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Attenuation correction is a notable challenge associated with

simultaneous PET/MRI, particularly in neuroimaging, where sharp

boundaries between air and bone volumes exist. This challenge

leads to concerns about the visual and, more specifically, quanti-
tative accuracy of PET reconstructions for data obtained with PET/

MRI. Recently developed techniques can synthesize attenuation

maps using only MRI data and are likely adequate for clinical use;
however, little work has been conducted to assess their suitability

for the dynamic PET studies frequently used in research to derive

physiologic information such as the binding potential of neuroreceptors

in a region. At the same time, existing PET/MRI attenuation correction
methods are predicated on synthesizing CT data, which is not ideal, as

CT data are acquired with much lower-energy photons than PET data

and thus do not optimally reflect the PET attenuation map. Methods:
We trained a convolutional neural network to generate patient-specific
transmission data from T1-weighted MRI. Using the trained network, we

generated transmission data for a testing set comprising 11 subjects

scanned with 11C-labeled N-[2-]4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-
N-(2-pyridinyl)cyclohexanecarboxamide) (11C-WAY-100635) and 10

subjects scanned with 11C-labeled 3-amino-4-(2-dimethylaminomethyl-

phenylsulfanyl)benzonitrile (11C-DASB). We assessed both static and

dynamic reconstructions. For dynamic PET data, we report differ-
ences in both the nondisplaceable and the free binding potential

for 11C-WAY-100635 and distribution volume for 11C-DASB. Results:
The mean bias for generated transmission data was −1.06% ±
0.81%. Global biases in static PET uptake were −0.49% ± 1.7%,
and −1.52% ± 0.73% for 11C-WAY-100635 and 11C-DASB, respec-

tively. Conclusion: Our neural network approach is capable of

synthesizing patient-specific transmission data with sufficient accu-
racy for both static and dynamic PET studies.

Key Words: image processing; image reconstruction; PET/MRI;

attenuation correction; deep learning; kinetic modeling

J Nucl Med 2019; 60:555–560
DOI: 10.2967/jnumed.118.214320

The benefits of PET/MRI are perhaps nowhere more impactful
than they are to neuroimaging, with PET/MRI standing to signif-

icantly improve the quality of quantitative neuroimaging-driven

studies in the psychiatric community (1), offering several benefits

such as reduced radiation burden, motion correction (2), partial-

volume correction (3), and MRI-guided PET reconstruction (4,5).

Despite these promised benefits, PET/MRI attenuation correction

(AC) remains a nontrivial problem, particularly in the head and

neck, where sharp boundaries between air and bone exist in the

field of view.
Historically, PETAC has been straightforward: standalone scan-

ners use a rotating nuclear transmission source, deriving the

attenuation map with the same 511-keV photons imaged in PET,

whereas PET/CT scanners make use of the photon attenuation data

provided by CT. In PET/MRI, the strong magnetic field and

limited space within the magnet make it impractical to implement

either technique (6,7).
CT AC and transmission AC techniques exhibit contrasting

benefits and drawbacks. Transmission AC theoretically provides a

direct representation of the patient’s attenuation map, given the

fact that 511-keV photons are used to acquire the attenuation data.

On the other hand, CT AC must account for several nonidealities,

most notably the fact that attenuation values determined using CT

must be adjusted to account for the 4- to 5-factor difference in CT

and PET photon energies. This difference has been shown to lead

to significant and heterogeneous overestimation of attenuation co-

efficients and radiotracer uptake (8,9). The overestimation is ex-

acerbated by the polychromatic nature of CT beams (10), which

obfuscate the effective energy at which attenuation coefficients are

determined and subject the CT AC maps to beam-hardening arti-

facts. From a research perspective, it is equally concerning that

multiple methods exist for correcting these problems: CTAC tech-

niques can differ in terms of both the CT acquisition technique and

the processing steps used to perform energy scaling (9). Given its

ease of acquisition, CT AC has become the preeminent technique

for clinical scanning. Nevertheless, CT cannot be considered a

genuine gold standard for AC data (11), and a recent multicenter

review of several clinically acceptable PET/MRI attenuation pro-

tocols stated that not having a gold standard transmission scan for

comparison was a limitation (12).
Techniques for deriving attenuation maps in PET/MRI gener-

ally fall into 2 categories: those that use specialized pulse se-

quences such as ultrashort or zero echo time (13–16) and those
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that seek to generate pseudo-CT data from an atlas of matched
MRI and CT data (12,17,18). These techniques demonstrate
unique shortcomings beyond their reliance on a CT gold standard
for evaluation of function. In particular, MRI-alone methods con-
sume scan time that could be dedicated to other sequences and
typically assign predetermined attenuation values to any number
of segmented tissue classes (19), thus preventing MRI-alone meth-
ods from accurately reflecting differences in bone density. At the
same time, whereas atlas-based methods seek to reflect patient-
specific attenuation values, they are dependent on accurate regis-
tration of the atlas onto the input MRI volume. Although certain
techniques, such as patch-based learning, have been presented to
mitigate the effects of misregistration (17,20), no truly registra-
tion-free atlas-based method has been independently evaluated in
the literature.
Alongside these limitations is the concern about the lack of

task-based validation of published methods’ suitability for kinetic
modeling (21). Given the proportion of PET/MR scanning dedi-
cated to research (22), this limitation represents a gap in the liter-
ature. There is reasonable concern about the parameters obtained in
dynamic PET studies; a side-by-side comparison of several PET/
MRI AC techniques for 18F-FDG, 11C-Pittsburgh compound B,
and 18F-florbetapir demonstrated tracer-dependent differences in
performance across all methods (12). This dependence on tracer
distribution is a possible source of error in dynamic PET/MRI
studies given the varying dynamics of the radiotracer throughout
the brain during the scan. Encouragingly, recent work has dem-
onstrated the stability of a pseudo-CT technique for kinetic
modeling of 29-methoxyphenyl-(N-29-pyridinyl)-p-18F-fluoro-
benzamidoethylpiperazine (18F-MPPF) (21), although this study
was limited and examined the kinetic modeling of only a single
radiotracer.
The emergence of convolutional neural networks (CNNs) has

led to considerable examination of their feasibility for synthesiz-
ing patient-specific AC data for PET/MRI. Whereas initial works
focused only on the quantitative accuracy of CNN-derived pseudo-
CT images (23), recent studies have demonstrated accurate PET
reconstruction. A CNN model depending on T1-weighted MRI
data was shown to yield accurate PET reconstructions, although
reconstruction analysis was confined to a small cohort and ana-
lyzed only short acquisitions of a single radiotracer (24). More
recently, models depending on Dixon or a combination of Dixon
and zero echo time were seen to provide accurate static PET
reconstructions, although these models depend on additional
MRI sequences and were again validated for only a single radio-
tracer (25); a similar approach based on Dixon and zero echo time
data was shown to yield significantly more accurate PET quanti-
tation than vendor-implemented PET/MRI AC techniques for
scans of the pelvis (26). Whereas CNN-based PET/MRI attenua-
tion map generation is an established technique, there are unad-
dressed limitations in the field: no technique has been compared
with gold standard transmission data, all analyses have been con-
fined to a single radiotracer, and—most importantly for neuro-
imaging research communities—no technique has been validated
for kinetic modeling of PET data.
Here, we demonstrate the suitability of generating pseudo-

transmission data with a CNN using only T1-weighted MRI. We
demonstrate that this method is well suited for static and dynamic
PET analysis using data previously collected using 2 radiotracers:
11C-labeled N-[2-]4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-
(2- pyridinyl)cyclohexanecarboxamide) (11C-WAY-100635), which

is an agonist of the serotonin-binding 5-hydroxytryptamine recep-
tor 1A (27), and 11C-labeled 3-amino-4-(2-dimethylaminomethyl-

phenylsulfanyl)benzonitrile (11C-DASB), which targets the serotonin

5-hydroxytryptamine transporter (28).

MATERIALS AND METHODS

Subject Population

The institutional review board approved this retrospective study,

and the requirement to obtain informed consent was waived.
We queried all anonymized scans in our database for patients who

had previously been scanned using both standalone PET and MRI. The
PET transmission data were extracted alongside the PET emission and

MRI data.
The largest single radiotracer dataset available consisted of 66

individuals scanned using 11C-WAY-100635. These individuals were

randomly partitioned into training (n 5 44), validation (n 5 11), and

testing (n 5 11) datasets.

After validation of our method with 11C-WAY-100635, we similarly
assessed performance for 10 subjects scanned with 11C-DASB.

MRI Acquisition

The MRI acquisition consisted of identical pulse sequences on the

same scanner for subjects in both the 11C-WAY-100635 and the 11C-

DASB datasets. All MRI was performed on a GE Healthcare 1.5-T

Signa Advantage. MRI was acquired using a spoiled gradient

recalled acquisition. Pulse sequence parameters were as follows:

echo time, 2.8 ms; repetition time, 7.0 ms; inversion time, 500 ms;

acquisition matrix, 256 · 256 · 170; coronal slices; and voxel size,

1.0 mm isotropic. Spoiled gradient recalled acquisition was the only

CNN input used.

PET Acquisition, Reconstruction, and Modeling

PET data for both radiotracers were acquired on a Siemens ECAT

HR1. 68Ge transmission data were acquired for 10 min before the

injection of a single intravenous bolus of up to 185 MBq. Arterial

input functions were obtained during the acquisitions. Arterial blood

was drawn periodically throughout scans with both radiotracers, and

metabolite correction was performed using previously described

methods for both 11C-WAY-100635 (29) and 11C-DASB (30). Static

and dynamic reconstructions were performed with synthesized and

ground-truth transmission data using filtered backprojection. Dy-

namic PET data were motion-corrected by rigidly registering each

frame onto a reference frame as previously described (31). Static

images were formed by averaging the final 10 motion-corrected

frames. PET reconstructions were registered onto their accompany-

ing T1-weighted MR images for region-of-interest (ROI) analysis

using FLIRT (32). ROIs were determined using a previously de-

scribed, automated technique (33).
Kinetic modeling was used to derive physiologic parameters from

dynamic PET data. For 11C-WAY-100635, we derived 2 binding po-

tential parameters, free binding potential (BPF) and nondisplaceable

binding potential (BPND), which are commonly reported estimates of

neuroreceptor density. For 11C-DASB, we report the volume of distri-

bution, VT, which is the ratio of concentration in tissue relative to

plasma. Kinetic modeling techniques for each tracer are provided in

the sections detailing their specific acquisition.

11C-WAY-100635 Acquisition and Modeling

Emission data were collected for 110 min and binned into 20

frames (frame durations, 3 · 20 s, 3 · 1 min, 3 · 2 min, 2 · 5 min, and

9 · 10 min). BPF and BPND were derived using a constrained 2-tissue-

compartment model, with cerebellar white matter used as reference

tissue as previously described (34,35).
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BPF and BPND are defined thus:

BPF 5
VT 2 VND

fp

BPND 5
VT 2 VND

VND
;

where VT is in the ROI, VND the nondisplaceable volume of distribu-
tion in the reference region, and fp the amount of radiotracer freely

available in the plasma.

11C-DASB Acquisition and Modeling

Emission data were collected for 120 min and binned into 21
frames (frame durations, 3 · 20 s, 3 · 1 min, 3 · 2 min, 2 · 5 min, and

10 · 10 min). Outcome measures were derived using likelihood esti-
mation in graphical analysis (36), which has been reported to be the

most stable method of modeling 11C-DASB (37). Given that no brain
region is devoid of specific 11C-DASB binding (28,30), we report VT,

which has been shown to be the only reproducible 11C-DASB mod-
eling measure in test–retest studies (37).

Preprocessing

MR images were first downsampled to a 2-mm isotropic resolution

and normalized using FreeSurfer (38). For the transmission images of
the training and validation sets, areas outside the brain, notably the

scanner bed, were cropped out of the transmission data because the
network would have no ability to synthesize them from the MR im-

ages. Afterward, atlas transmission images were rigidly registered to

their matched MRI volume using FLIRT.

CNN Design

Patient-specific pseudo-transmission data were generated using a

CNN implemented in TensorFlow (39). The network made use of a
uNet architecture (40), as shown in Figure 1. Upsampling was per-

formed using transposed convolutions. The network was implemented

for 2-dimensional inputs and synthesizes whole-volume data slice by
slice. Five consecutive axial slices, centered on the slice to be synthe-

sized, are presented to the network as unique channels. All activation
functions were chosen to be rectified linear units.

CNN Training

The CNN was trained using 2 Nvidia Tesla K80 graphics processing

units on a workstation running Ubuntu, version 14.04. Pairs of MRI and
transmission volumes were presented to the network axially on a slice-by-

slice basis. The training objective was the minimization of L1 error
between synthesized and ground-truth transmission slices. In addition,

L2 regularization was incorporated into the cost function to improve

generalizability to the external testing sets. The Adam optimizer was

used for updating during backpropagation (41). Data were presented
to the network one subject at a time, without using batches.

The validation set was passed through the network after each epoch.
Training was halted whenever the total cost across the validation set

increased for 5 consecutive epochs. The model converged after 32 h of
training. Once trained, whole-volume transmission data can be synthe-

sized in about 1 s.

CNN Evaluation

After training, we examined the similarity of synthesized trans-

mission data to ground truth, as well as the quantitative accuracy of
PET reconstructions making use of the synthesized transmission data.

Synthesized Transmission Data

Previously masked scanner beds were added to the synthesized data
before PET reconstruction. Synthesized attenuation maps were com-

pared with scanner transmission data on the basis of mean bias:

Bias 5 mean

�
msynth 2 mraw

mraw

�
· 100%;

where msynth represents the attenuation coefficients in voxels of the
CNN-derived transmission data, and mraw indicates those of the

ground-truth transmission data. Areas outside the head, which are
identical for synthesized and ground-truth data, were not included.

Static PET Analysis

Masks were generated by taking the intersection of FSL-derived
brain masks (42) and voxels with at least 20% of maximum PET

activity in the ground-truth reconstruction. This was done for consis-
tency with a recent side-by-side comparison of many proposed PET/

MRI AC techniques (12). For voxels contained within this mask, mean
biases are reported along with SD. We present these data at both the

global and the ROI levels. All ROIs were tested for statistically sig-
nificant errors using the Student t test.

Kinetic Modeling Analysis

VT, BPF, and BPND were estimated as described above. We report

the mean bias and SD in each ROI. The Student t test was again used
to determine whether ROIs exhibited statistically significant errors.

RESULTS

Synthesized Transmission Data

Synthesized attenuation maps demonstrated a slight negative
bias; the mean relative bias between the synthesized and ground-
truth maps was seen to be 21.06% 6 0.81%.

FIGURE 1. CNN architecture. Numbers indicate number of features at each layer.

CNNS FOR GENERATING TRANSMISSION DATA • Spuhler et al. 557



Figure 2 shows a representative pseudo-transmission map along-
side its accompanying ground-truth data. Slices in the sinus region
were chosen because of their complexity relative to superior slices.

Static PET Analysis

Relative to ground truth, 11C-WAY-100635 PET images recon-
structed using synthesized attenuation data demonstrated a mean

relative bias of 20.49% 6 1.7%. 11C-DASB images demonstrated a

mean relative bias of 21.52% 6 0.73%. Figure 3 shows slices of

ground-truth and reconstructed PET images alongside percent error

maps for each radiotracer.
Static PET analysis was continued by examining relative biases

at the ROI level. Figure 4 illustrates subject-specific ROI biases.
The Student t test did not suggest statistically significant errors in
any ROIs for either radiotracer.

Dynamic PET Analysis

Kinetic modeling results for all radiotracers are shown in Figure 5.
For 11C-WAY-100635, between BPF and BPND, BPF was generally
more stable, with mean biases closer to zero as well as lower SDs

of the error in most ROIs. Using the Student t test, no statistically
significant errors were found for either radiotracer.

DISCUSSION

The presented method improves on the state of the art in 2 important
ways. Our primary contribution is the validation of a PET/MRI AC

method predicated on gold standard nuclear transmission data, which

provides more accurate quantitation than CT data. Second, we have

approached this issue using a CNN; this allows us to circumvent the

atlas registration requirements of many current pseudo-CT protocols.

An interesting consideration motivated by this approach would be the

technique’s performance in subjects with nonstandard anatomies rela-

tive to currently published pseudo-CT techniques, although no subjects

with remarkable anatomic deviation were available for analysis. Future

work investigating the utility of CNN-derived attenuation maps would

certainly benefit from evaluation against more traditional techniques in

the presence of anatomic deviations.
The primary motivation of this work is that transmission data provide

a more accurate representation of the subject’s attenuation map than CT

data, given the large energy difference between PETand CT photons. In

addition, transmission data can be argued to have additional benefits

given that the attenuation data are collected using the same detector

system as the PET emission data. Unfortunately, in the present state,

an analysis of these effects is not possible, given that only retrospective

transmission data are available. This inability relates to the primary

limitation of the proposed method, namely that a proper validation of

the method using MRI and PET emission data collected on a simulta-

neous PET/MRI scanner, alongside subject-specific transmission data,

cannot be provided. Pseudo-transmission attenuation maps applied to

PET/MRI data yielded noticeably greater PET values throughout the

brain—most notably the cortical areas—in comparison to standard ven-

dor methods, although direct comparison is not possible because of

the lack of gold standard attenuation data. An example 18F-FDG re-

construction is provided as supplemental data (supplemental materials

are available at http://jnm.snmjournals.org).
A prospective study is warranted in light

of the lack of direct validation on a PET/

MRI scanner. This study will require the

assembly of a PET/MRI T1-weighted MRI

and transmission database for several sub-

jects. Collecting such a database will re-

quire scans specific to this task; however,

multiple solutions exist. Primarily, institu-

tions equipped with a standalone PET

scanner can seek volunteers willing to un-

dergo a brief T1-weighted study on a simul-

taneous PET/MRI system. At the same time,

the feasibility of a fixed torus geometry for

transmission scanning on the Siemens Biog-

raph mMR has been demonstrated (43). Al-

though a modern database suitable for PET/

MRI data is certainly required going for-

ward, this necessity is addressable.
Our method is not based on any assump-

tions about anatomy, or the nature of the

transformation between MRI and transmis-

sion data. As such, it is flexible and can be

easily adapted to accept additional MRI

sequences, such as ultrashort or zero echo

FIGURE 2. Side-by-side comparison of synthesized (left) and ground-

truth (right) transmission AC data for randomly selected subject.

FIGURE 3. PET data reconstructed with ground-truth and synthesized AC data alongside per-

cent error. White voxels in percent difference images had less than 20% of maximum activity in

ground-truth reconstruction and were not included in any reported biases.
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time, into the training process. Any MRI contrast that can be
reliably resampled to the same space as the input T1-weighted data
could be simply added as an input channel. Because data were
collected from a retrospective study that used MRI only to delineate
PET ROIs, this addition was not possible in the current analysis.
The presented work, a validation of multiple dynamic PET

measures in multiple radiotracers, adds to the existing literature in
several important ways. To the best of our knowledge, only one study to
date has examined the suitability of synthesized AC data (pseudo-CT)
for dynamic PET studies (21). The previous work used 18F-MPPF, a 5-
hydroxytryptamine receptor 1A binding tracer, for kinetic analysis. Our
work adds evidence to the previous investigators’ conclusion that syn-
thesized attenuation data are sufficient for kinetic modeling of PET data.
By using multiple radiotracers probing different aspects of neu-
robiology, we have added significant generalizability to the prior
work’s observations. Generalizability is crucial, as PET/MRI AC
methods have been shown to exhibit varying performance with
different radiotracers in static analysis (12). At the same time, our
work generates data with comparable accuracy but relative to a
higher gold standard in that the 18F-MPPF analysis used CT AC.
The cerebellum is an extremely important region in dynamic

PET neuroimaging, as the cerebellar white matter expresses many

neuroreceptors of interest in far lower concen-
trations than cerebral regions. As such, the
cerebellum is a frequently used area for the
kinetic modeling of a large number of radio-
tracers, including those used in this work.
Given the reasonably accurate assumption of
no specific binding occurring in the reference
region, one can easily estimate the nondis-
placeable volume of distribution, thus pro-
viding an estimation of the amount of signal
measured in other ROIs which is not related to
the tracer binding to its targeted neuroreceptor.
In this work, we observed highly accurate
cerebellar uptake estimations using our syn-
thesized transmission data. This is crucial to
the accuracy of such kinetic studies, and our
demonstrated accuracy in BPF and, in partic-
ular, BPND modeling would not have been
possible without accurate measurements of
cerebellar activity. Relatively few studies have
placed an emphasis on the effects of various

AC paradigms on cerebellar activity, thus severely limiting the confi-
dence with which they can be applied to dynamic PET studies.
Despite the use of a separate tracer and parcellation strategies,

we report BPND biases with similar magnitude to those previously
described. Further, our results add to those of the previous 18F-
MPPF study by demonstrating the suitability of our technique for
BPF estimation, which is the PET parameter most closely related
to receptor density. Despite the ideality of estimating BPF, it is
dependent on repeated, invasive blood sampling and subsequent
metabolite analysis; BPND is therefore a more reported metric.
Generally speaking, BPF estimations were found to be more stable

than BPND in the 11C-WAY-100635 testing dataset. This result was
largely expected given the formulae used to derive each expression.
BPF estimations are normalized to the amount of free radiotracer in
the plasma, whereas BPND estimations are normalized to the volume
of distribution in some reference region, in this case the white matter
of the cerebellum. As such, errors in reference region modeling will
compound errors in BPND quantitation more than they do in BPF.
To contextualize our reported biases in PET quantitation, 11C-

WAY-100635 BPF quantitation is associated with an average test–
rest variability of 9% (33). No ROI 6 SD range intersects this
inherent uncertainty. Moreover, VT estimation in 11C-DASB data

FIGURE 4. Mean bias for all reported ROIs. Red line indicates mean bias, blue horizontal line

represents 1 SD. RN5 raphe nuclei; Prtl5 parietal lobe; Occp5 occipital lobe; Temp5 temporal

lobe; pHipp 5 parahippocampal gyrus; oPFC 5 orbital prefrontal cortex; mPFC 5 medial pre-

frontal cortex; Hipp 5 hippocampus; dlPFC 5 dorsolateral prefrontal cortex; Cing 5 cingulate;

Cere 5 cerebellum; Amy 5 amygdala.

FIGURE 5. Biases for 11C-WAY-100635 BPND, 11C-WAY-100635 BPF, and 11C-DASB VT. Red line indicates mean bias; blue horizontal line represents 1 SD.

RN 5 raphe nuclei; Prtl 5 parietal lobe; Occp 5 occipital lobe; Temp 5 temporal lobe; pHipp 5 parahippocampal gyrus; oPFC 5 orbital prefrontal cortex;

mPFC 5 medial prefrontal cortex; Hipp 5 hippocampus; dlPFC 5 dorsolateral prefrontal cortex; Cing 5 cingulate; Cere 5 cerebellum; Amy 5 amygdala.
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has been shown to exhibit an inherent test–retest variability of
5.5% (37). Static reconstruction biases are well within the test–
retest reproducibility of PET imaging in both cases.

CONCLUSION

Synthesizing pseudo-transmission data using CNNs is a promis-
ing technique for AC in psychiatric PET/MRI. CNN-based atten-
uation demonstrates comparable accuracy to currently optimally
performing techniques while possibly obviating some nonideal-
ities exhibited by current techniques, such as registration of
prospective data onto a predefined atlas. Moreover, the technique
presented here is suitable for static and dynamic PET imaging.
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