breast cancer

7 M 163 53 Lymphoma

8 M 159 55 Cholangiocarcinoma

9 M 175 76 Breast cancer

10 M 162 76 Oral cancer

11 M 159 54 Lung cancer

12 M 160 40 Osteosarcoma

13 F 164 66 Thyroid cancer

14 M 168 70 Lung cancer

15 F 150 52 Lung cancer

16 F 155 57 Breast cancer

17 F 153 63 Breast cancer

18 F 161 50 Breast cancer

19 M 170 62 Lung cancer

20 M 165 72 Oral cancer
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All inputs and labels for the CNN were in the form of 32 · 32 · 32

matrix patches. The intensity of each activity patch was normalized to

have the range between 0 and 1. To avoid including meaningless blank
patches during the CNN training, the volume patches were used for

training only if their centers were included in the body. With this
inclusion criterion, approximately 1.3 million patches were used for

CNN training.

Network Architecture

The network was designed to predict m-CT from activity and at-

tenuation maps derived from MLAA. The network consists of a con-
tracting path to capture the context and a symmetric expanding path

that enables precise localization (24). As shown in Figure 1, the left
half of the proposed network (contracting path) includes repeating two

3D convolution layers with rectified linear

units and batch normalization, and 2 · 2 ·
2 max-pooling layers for down sampling.

Similarly, in the right half of the network (ex-
panding path), two 3D deconvolution layers

with rectified linear units and batch normali-
zation are repeated. In every layer, the number

of feature maps is doubled in the contracting
path and reduced by half in the expanding path.

In the first layer, a convolution with 3 · 3 · 3 ·
2 kernels is applied to merge 2 input datasets.

Then, each convolution and deconvolution
layer except for the last one is composed of

3 · 3 · 3 kernels. In the last layer, which pro-
vides an output, 1 · 1 · 1 convolution is used

for scaling purposes. Symmetric skip con-
nections (copy and concatenation) between the

convolution and deconvolution layers are used
to achieve fast convergence and attain high fre-

quency of local features (25). We implemented

the networks using the TensorFlow library (26).

Network Training and Loss Function

The L1 norm between output (m-CNN)

and ground truth (m-CT) was chosen as a cost
function to train the network to generate a

CT-like attenuation map. The cost function was minimized using
adaptive moment estimation with an initial learning rate of 0.001,

which was reduced by half every 2 epochs (27). In every epoch, we
updated the network 9,955 times using a mini-batch of 128 samples.

The total number of epochs was 10. The training time was approxi-
mately 30 h/epoch when a Ryzen 1700X central processing unit with a

GTX 1080 graphics processing unit was used. Supplemental Figure 1
shows that the L1 norm between m-CNN and m-CT decreases as the

epoch increases, and 10 epochs are sufficient to reach convergence

(supplemental materials are available at http://jnm.snmjournals.org).

Image Analysis

The relative performance of CNN-based attenuation correction of

whole-body 18F-FDG PETwas analyzed by comparing the attenuation
and activity maps generated from 20 test sets.

The attenuation maps generated using the pro-
posed method, MLAA, and 4-segment method

(m-CNN, m-MLAA, and m-segment) were
compared with m-CT, a ground truth. A voxel-

wise scatterplot was plotted for comparison,
and the correlation coefficients were calcu-

lated. The similarity of segmented regions from
m-CNN and m-MLAA attenuation maps was

compared using the Dice similarity coefficient

(28,29). For the segmentation of m-CNN and
m-MLAA, the sample thresholds used for gen-

erating m-segment were applied (0.015, 0.04,
and 0.09 between air, lung, fat, and water).

Attenuation-corrected activity maps were
also obtained using the ordered-subset expec-

tation maximization (3 iterations, 21 subsets,

5-mm gaussian postprocessing filter) algorithm

with different attenuation maps. We made a

voxelwise comparison between the activity

maps generated using the proposed method,

MLAA, and 4-segment method (l-CNN,

l-MLAA, and l-segment) and the activity

map obtained using m-CT (l-CT). We also

FIGURE 1. Data flow in generation of attenuation (μ) map using proposed deep neural network

for whole-body PET/MRI attenuation correction and architecture of deep neural network. Deep

neural network was trained to learn ground truth CT-derived μ-map from MLAA-derived activity

and attenuation maps. In network architecture, each box represents feature map resulting from

operation corresponding to its color. Number of features in each layer is indicated at bottom of

box. Dimensions of each feature map are shown below box.

FIGURE 2. Attenuation maps of representative case. (A) l-MLAA: original MLAA activity. (B) μ-
MLAA: original MLAA attenuation map. (C) μ-segment: 4-segment map corresponding to Dixon

MRI-based attenuation map. (D) μ-CNN: deep CNN output. (E) μ-CT: ground truth.
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compared the SUVmean of primary and metastatic bone lesions (29 lesions
from 6 patients) and soft-tissue lesions (11 lesions from 5 patients)

obtained by manual drawing of regions of interest on the activity
images of the patients who were included in the test set and showed

abnormal uptake (Table 1).
The peak signal-to-noise ratio and normalized root-mean-square

error values were calculated as additional image quality metrics to
quantify the similarity of attenuation and activity maps (30).

To understand better what the CNN is really doing, some sanity
checks were performed by exploring the CNN output for m-MLAA

input clipped to soft-tissue attenuation values (no higher bone attenua-
tion), l-MLAA input with high–low flipped activity, and m-MLAA input

globally scaled by 0.95.

RESULTS

Attenuation Maps

The CNN generates less noisy attenuation maps than m-MLAA
and achieves better bone identification than m-segment and m-MLAA.
Figure 2 shows sagittal and coronal slices of l-MLAA, m-MLAA,
m-segment, m-CNN, and m-CT in a representative case. Although
m-MLAA shows higher m-values in bone regions than soft-tissue
and lung tissue, the margin between different tissues is not as clear
as in the other attenuation maps. Moreover, some soft-tissue regions
(e.g., back and shoulder) show improperly high m-values, and lower
spinal bone regions are not well identified (Fig. 2B). In contrast, the
large bone structures are more accurately delineated in the m-CNN,
although the small bone structures are not as fine as those obtained
with m-CT (Fig. 2D). Supplemental Figure 2 shows the attenuation
maps generated from another representative case that also proves
the superiority of the CNN-based approach to the others in terms of

the similarity to m-CT. However, some small air regions in the ab-
domen are missing in the m-CNN (Supplemental Fig. 2D), indicating
the limited performance of CNN to overcome the high noise-level
and low resolution of l-MLAA and m-MLAA.
The quantitative analysis on the similarity of attenuation maps

confirmed the qualitative comparison results. The m-CNN achieved
the best voxelwise correlation with m-CT as shown in Figures 3A–
3C (the joint histogram of m-values were plotted in log scale) and
Table 2. Also, the m-CNN yielded the highest peak signal-to-noise
ratio and lowest normalized root-mean-square error relative to the
m-CT (Table 3). The average Dice similarity coefficients between
m-CNN and m-CT were significantly higher than that between
m-MLAA and m-CT in all regions (Fig. 4). In the regions of interest
drawn on the bone lesions, the m-CNN yielded the smallest error
relative to the m-CT (MLAA, 24.10% 6 10.62%; 4-segment,
24.20%6 8.23%; CNN, 0.43%6 6.80%). In the soft-tissue lesions,
both 4-segment method and CNN yielded considerably smaller
error than MLAA (MLAA, 24.57% 6 6.59%; 4-segment, 0.57% 6
1.74%; CNN, 0.91% 6 3.55%).
Similar to our previous results (22), the activity information

enhances the CNN performance. Supplemental Figure 3 shows
the results of CNNs trained with and without l-MLAA as input.
Using both the l-MLAA and m-MLAA as input, we could gener-
ate m-CNN with better image contrast and anatomic detail.
Through the sanity checks, we could verify that the CNN works

properly as we intended. As shown in Figure 5, the m-MLAA
input clipped to soft-tissue attenuation values yielded m-CNN with
missing bone regions. Intensity-flipped l-MLAA input produced
irreverently homogeneous m-CNN, and m-MLAA input globally
scaled by 0.95 led to the underestimation of m-CNN intensity.

Activity Maps

The accuracy of PET activity quantification was improved by
the attenuation correction using m-CNN. As shown in Figures 3D–
3F and Table 2, the l-CNN more strongly correlates with l-CT
than do the l-MLAA and l-segment. In addition, the l-CNN
showed the highest peak signal-to-noise ratio and lowest normal-
ized root-mean-square error relative to l-CT (Table 3). Figure 6
shows the differences in activity maps (SUV) relative to CT-based
in a representative case. Although l-MLAA (A) shows lower dif-
ferences in bone regions than l-segment (B), the differences in soft
tissues were higher, particularly in the lungs, heart, liver dome, and
bladder. The differences between l-CNN and l-CT (C) were
smaller and more uniform than the others. The overestimation
of activity in the lungs and underestimation in the liver seen in
l-MLAA were considerably reduced in l-CNN. Supplemental
Figure 4 shows attenuation-corrected PET images of a patient
with lung lesions using different attenuation maps.

FIGURE 3. (A–C) Correlation between μ-CT and μ-MLAA (A), μ-seg-
ment (B), and μ-CNN (C). (D–F) Correlation between l-CT and l-MLAA

(D), l-segment (E), and l-CNN (F). Red lines are identity lines.

TABLE 2
Summary of Voxelwise Correlation of Attenuation (μ) and Activity (l) Relative to Ground Truth (μ-CT and l-CT) for 20

Subjects Used in Test Set

MLAA 4-Segment CNN

Parameter Slope Intercept R2 Slope Intercept R2 Slope Intercept R2

μ 0.73 (0.06) 0.02 (0.01) 0.56 (0.05) 0.73 (0.03) 0.02 (0.00) 0.78 (0.05) 0.86 (0.05) 0.01 (0.00) 0.87 (0.04)

l 0.97 (0.06) 0.09 (0.04) 0.97 (0.02) 0.94 (0.03) 0.03 (0.02) 1.00 (0.00) 0.99 (0.02) 0.01 (0.02) 1.00 (0.00)

Data are mean (SD).
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The same trend was observed in the regional SUVmean quantifi-
cation in bone lesions (Fig. 7) and soft lesions. The relative differ-
ences in bone lesions and soft-tissue lesions are plotted in
Supplemental Figure 5. Although the 4-segment map-based correc-
tion (y5 0.947x2 0.043, R25 0.964) improved the SUV correlation
with CT-based attenuation correction in comparison to the original
MLAA (y5 1.020x2 0.062, R2 5 0.848), the CNN (y5 1.000x2
0.017, R2 5 0.992) outperformed the 4-segment map-based correc-
tion. However, in 6 vertebrae regions of 29 bone lesions, MLAA
(2.71% 6 4.61%) and CNN (22.22% 6 1.77%) were more accu-
rate than 4-segment map-based correction (29.40% 6 5.16%). In
soft lesions, CNN (1.31% 6 3.35%) showed smaller error than
MLAA (8.78% 6 7.41%) and 4-segment map-based correction
(22.90% 6 1.22%). Also, the CNN yielded the lowest voxelwise
average error relative to the CT-based attenuation correction
(l-MLAA, 12.82% 6 2.45%; l-segment, 5.61% 6 0.68%;
l-CNN, 2.05% 6 1.51%).

Computation Time

The MLAA took approximately 2 times longer than ordered-
subset expectation maximization, but the CNN inference did not
require long computation time (,30% of ordered-subset expecta-
tion maximization reconstruction for whole-body PET).

DISCUSSION

Attenuation correction is an essential procedure in the gener-
ation of PET images with quantitatively accurate regional activity
information. In PET/CT systems, the Hounsfield unit in CT images
is converted into the linear attenuation coefficient for 511-keV

annihilation photons based on their bilinear relationship to generate
patient-specific PET attenuation maps (m-CT). However, attenua-
tion map generation in PET/MRI is not so straightforward because
the MR signal is not directly related to photon attenuation (6). The
Dixon MRI based on the chemical shift difference between water
and fat provides noiseless 4-segment maps for PET attenuation
correction (10). However, these 4-segment maps cannot accurately
account for photon attenuation by bone tissue (11,12,31). In addi-
tion, the inter- and intrapatient variability of m-values is ignored in
this method (11,32). Moreover, the bone model–based approach
cannot handle heterogeneous bone attenuation coefficients even
in cases with accurate bone registration. Although ultrashort echo
time MRI sequence-based conversion of R2* to the CT Hounsfield
unit was proposed, its application is limited to neurologic studies
(29,33). Despite recent advances in the accuracy of TOF measure-
ment in PET, limitations of simultaneous activity and attenua-
tion reconstruction still exist in real clinical cases. The deep CNN
trained in this study to learn m-CT from MLAA activity and attenu-
ation maps handled well the information provided by this physically
relevant but imperfect attenuation correction method.

TABLE 3
Peak Signal-to-Noise Ratio and Normalized Root-Mean-Square Error Relative to Ground Truth (μ-CT and l-CT) for 20

Subjects Used in Test Set

Parameter

MLAA 4-Segment CNN

Peak signal-to-

noise ratio

Normalized root-

mean-square error

Peak signal-

to-noise ratio

Normalized root-

mean-square error

Peak signal-to-

noise ratio

Normalized root-

mean-square error

μ 23.23 (1.30) 0.070 (0.011) 26.66 (0.99) 0.047 (0.006) 29.12 (1.90) 0.036 (0.008)

l 44.29 (4.89) 0.007 (0.004) 49.92 (5.38) 0.004 (0.003) 60.41 (6.79) 0.001 (0.001)

Data are mean (SD).

FIGURE 4. Statistical analysis on Dice similarity coefficients between

μ-CNN and μ-CT and those between μ-MLAA and μ-CT.

FIGURE 5. Attenuation maps generated in sanity checks to under-

stand how CNN works. (A–C, top) CNN outcomes for μ-MLAA input

clipped to soft-tissue attenuation values (no higher bone attenuation)

(A), l-MLAA input with high–low flipped activity (B), μ-MLAA input glob-

ally scaled by 0.95 (C). (A–C, bottom) Differences from original CNN

output.
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The convolution kernels of CNN, which determine how the
MLAA images are merged, evolve during the network training
based on the given training set. Therefore, the CNN approach does
not need additional image segmentation, tissue probability prior,
control parameters, and so forth (34–36), which are required in
other approaches that have been previously proposed to combine
MLAA and Dixon attenuation correction methods (37,38). For
example, the MRI-guided MLAA algorithm (37,39), which im-
poses MR spatial and CT statistical constraints on the MLAA
estimation of attenuation maps using a constrained gaussian mix-
ture model and a Markov random field smoothness prior, needs to
use a coregistered bone probability map. Another joint estimation
algorithm that uses Dixon MRI as a prior requires uncertain MR-
region segmentation and emphatically determined prior weights
for this segment (38).
The difference between PET activities corrected for attenuation

using proposed CNN-based method and CT was relatively high in

lung boundary and liver dome (Fig. 6C). Incorrect activity mea-
surement in lung and upper liver due to the respiratory motion–

induced mismatch between PET and CT data is a well-known
artifact in CT-based PET attenuation correction. In the MLAA,
the activity and attenuation are simultaneously estimated only
from the emission PET data without use of any transmission

data. Therefore, the MLAA activity and attenuation maps would
be free from or less vulnerable to the position mismatch artifact.
We used CT as the ground truth for training the CNN. However,
major data used for network training came from other regions
rather than lung and upper liver because we performed patch-based

learning. In fact, the l-MLAA, m-MLAA, and m-CNN show well-
matched boundaries of liver dome (Figs. 2A, 2B, and 2C) although
the liver dome in m-CT is elevated (Fig. 2E). Accordingly, the
CNN-based approach that derived an attenuation map from the
MLAA outputs would also be less influenced by the respiratory

motion than CT-based attenuation correction, resulting in the
activity difference shown in Figure 6C.
A limitation of this study is that we trained and validated the

CNN only for whole-body 18F-FDG PET scans. It is uncertain yet

whether the trained deep network for simultaneously reconstructed
activity and attenuation maps from 18F-FDG will work for other
types of PET radiotracers. Further investigation is required to answer
this clinically important question. Even if different network pa-
rameters are required for each type of radiotracer, the network

parameters derived from 18F-FDG PET in this study could serve
as initial values assigned before fine parameter tuning for each
radiotracer. This technique, called transfer learning, allows faster
convergence in training with a limited training set (40). The trans-
fer learning will also be useful for training the CNN when it is

applied to the PET systems with different timing resolutions.
Another direction to advance in future investigations would be
the combination of MLAA outputs and Dixon MR images as the
input to the CNN. The detailed anatomic information and tissue
characterization provided by the Dixon MR images would be

useful for improving the CNN performance. It should also be
noted that the performance of MLAA is sensitive to accurate
scatter estimation and TOF timing offset calibration (41). Thus
also, the CNN MLAA performance would be influenced by the
residual uncertainties in scatter estimation and TOF timing offset

calibration.

CONCLUSION

We have developed a deep neural net-
work that successfully processes the infor-
mation obtained from simultaneous activity
and attenuation reconstruction to produce a
more reliable attenuation map for 511-keV
photons in comparison to the conventional 4-

segment method. We also verified its feasi-
bility using a whole-body 18F-FDG PET
dataset with TOF information. Accordingly,
the proposed method has potential to replace
the current 4-segment–based attenuation

correction in whole-body FDG PET/MRI
in which bones are poorly identified in
whole-body PET/MRI studies and the local
MRI signal loss produced by metallic im-
plants results in the considerable error in
image segmentation. Also, we expect that

FIGURE 6. Differences of SUV between l-CT and l-MLAA (A), l-seg-

ment (B), and l-CNN (C). SUV difference 5 l-method − l-CT; percent

difference 5 (l-method − l-CT)/l-CT·100%; method 5 MLAA, seg-

ment, or CNN.

FIGURE 7. Comparison of SUVmean measured in bone lesions (29 lesions in 10 patients in test

set). Scattered plots between l-CT and l-MLAA (A), l-segment (B), and l-CNN (C) and corre-

sponding Bland–Altman plots (D–F).
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the accuracy of this new method will improve as the TOF and machine
learning technologies advance further.
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