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Artificial Intelligence in Nuclear Cardiology
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What we want is a machine that can learn from experience.

—Alan Turing, London, 1947

The ability to accurately predict future cardiovascular events
has been the holy grail of cardiovascular medicine. Thanks to a
large body of supportive evidence, radionuclide myocardial per-
fusion imaging (MPI) has been established as a mainstay in the
diagnostic and prognostic assessment of patients with known or
suspected coronary artery disease (/). However, deriving a patient-
specific risk prediction is rather difficult, as the pretest likelihood
of disease and a large number of clinical, electrocardiographic,
stress, perfusion, and functional data elements influence the prog-
nostic predictive value of stress MPI (2-9). Thus, it is impossible
for the human brain to integrate dozens of variables to come up
with a precise predicted probability of an outcome. Even regres-
sion equation modeling has significant limitations in this domain.
In the quest for perfecting risk prediction in nuclear cardiology,
artificial intelligence (AI) technologies, particularly machine learn-
ing (ML), have emerged as a potential tool to improve risk pre-
diction (/0-12). In principle, ML techniques consume very large
training data to generate and validate algorithms that produce con-
tinuous or binary predictions of a given diagnosis or outcome (/3).

In a recent multicenter study of 2,619 patients who underwent
exercise or pharmacologic SPECT/MPI using cadmium zinc
telluride cameras, Betancur et al. evaluated the ability of an ML
algorithm to predict major adverse cardiac events, defined as all-
cause mortality, nonfatal myocardial infarction, unstable angina,
or late coronary revascularization, during 3 y of follow-up. Major
adverse cardiac event prediction was compared among ML with
all available data (ML-combined), ML with only imaging data
(ML-imaging), physician interpretation, and automated quantita-
tive imaging analysis using stress total perfusion deficit (TPD) and
ischemic TPD. The ML algorithm involved automated variable
selection by ranking the information gain from each variable and
modeling them using a boosted ensemble algorithm. A 10-fold
stratified cross-validation was performed, such that patients were
divided into 10 groups; in each cross-validation cycle, 9 groups
were used for training and the 10th group was used for testing. In
the process, variable selection and iterative model building are
performed and evaluated in the testing subsets. Of 70 variables
considered (25 imaging, 17 stress test, 28 clinical), 47 variables
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were selected (22 imaging, 8 stress test, 17 clinical) on the basis of
an information gain ratio higher than 0. The study showed that
ML-combined provided a significant improvement in predictive
accuracy for major adverse cardiac events when compared with
expert readers, automated quantitative analysis using stress TPD,
and ischemic TPD. Furthermore, ML-combined predicted major
adverse cardiac events more accurately than ML-imaging (/4).
The study was the first to report improved prognostic accuracy
using ML algorithms applied specifically to nuclear cardiac imag-
ing. The concept of incorporating clinical, stress, and imaging
parameters in complex modeling to predict outcome is not novel.
Multivariate regression modeling has been attempted to incorpo-
rate clinical and imaging variables to improve risk prediction (/5).
However, conventional Cox or logistic multivariate regression mod-
eling has important limitations, particularly colinearity and overfit-
ting. ML techniques do not suffer from these particular limitations.
Moreover, it is feasible for risk prediction with ML to improve on
an ongoing basis as more data and outcomes are fed into the ML
algorithm, so it can continuously perfect its future predictions. On
the other hand, the inability of current ML techniques to incorporate
time-to-event into model building may have a significant impact on
the clinical implications of risk prediction. Although ML may be, in
theory, superior to predictive regression equation modeling, this
advantage has to be demonstrated clinically.

Beyond ML, additional AI modalities, such as deep learning
(DL) technologies, have also gained great interest as a tool to
analyze medical images. DL methods, using convolutional neural
networks, connect directly to image pixels and learn, in a self-
taught manner, imaging data in their original DICOM format
(16,17). To put it into context, ML can process numeric TPD
values provided by quantitative MPI analysis whereas DL can
analyze the image pattern itself, resembling the human eye and
brain. In a multicenter cohort of 1,638 subjects, Betancur et al.
also studied DL image interpretation in patients who underwent
MPI followed by invasive coronary angiography within 6 mo. The
authors compared quantitative TPD against a DL algorithm using
a convolutional neural network architecture analyzing SPECT/
MPI polar maps. DL image analysis provided a statistically signif-
icant improvement in per-vessel as well as per-patient sensitivity in
detection of obstructive coronary artery disease compared with
quantitative TPD (79.8% to 82.3% and 64.4% to 69.8%, respec-
tively), indicating that the DL approach using convolutional neural
networks was superior to standard TPD (/0). Combining DL image
interpretation with ML data integration has the potential to further
improve risk prediction.
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These 2 studies lay the foundation for the application of ML in
nuclear cardiology. Despite the great promise, the full adoption of
Al in clinical practice is fraught with significant challenges. First,
ML algorithms require large amounts of data for training and val-
idation. The use of such large data sets is complicated by regulatory
considerations, as data ownership is not always clear. Second,
data standardization for ML is challenging. Pooling data from
different centers for this purpose is not simple, as different
centers use disparate nomenclature, protocols, equipment, and
software tools. For the same reason, the wide-scale clinical
application of ML tools is not straightforward. Finally, there are
significant medicolegal concerns. Although current data suggest
that Al can be at least as accurate as expert clinicians, erroneous
interpretation can still lead to a poor outcome, making it difficult
to establish responsibility. Thus, for the foreseeable future, the
overseeing physician will ultimately be accountable for the final
product.

It is clear that we are at the gates of the next paradigm shift in
medical imaging. Understandably, the rapid evolution of Al tech-
nologies may be perceived as a threat to the imaging community.
Although recent data suggest that Al image interpretation and risk
prediction are feasible, unsupervised Al application in routine
clinical practice is not quite ready for prime-time. Despite the anxiety,
much of what Al can offer should be embraced by physicians. Why
should we not take every advantage in sharpening our diagnostic
and prognostic acumen? Who would not benefit from the extra pair
of eyes and the crystal ball of ML algorithms? For the foreseeable
future, the upcoming Al developments will not replace the role of
physicians but will rather support and transform it.
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