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Radiomics analysis of 18F-FDG PET/CT images promises well for an
improved in vivo disease characterization. To date, several studies

have reported significant variations in textural features due to dif-

ferences in patient preparation, imaging protocols, lesion delinea-

tion, and feature extraction. Our objective was to study variations in
features before a radiomics analysis of 18F-FDG PET data and to

identify those feature extraction and imaging protocol parameters

that minimize radiomic feature variations across PET imaging sys-
tems. Methods: A whole-body National Electrical Manufacturers

Association image-quality phantom was imaged with 13 PET/CT

systems at 12 different sites following local protocols. We selected

37 radiomic features related to the 4 largest spheres (17–37 mm) in
the phantom. On the basis of a combined analysis of voxel size, bin

size, and lesion volume changes, feature and imaging system ranks

were established. A 1-way ANOVA was performed over voxel size,

bin size, and lesion volume subgroups to identify the dependency
and the trend change in feature variations across these parameters.

Results: Feature ranking revealed that the gray-level cooccurrence

matrix and shape features are the least sensitive to PET imaging

system variations. Imaging system ranking illustrated that the use of
point-spread function, small voxel sizes, and narrow gaussian post-

filtering helped minimize feature variations. ANOVA subgroup anal-

ysis indicated that variations in each of the 37 features and for a
given voxel size and bin size can be minimized. Conclusion: Our

results provide guidance to selecting optimized features from 18F-

FDG PET/CT studies. We were able to demonstrate that feature

variations can be minimized for selected image parameters and
imaging systems. These results can help imaging specialists and

feature engineers in increasing the quality of future radiomics stud-

ies involving PET/CT.
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Radiomics refers to the process of extracting and analyzing in
vivo features from medical images for disease characterization
(1). The radiomics approach was originally conceived for mor-
phologic images only (2,3) but recently was adopted also for the

analysis of 18F-FDG PET/CT images, with promising results in
various patient cohorts (4–9). It has been shown that several fea-
tures, particularly textural indices, used in the radiomics approach
are affected by, for example, variations in biologic factors (10),
imaging and reconstruction protocols (11,12), delineation ap-
proaches (13–15), or feature extraction methods (12,16–18).
Feature variations challenge the reproducibility of radiomics

assessments; therefore, standardized protocols related to patient
preparation, imaging, and feature engineering are needed (18,19).
In this context, Vallières et al. recently pointed to the importance
of standardized image processing and feature computation for
better addressing the ‘‘statistical quality of radiomics analyses’’
(20). Although individual feature computations in light of variable
image resolutions (12,21–26) or bin sizes (27–32) have been in-
vestigated, optimized feature extraction after the combined analy-
sis of voxel size, bin size, and lesion volume changes has not yet
been reported. Instead, the choice of protocol parameters is still
driven largely by the wish to maximize individual predictive per-
formance. This is in contrast to the need for standards in radiomics
analysis at the level of individual feature extraction parameters.
Our hypothesis was that feature extraction can be optimized

through the analysis of 18F-FDG PET image features derived from
multiple scans of a standard phantom. We used multicenter data to
provide a general solution to optimize feature extraction applica-
ble mono- or multicentrically. We performed an in-depth analysis
of features regarding voxel size, bin size, and lesion volume
changes to support feature extraction optimization.

MATERIALS AND METHODS

Phantom Acquisition

The data used for this study were acquired in the context of a multicenter
study across 12 PET imaging centers involving 13 imaging systems in

Austria (33). A National Electrical Manufacturers Association (NEMA)

image-quality phantom was filled with a background activity concentration

FIGURE 1. Central axial slices through reconstructed PET images of

NEMA image-quality phantom acquired from 3 of the involved 13 PET/

CT imaging systems (Table 1): PCS3 (A), PCS13 (B), and PCS8 (C). Ac-

quisitions followed local clinical standard protocols as part of previous

study (33). PET image planes demonstrate typical variations in appear-

ance of lesions and backgrounds.
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of about 5.3 kBq/mL as recommended by the NEMA NU2-2012 standard
(34). The phantom contains 6 spheres (10–37 mm) that were filled with an

activity concentration of 4 times the background concentration (Fig. 1). All
phantom acquisitions and image reconstructions were performed by the

same expert according to the on-site clinical standards for whole-body 18F-
FDG PET/CT imaging (Table 1).

Delineation

The delineation process was performed using the Hermes Hybrid

3D software, version 2.0 (Hermes Medical Solutions). First, a cuboid
volume of interest (VOI, 5 · 5 · 5 voxels) was defined in the back-

ground area of each PET image. Then, the 4 largest spheres (spheres
1–4, with diameters of 37, 28,

22, and 17 mm) that were visually
identifiable in all reconstructed

PET images were delineated
using a semiautomatic region-

growing tool to generate corre-

sponding VOIs (S37, S28, S22,
and S17). Only voxels with val-

ues higher than the mean of the
background VOI were included

in a given VOI. The VOIs (S37–
S17) were dilated by 5 voxels by

an automated dilatation tool (DS37,
DS28, DS22, and DS17 VOIs;

Fig. 2). This step was performed
to avoid interpolation artifacts at

border voxel positions in the S37–
S17 VOIs during the resampling.

Feature Extraction

For each acquisition, features
were extracted from resampled

images with 3 different voxel

sizes (1, 2, and 4 mm) and combined with 4 different bin sizes (0.01,
0.025, 0.05, and 0.1 in units of tumor-to-background ratio). The com-

bination of the image resolution and bin size parameters resulted in 12
feature extraction configurations (C 5 fc1; . . . ; c12g) (Fig. 3). The use of

absolute bin sizes resulted in a variable number of bins (Fig. 4) (27).
To perform the feature extraction, the voxel values in the dilated

VOIs (DS37–DS17) were normalized to the mean of the respective
background VOI to calculate tumor-to-background ratios (35,36).

The resampling to the given target resolution was then performed
on the dilated VOIs (DS37–DS17) by ordinary kriging interpolation

(36,37). The feature extraction was performed from the normalized,
resampled DS VOIs, where the resampled S37–S17 VOIs served as

binary masks to identify voxels for the feature extraction (Fig. 4).

TABLE 1
Image Acquisition and Reconstruction Protocols for NEMA Image-Quality Phantom Studies Using 13 PET/CT Systems (33)

System Algorithm PSF TOF Iterations Subsets Filter FWHM Voxel size (mm) Time/bed position (min) BckVar (%)

PCS1 Blob-OS-TF NA Yes NA NA Un NA 4.00 1:15 2.80

PCS2 OSEM No No 4 8 Ga 5 4.06 3:00 2.50

PCS3 OSEM No No 2 8 Ga 5 5.31 2:00 2.97

PCS4 LOR-RAMLA No No NA NA Un NA 4.00 1:30 4.51

PCS5 TrueX Yes No 3 21 Ga 2 4.07 2:00 2.72

PCS6 TrueX Yes No 4 21 None NA 4.07 3:00 3.19

PCS7 TrueX Yes No 4 21 None NA 4.06 3:00 3.21

PCS8 TrueX Yes No 3 21 Ga 2 4.07 2:00 3.22

PCS9 TrueX (HD PET) Yes No 3 21 Ga 2 3.18 2:00 3.07

PCS10 VUE Point No No 2 21 Ga 6 5.47 2:00 7.30

PCS11 VUE Point FX Yes Yes 4 18 Ga 4 3.27 2:00 2.65

PCS12 VUE Point FX No Yes 2 32 Ga 6.4 5.47 2:00 2.51

PCS13 VUE Point HD Yes No 2 24 Ga 4 2.73 3:00 2.81

PSF 5 point spread function; TOF 5 time-of-flight; FWHM 5 full-width at half-maximum; BckVar (%) 5 background variability

calculated according to NEMA NU2-2012; Blob-OS-TF 5 Blob-basis function ordered-subsets time of flight; NA 5 not applicable;
OSEM 5 ordered-subset expectation maximization; Un 5 unknown; LOR-RAMLA 5 line-of-response–based row-action-maximum-

likelihood algorithm; Ga 5 gaussian.

All imaging systems operated with uniform voxel sizes.

FIGURE 2. Axial slice of recon-

structed NEMA image-quality PET

phantom image with its overlaid de-

lineated VOIs. Cuboid VOI (green)

represents background region. Four

small sphere VOIs (red) represent

semiautomatically delineated spheres

S17, S22, S28, and S37 from left to

right. Larger, dilated, VOIs (blue)

are generated to avoid interpolation

artifacts at border voxel positions in

S37–S17 VOIs during resampling.

FIGURE 3. Representation of data acquisition and feature extraction

processes. Same physical image-quality (IQ) phantom is used to acquire

13 18F-FDG PET/CT images from 12 imaging centers (PCS1–PCS13).

Four largest visible hot spheres are delineated and analyzed. Thus, 37

radiomic features are extracted from each sphere with 3 voxel size and 4

bin size configurations.
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Of the 37 features extracted from each of the 4 spheres (36), 34
were textural (3,18), whereas 3 features were shape-related and selected

as independent features from binning (18,31,38) for reference comparison
(Table 2). The feature extraction was performed by an in-house–developed

program (feature extraction implementation properties are described in the
supplemental definitions available at http://jnm.snmjournals.org).

Feature and PET/CT System Ranking

All 37 features and 13 PET/CT systems were ranked by a
coefficient-of-variation (COV) analysis (39,40), where COV describes

the SD of samples divided by their mean.
For each feature–PET/CT system pair, an individual COV was

calculated over the 12 configurations (C). This step was performed
for all 4 spheres, thus resulting in 4 feature–PET/CT system COV

matrices. The ranking of the features was calculated for each
sphere/VOI as the average COV over all PET/CT systems. Similarly,

the ranking of the PET/CT systems was calculated for each sphere/
VOI as the average COV across the respective 37 features (Fig. 5).

Feature Dependency on Voxel Size, Bin Size, and Volume

To assess the dependency of the features on voxel size, bin size, and

sphere volume together, the COV of each of the 37 features was
calculated across the 13 imaging systems for each sphere size and each

of the 12 configurations (C). This resulted in 48 (12 configurations · 4
spheres) COVs. The COVs were subsequently grouped according to (a)

voxel size, (b) bin size, and (c) sphere volume (Table 3). For each set of
subgroups (a, b, and c) a 1-way ANOVA (27,41) was performed and the

corresponding P value was used as a measure of dependence.

Feature Extraction Optimization

For each feature, the behavior of the COV changes in the 3
subgroups (a, b, and c) as a function of voxel size, bin size, and

volume was assessed. To characterize the behavior trends, increasing,
decreasing, inconsistent, and constant COV trend scenarios were

considered. Last, the mean of S37–S17 multicenter COVs for each of
the 12 feature extraction configurations (C) was calculated. The con-

figuration resulting in the smallest mean COVof the given feature was
chosen as the optimal parameter set for feature extraction (Fig. 5).

RESULTS

Feature and PET/CT System Ranking

Information correlation (gray-level cooccurrence matrix [GLCM])
and shape features were least sensitive to feature extraction parameter
(C) changes, followed by sum entropy (GLCM) and correlation
(GLCM). The features that were most sensitive to feature extrac-
tion parameters were contrast and difference variance (GLCM)
and contrast (neighborhood gray-tone difference matrix [NGTDM]),
followed by 4 gray-level zone size matrix (GLZSM) features (Table
4, Supplemental Tables 1–4).

FIGURE 4. Explanation of resampling and binning steps that are per-

formed for feature extraction. (A) Original image resolution with S VOI

(red) and extended DS VOI (blue) regions (Fig. 2). Note, DS VOI also

includes S VOI voxels. Dashed frame indicates zoomed subregion B. (B)

Example target voxel (V in black frame) and original neighboring voxels

(gray frames) that are involved in interpolation to determine V. Some of

these voxels are outside S VOI; thus, resampling is performed from DS

VOIs. (C) Radiomics analysis is performed from resampled DS VOI

voxels that are inside resampled S VOI region (red). (D) Profile curve

of voxels present at dashed line in C. Binning is characterized by choice

of bin size, which defines which values are transformed to same bin.

Feature extraction is performed over binned voxel values. This process

results in variable number of bins per lesion.

TABLE 2
Extracted Features from 4 Largest Spheres of Each PET Acquisition

Feature category Feature name

GLCM (18) Angular second moment, auto correlation, cluster prominence, cluster shade, contrast, correlation,
difference entropy, difference variance, dissimilarity, entropy, information correlation, inverse

difference, inverse difference moment, maximum probability, sum average, sum entropy, sum-of-

squares variance, sum variance

GLSZM (11) Gray-level nonuniformity, high gray-level zone emphasis, large zone high gray emphasis, large zone

low gray emphasis, large zone size emphasis, low gray-level zone emphasis, small zone high gray
emphasis, small zone low gray emphasis, small zone size emphasis, zone size nonuniformity, zone

size percentage

NGTDM (5) Busyness, coarseness, complexity, contrast, texture strength

Shape (3) Compactness, spheric dice coefficient, volume

Details of feature calculations have been previously published (18,36).
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Table 5 summarizes the ranking of the 13 PET/CT imaging sys-
tems together with their standard imaging protocols (Table 1). The
use of point-spread function modeling with a narrow gaussian
postreconstruction filter (2–4 mm in full width at half maximum)
together with large matrix sizes (192–256) led to higher imaging
ranks for the individual PET/CT systems (Table 5). Imaging sys-
tems with time-of-flight capability did not generally rank higher.
Likewise, the number of iterations, subsets, and time per bed
position (Table 1) did not affect the imaging system ranks (Table
5). High-ranked imaging systems had lower background noise var-
iation (Tables 1 and 5). In contrast, the low-ranked imaging sys-
tems represented no noticeable correlation with background noise
variations, with the exception of the lowest-ranked system
(PCS10), which had the largest background variability, 7.3% (Ta-
bles 1 and 5).

Feature Dependency on Voxel Size, Bin Size, and Volume

Features independent of the voxel size were mainly from the
GLCM category (Table 2): for example, correlation, sum variance,
and cluster prominence had P values of 1.0, 0.995, and 0.992,
respectively. In contrast, features most sensitive toward changes

in voxel size were maximum probability
(GLCM), angular second moment (GLCM),
and compactness (shape), with P values of
less than 0.001 (Supplemental Table 5).
Features from the GLCM category such

as correlation, contrast, and cluster shade
(P ; 1) were independent of bin size,
whereas GLZSM-based features were
more dependent (Supplemental Table 6).
Furthermore, large zone low gray emphasis
(P 5 0.79), large zone size emphasis (P 5
0.48), and zone size percentage (P 5 0.44)
were less dependent on sphere volume. De-
pendencies on volume increased for GLCM
features, such as cluster prominence, con-
trast, or sum variance, with P values near
zero (Supplemental Table 7). Overall, the
volume subgroup P values were consider-
ably lower than P values of the voxel size
and bin size subgroups (Supplemental Ta-
bles 5–7). Figure 6 shows an example of
subgroup representation.

Feature Extraction Optimization

After the use of optimized feature ex-
traction parameters, only 7 features resulted
in small COVs (,5%), whereas 3, 3, and
27 were in the moderate (5% # COV ,
10%), elevated (10% # COV , 20%),
and large (COV $ 20%) categories, respec-
tively (Table 6).

DISCUSSION

Quantitative radiomics analysis is challenged in multiple ways
(20,42). In this study, we presented a holistic approach for ana-
lyzing and optimizing the process of feature extraction. By using a
standard image-quality phantom, we ranked 37 popular radiomic
features and 13 PET/CT imaging systems with regard to their
stability. The imaging system ranks (Table 5) indicate that the
influence of using point-spread function, a narrow gaussian post-
processing filter, and a large matrix has a larger impact on radio-
mics variations than the type of image reconstruction algorithm.
Furthermore, we were able to demonstrate that multicenter feature
variations can be minimized by preselecting feature-specific indi-
vidual voxel size and bin size parameters based on their COV
trends (Supplemental Tables 5–7; Table 6). With our feature op-
timization approach, 7 of our investigated features had a COV of
less than 5%, and 3 of them had a COVof less than 10%. Without
optimization, only one feature had a COV of less than 5%, and 4
had a COV of less than 10% (Table 6). The ANOVA subgroup
analysis revealed that lesion volume was the most contributing
factor in feature variations compared with voxel size and bin size

FIGURE 5. Each feature (Fx) has 13 imaging system, 4 sphere, and 12 configuration (3 voxel size

and 4 bin size) variants. Feature and imaging system ranks are performed from feature-imaging

system COV matrices. Each sphere (Si) has its own COV matrix. Here, each matrix cell corre-

sponds to COV of given feature Fx and PET/CT imaging system (PCSy) over different feature

extraction configurations (C). ANOVA analysis builds on subgrouping of COVs over PCS variants,

as acquired by particular configuration (c∈C) in particular spheres. Optimal voxel size and bin size

parameters are selected for Fx that minimize COV across imaging systems.

TABLE 3
Subgroups of COVs of Each Feature for 1-Way ANOVA

Groups Voxel size Bin size Volume

Subgroups 3 (1 mm, 2 mm, 4 mm) 4 (0.01, 0.025, 0.05, 0.1) 4 (S37, S28, S22, S17)

Subgroup elements 16 (4 volumes · 4 bin sizes) 12 (4 volumes · 3 voxel sizes) 12 (3 voxel sizes · 4 bin sizes)
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changes (Supplemental Tables 5–7). Nevertheless, the multicentric
variations of radiomic features generally vary as a function of
activity distribution in the lesions. Furthermore, partial-volume
effects (15,43,44) inherently increase heterogeneity in smaller le-
sions as well.

The clinical implications of our results are manifold. Since we
involved 13 imaging systems applying clinical standard protocols,
our trend analysis tables (Supplemental Tables 5–7) can serve as
general lookup tables to understand the behavior of radiomic fea-
tures as a function of voxel size, bin size, and volume changes.

TABLE 4
Feature Ranks with Regard to Average Absolute COV for 4 Largest Spheres (S37–S17).

Feature Feature category S37 COV rank S28 COV rank S22 COV rank S17 COV rank

Information correlation GLCM 0.00* 0.00* 0.00* 0.00*

Compactness Shape 0.01* 0.02* 0.02* 0.03*

Volume Shape 0.02* 0.02* 0.03* 0.03*

Spheric dice coefficient Shape 0.03* 0.03* 0.07† 0.1‡

Sum entropy GLCM 0.17‡ 0.17‡ 0.18‡ 0.19‡

Correlation GLCM 0.14‡ 0.18‡ 0.22 0.29

Entropy GLCM 0.19‡ 0.19‡ 0.19‡ 0.21

Small zone size emphasis GLZSM 0.26 0.27 0.28 0.29

Difference entropy GLCM 0.31 0.31 0.32 0.33

Zone size percentage GLZSM 0.53 0.53 0.56 0.62

Inverse difference GLCM 0.57 0.59 0.58 0.56

Coarseness NGTDM 0.59 0.58 0.59 0.59

Inverse difference moment GLCM 0.78 0.81 0.80 0.76

Sum average GLCM 0.83 0.83 0.83 0.83

Dissimilarity GLCM 1.07 1.07 1.07 1.08

Small zone low gray emphasis GLZSM 1.12 1.10 1.10 1.11

Low gray-level zone emphasis GLZSM 1.2 1.17 1.16 1.09

Maximum probability GLCM 1.2 1.19 1.19 1.21

High gray-level zone emphasis GLZSM 1.37 1.34 1.3 1.28

Angular second moment GLCM 1.35 1.34 1.32 1.31

Auto correlation GLCM 1.35 1.35 1.35 1.36

Texture strength NGTDM 1.56 1.39 1.29 1.26

Sum variance GLCM 1.35 1.35 1.35 1.36

Sum-of-squares variance GLCM 1.35 1.35 1.35 1.36

Small zone high gray emphasis GLZSM 1.42 1.39 1.37 1.35

Cluster prominence GLCM 1.68 1.69 1.69 1.7

Cluster shade GLCM 3.56 1.63 1.61 1.61

Zone size nonuniformity GLZSM 1.7 1.76 1.92 1.85

Busyness NGTDM 1.73 1.79 1.78 1.7

Complexity NGTDM 2.12 1.86 1.72 1.65

Contrast GLCM 2.03 2.03 2.04 2.06

Difference variance GLCM 2.03 2.04 2.05 2.07

Contrast NGTDM 1.69 2.10 2.35 2.46

Gray-level nonuniformity GLZSM 2.1 2.12 2.17 2.21

Large zone high gray emphasis GLZSM 2.75 2.65 2.55 2.41

Large zone size emphasis GLZSM 3.23 3.24 3.22 3.13

Large zone low gray emphasis GLZSM 3.29 3.28 3.26 3.21

*COV , 5%.
†5% # COV , 10%.
‡10% # COV , 20%.

COVs without footnotes are$20%. Smaller rank values correspond to smaller COV feature variations across their 12 feature extraction

configurations and imaging systems.
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This information supports researchers in building more stable
radiomic models in their studies. Although our results are based
on tumor-to-background ratios, the fixed bin size approach pre-
served relative value range differences in our lesions; thus,
our results are applicable to PET SUV units as well. With the help
of our optimized COV table (Table 6), researchers can identify
robust, reproducible features, whereas our imaging system ranks
(Table 5) support imaging specialists in establishing new,

radiomics-conforming PET acquisition protocols. In general, reducing
feature variability supports the notion of standardizing the computation

of radiomic features through standardized image processing, as sug-

gested by the Image Biomarker Standardisation Initiative consortium

(42). Accordingly, we consider our report a potential amendment to

the Image Biomarker Standardisation Initiative guidelines.
To date, a wide range of studies have focused on the multicenter

analysis of radiomic feature repeatability in PET (20,28,45–47).

Fried et al. assessed the robustness of PET-based radiomic features

when image reconstruction settings were varied across 3 PET/CT

systems in lung cancer versus image-quality phantom acquisitions

(48). Features that were reported as ‘‘reasonably robust’’ were

contrast (GLCM), energy (GLCM), SD, and uniformity. In our

study, contrast GLCM was one of the least reproducible feature

(56% COV) even with optimized parameters (Table 6). However,

Fried et al. involved 3 imaging systems only with variable recon-

struction parameters and they did not incorporate different bin

sizes in their analysis. Last, their textural feature equations are

unknown; thus, differences in calculations may be present (18).

Similarly, Yan et al. (23) investigated the variation in 55 textural

features in light of different image reconstruction parameters in 20

lung cancer patients after 18F-FDG PET/CT imaging. They report-

ed inverse difference and low gray-level zone emphasis as robust

features, whereas skewness, cluster shade, and zone percentage

were the least robust (COV . 20%). In our study, we found

similar results for cluster shade and zone percentage (COV .
20%). However, inverse difference moment (29.8% COV) and

low gray-level zone emphasis (49.7% COV) were both highly

variable. We consider 2 reasons for these discrepancies: first,

Yan et al. applied a different delineation method, and second, they

used a fixed number of bins (32, 64, and 128), whereas we used

fixed bin sizes (36). In another study by Orlhac et al., 6 textural

features were investigated in simulated and real patient data, in-

cluding 10 sphere models with different activity distributions and

54 breast cancer PET/CT patients (12). The authors showed that

all textural features were sensitive to voxel size differences (#86%)

and edge effects ($29%). Our study confirmed that voxel size dif-

ferences affect all features except GLCM correlation (Table 6). Shiri

et al. (24) investigated variations in different intensity and radiomic

TABLE 5
Imaging System (PCS) Protocol Parameter Ranks

with Regard to Average Absolute COV for 4 Largest
Spheres (S37–S17)

PET/CT system Algorithm
S37

COV
S28

COV
S22

COV
S17

COV

PCS13 VUE Point HD 1.17 1.17 1.16 1.16

PCS11 VUE Point FX 1.19 1.17 1.18 1.15

PCS5 TrueX 1.18 1.18 1.16 1.18

PCS6 TrueX 1.2 1.18 1.2 1.17

PCS7 TrueX 1.18 1.2 1.2 1.22

PCS8 TrueX 1.2 1.2 1.19 1.23

PCS9 TrueX (HD PET) 1.85 1.17 1.2 1.2

PCS1 Blob-OS-TF 1.22 1.21 1.23 1.21

PCS4 LOR-RAMLA 1.23 1.24 1.23 1.22

PCS2 OSEM 1.22 1.23 1.25 1.23

PCS12 VUE Point FX 1.23 1.25 1.24 1.23

PCS3 OSEM 1.27 1.26 1.25 1.23

PCS10 VUE Point 1.25 1.27 1.26 1.26

Blob-OS-TF 5 Blob-basis function ordered-subsets time of

flight; LOR-RAMLA5 line-of-response–based row-action-maximum-

likelihood algorithm; OSEM 5 ordered-subset expectation
maximization.

Smaller ranks correspond to low COV variances in given sphere

volume across each of 37 features and their 12 feature extraction

configurations (C).

FIGURE 6. COV distributions of voxel size (A), bin size (B), and sphere volume (C) subgroups of feature difference entropy (GLCM). Each plotted sample

corresponds to COV of given feature over PCS1–13 with particular voxel size, bin size, and sphere volume configuration. Spheres 1–4 correspond to spheres

S37–S17, respectively. Based on trend analysis, difference entropy has optimized voxel size of 4 mm (decreasing trend in function of increasing voxel size),

optimized bin size of 0.01 (increasing trend in function of increasing bin size), and decreasing trend in function of decreasing volume.
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features in 2 PET/CT systems using phantom acquisitions. Most tex-
tural features were reported to be sensitive (COV . 20%) with
regard to voxel size changes, which we reconfirmed for features
present in both studies (Supplemental Tables 5 and 6).

Lu et al. investigated the impact of delineation and binning
methods including 40 18F-FDG patient studies, 5 delineation
methods, and 88 features (29). Half the features depicted a higher
intraclass correlation coefficient ($0.8) with respect to segmentation,

TABLE 6
Features with Their Sphere S37–S17 COVs (Mean ± SD), Optimal Voxel Size, Optimal Bin Size, and Resultant

Optimized COV Across Imaging Systems

Feature Feature category COV (%) Voxel size Bin size COV (%)

Information correlation GLCM 0.0 ± 0.0* 4 0.01 0.0*

Compactness Shape 0.6 ± 0.3* 1 NA 0.2*

Small zone size emphasis GLZSM 12.3 ± 8.4‡ 4 0.01 2.0*

Entropy GLCM 6.9 ± 3.0† 4 0.01 2.1*

Zone size percentage GLZSM 31.3 ± 27.5 4 0.01 3.6*

Sum entropy GLCM 5.6 ± 1.3† 4 0.01 3.7*

Large zone size emphasis GLZSM 100.3 ± 75.4 4 0.01 4.9*

Difference entropy GLCM 11.7 ± 3.6‡ 4 0.01 6.5†

Spheric dice coefficient Shape 7.9 ± 1.4† 2 NA 6.8†

Coarseness NGTDM 11.2 ± 4.7‡ 1 0.01 7.45†

Correlation GLCM 13.1 ± 0.1‡ 1 0.1 12.9‡

Inverse difference GLCM 21.3 ± 3.1 1 0.1 14.9‡

Angular second moment GLCM 56.5 ± 17.7 4 0.01 17.6‡

Inverse difference moment GLCM 29.8 ± 3.8 1 0.1 20.6

Volume Shape 22.8 ± 0.5 4 NA 22.0

Sum average GLCM 26.4 ± 0.7 2 0.01 25.3

Low gray-level zone emphasis GLZSM 49.7 ± 28.5 4 0.01 26.9

Small zone low gray emphasis GLZSM 48.6 ± 30.5 4 0.01 27.8

Busyness NGTDM 60.5 ± 16.8 4 0.01 27.9

Gray-level nonuniformity GLZSM 41.7 ± 3.9 4 0.01 28.7

Contrast NGTDM 51.9 ± 12 1 0.1 29.0

Texture strength NGTDM 43.9 ± 8.2 4 0.01 30.0

Dissimilarity GLCM 31.4 ± 0.5 4 0.01 30.7

Large zone low gray emphasis GLZSM 135.3 ± 75.4 4 0.01 30.8

Maximum probability GLCM 52.4 ± 11 4 0.01 33.4

High gray-level zone emphasis GLZSM 41.7 ± 3.9 1 0.05 35.6

Zone size nonuniformity GLZSM 62.7 ± 17 4 0.01 38.3

Large zone high gray emphasis GLZSM 76.6 ± 52 4 0.01 45.0

Auto correlation GLCM 47.1 ± 0.8 2 0.01 45.7

Sum-of-squares variance GLCM 47.7 ± 1.2 2 0.01 46.1

Sum variance GLCM 47.9 ± 0.7 4 0.01 46.9

Small zone high gray emphasis GLZSM 50.3 ± 7.8 4 0.01 47.4

Difference variance GLCM 57.9 ± 1.3 1 0.1 54.0

Complexity NGTDM 64.6 ± 4.8 4 0.01 55.1

Contrast GLCM 57.1 ± 0.5 4 0.01 56.4

Cluster shade GLCM 82.5 ± 4.7 1 0.01 76.9

Cluster prominence GLCM 86.6 ± 1.2 4 0.01 84.7

*COV , 5%.
†5% # COV , 10%.
‡10% # COV , 20%.
NA 5 not applicable.

COVs without footnotes are $20%. List is sorted by increasing optimized COV.
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whereas 23% of features showed an intraclass correlation coefficient
of at least 0.8 with regard to binning. Even though we did not

compare different segmentation methods, our study reconfirmed
that binning affects all textural features (Supplemental Table 6).
Desseroit et al. studied the repeatability of shape and textural

features of both low-dose CT and PET by means of different
binning methodologies in a multicenter cohort of 74 18F-FDG
PET/CT lung cancer patients (31). On the basis of their variable

number of bins, they reported that all GLZSM features were
poorly reliable and that angular second moment GLCM, contrast
GLCM, and contrast NGTDM were the least repeatable, which

was reconfirmed by our results (Table 6).
Altazi et al. (32) investigated 79 radiomic feature variations in

light of different segmentation, reconstruction, and binning param-

eters in 88 cervical cancer patients having 18F-FDG PET acquisi-
tions. They reported inverse difference moment, entropy, difference
entropy, and sum entropy (all GLCM) to be the most reproducible

regarding binning variations, whereas none of the GLZSM and
NGTDM features appeared to be reproducible. In our study, the
above GLCM parameters were moderately reproducible as a func-

tion of binning variations (Supplemental Table 6), whereas GLZSM
and NGTDM features were represented with lower reproducibility.
Nevertheless, they used a fixed number of bins, which underestimates

COV compared with the fixed bin size approach (31).
The effect of tumor size, image resolution, and noise levels in

66 18F-FDG PET radiomic features was investigated by van Velden

et al. (22), who have shown that 37% and 73% of features were
sensitive on resolution and volume changes, respectively. Our study
reconfirmed that among voxel size, bin size, and volume changes,

volume changes had the highest effect on feature variations (Sup-
plemental Tables 5–7).
It currently appears more appropriate to follow a rigid methodo-

logic approach toward sourcing robust and meaningful radiomic

features (18). Our study addresses important quality factors in
radiomics studies that relate to feature engineering. Specifically,
we assessed the variability of popular radiomic features in light

of clinically relevant combinations of quantification, image acqui-
sition, and reconstruction settings (Table 1). As a result, we propose
that radiomics studies should entail the dedicated selection of indi-

vidual data processing configurations per feature, so that feature
variations are minimized (Table 6). In general, a methodologic,
high-quality approach to feature extraction should be preferred over

reporting study-specific, fine-tuned performance results. In that
regard, multicentric standardization efforts in compliance with re-
sponsible radiomics guidelines (20,42,49) should be promoted. Fur-

thermore, we suggest that those features that had a high COV even
after optimization should be normalized in the feature domain by
methods such as ComBat, proposed by Orlhac et al. (17). Features

that do not benefit from such approaches should be excluded from
future studies. In the future, the selection of features that benefit
from standardized feature extraction and feature normalization

could contribute to the establishment of a type of ‘‘Radiomics
NEMA’’ protocol in line with preestablished Image Biomarker
Standardisation Initiative guidelines (42) that could represent one

step toward the era of clinical radiomics.

CONCLUSION

Our results help in optimizing radiomics studies by selecting a
priori features with known data acquisition and processing parameters

that minimize individual feature variations. Our imaging system rank

analysis aids imaging specialists in optimizing imaging protocol
parameters to support repeatable radiomics analysis of 18F-FDG
PET/CT images. By selecting robust features that are aligned with
the above concept and by following a responsible radiomics workflow,
we can support the establishment of standardized radiomics ap-
proaches in clinical studies.
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biomarker standardisation initiative. arXiv.org website. https://arxiv.org/abs/

1612.07003. Published December 21, 2016. Revised September 17, 2018.

Accessed January 17, 2019.

43. Yip SSF, Aerts HJWL. Applications and limitations of radiomics. Phys Med Biol.

2016;61:R150–R166.

44. Hatt M, Tixier F, Cheze Le Rest C, Pradier O, Visvikis D. Robustness of intra-

tumour 18F-FDG PET uptake heterogeneity quantification for therapy response

prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging. 2013;40:

1662–1671.

45. Lucia F, Visvikis D, Desseroit MC, et al. Prediction of outcome using pretreat-

ment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer

treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2018;45:768–

786.

46. Scrivener M, de Jong EEC, van Timmeren JE, Pieters T, Ghaye B, Geets X.

Radiomics applied to lung cancer: a review. Transl Cancer Res. 2016;5:398–409.

47. Hatt M, Majdoub M, Vallieres M, et al. 18F-FDG PET uptake characterization

through texture analysis: investigating the complementary nature of heterogeneity

and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med.

2015;56:38–44.

48. Fried D, Meier J, Mawlawi O, et al. MO-DE-207B-07: assessment of reproduc-

ibility of FDG-PET-based radiomics features across scanners using phantom

imaging. Med Phys. 2016;43:3705–3706.

49. Decoding the tumor phenotype with non-invasive imaging. Radiomics website.

http://www.radiomics.world/. Accessed January 17, 2019.

872 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 60 • No. 6 • June 2019

https://arxiv.org/abs/1612.07003
https://arxiv.org/abs/1612.07003
http://www.radiomics.world/

