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The aim of this study was to associate and predict B-rapidly accelerated

fibrosarcoma valine 600 (BRAFV600) mutation status with both conven-
tional and radiomics 18F-FDG PET/CT features, while exploring

several methods of feature selection in melanoma radiomics.

Methods: Seventy unresectable stage III–IV melanoma patients

who underwent a baseline 18F-FDG PET/CT scan were identified.
Patients were assigned to the BRAFV600 group or BRAF wild-type

group according to mutational status. 18F-FDG uptake quantification

was performed by semiautomatic lesion delineation. Four hundred
eighty radiomics features and 4 conventional PET features (SUVmax,

SUVmean, SUVpeak, and total lesion glycolysis) were extracted per

lesion. Six different methods of feature selection were imple-

mented, and 10-fold cross-validated predictive models were built
for each. Model performances were evaluated with areas under

the curve (AUCs) for the receiver operating characteristic curves.

Results: Thirty-five BRAFV600 mutated patients (100 lesions)

and 35 BRAF wild-type patients (79 lesions) were analyzed.
AUCs predicting the BRAFV600 mutation varied from 0.54 to

0.62 and were susceptible to feature selection method. The best

AUCs were achieved by feature selection based on literature, a
penalized binary logistic regression model, and random forest model.

No significant difference was found between the BRAFV600 and BRAF

wild-type group in conventional PET features or predictive value. Con-
clusion: BRAFV600 mutation status is not associated with, nor can it
be predicted with, conventional PET features, whereas radiomics fea-

tures were of low predictive value (AUC 5 0.62). We showed feature

selection methods to influence predictive model performance, describ-

ing and evaluating 6 unique methods. Detecting BRAFV600 status in
melanoma based on 18F-FDG PET/CT alone does not yet provide

clinically relevant knowledge.
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Melanoma is the most aggressive and deadliest type of skin
cancer. It belongs to one of the most common cancers worldwide,
and its incidence is rising (1). Approximately 50% of melanomas
contain a B-rapidly accelerated fibrosarcoma (BRAF) mutation, of
which the most common is BRAF valine 600 (BRAFV600). The

BRAF mutation causes constitutive activation of the mitogen-acti-

vated protein kinase pathway, which drives tumor growth, cell pro-

liferation, and metastasis (2,3). BRAF mutation determination is the

decisive factor for commencing first-line BRAF inhibition in met-

astatic melanoma: a pivotal moment in clinical decision making.

Similarly crucial are staging, restaging, and follow-up in metastatic

melanoma, which is reliant on 18F-FDG PET/CT imaging (2).

BRAF mutation prediction based on PET/CT could combine these

2 clinical crossroads. In melanoma, the potential of PET/CT-based

prediction has been mainly explored in conventional PET features

and visual assessments, whereas current developments in precision

medicine increase the need for in-depth tumor characterization (4).

Unlocking this information traditionally would necessitate extensive

pathologic research of all individual tumor lesions: an invasive

manner to determine each lesion’s biologic constitution. Radiomics

analysis provides the ability to extract a possibly infinite amount of

quantitative imaging features representing tumor characteristics,

circumventing these negatives while venturing beyond. In colorectal

and lung cancer, several PET radiomics features have been associ-

ated with disease-specific mutations, with area under the receiver

operating characteristic curve (AUC) of their mutation prediction

models ranging between 0.33 and 0.79 (5–7).
Between performing a scan and model building, several steps

are required in radiomics analysis. An important challenge in the

current state of radiomics analysis is the small patient sample size

combined with infinite possibilities for image feature extraction.

Feature selection and reduction is therefore necessary to avoid

false-positive outcomes. Within previous research in other cancer

types, a large variety of methods prevail, from preselection and

prereduction to statistical corrections after analysis (8). Since fea-

ture selection impacts which features are ultimately chosen for a

prognostic or diagnostic model, a uniform approach would be

ideal. No previous PET radiomics research in melanoma is avail-

able; therefore, it is unclear how these methods would perform in

melanoma. The aim of this study was to associate and predict

BRAFV600 mutation status with both conventional and radiomics
18F-FDG PET/CT features, while exploring several methods of

feature selection in melanoma radiomics.
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MATERIALS AND METHODS

Patients

Melanoma patients receiving BRAF inhibitors or immunotherapy
were searched from June 2014 until March 2017. Eligible patients were

the first consecutive 35 BRAFV600 mutated or 35 BRAF wild-type
patients. Inclusion criteria were unresectable stage III–IV pathology-

confirmed melanoma, known BRAFV600 mutation status, and mea-
surable disease on baseline 18F-FDG PET/CT. BRAFV600 mutation

status was determined by mutation analysis. Patients with rat sarcoma

(RAS) mutations and systemic therapy (chemotherapy, BRAF inhib-
itors, or immunotherapy) 3 mo before baseline PET/CTwere excluded

(Fig. 1 provides the other exclusion criteria). Radiotherapy and any
invasive local intervention within 3 mo before baseline PET/CT were

registered. The institutional review board approved this retrospective
study, and the requirement to obtain informed consent was waived.

18F-FDG PET/CT Imaging
18F-FDG PET/CT imaging was performed 60 min after intravenous

injection of 190–260 MBq of 18F-FDG after fasting for at least 6 h.

Patients’ injected dose was body mass index–based, and blood glucose

levels before injection were required to be less than 200 mg/dL. Pa-
tients were scanned on a cross-calibrated (with calibration phantoms)

Phillips Gemini TF time-of-flight 16 or Phillips Gemini TF big-bore
PET/CT scanner, with 1–3 min per bed position. The systems were

from the same vendor and have the same type of acquisition and image
reconstruction methods, and the same settings were used. PET images

were reconstructed using BLOB ordered-subsets time-of-flight with 3
iterations, 31 subsets, no filter, voxel size of 4 · 4 · 4 mm, slice

thickness of 4 mm, and image matrix of 144 · 144 pixels. This resulted
in a postreconstruction resolution at 1 cm after line-of-response con-

struction of 4.3 mm. Low-dose CT scans were performed for attenuation
correction and anatomic correlation (40 mAs, 140 keV, 5-mm slices).

Image and Quantitative PET/CT Analysis

Tumor lesion size was measured in the axial plane on the concurrent low-
dose CT scan or on a baseline diagnostic CT or MRI scan acquired within 1

mo from the baseline PET/CTusing OsiriXMD (Pixmeo Sarl, version 7.0.3).

Measurable disease was defined by lesions of at least 2 cm or (if the tumor
was indiscernible on CT) an equivalent metabolic

active tumor volume (MATV) of at least 4.2 cm3,
in line with PERCIST 1.0 to avoid partial-volume

effects (9). Of the measurable lesions in each pa-
tient, the 3 lesions with the highest SUVmax per

organ were considered target lesions. Target le-
sions were delineated by a threshold of 50%

of the SUVmax without background correction
(9). The specified body organ regions were

according to melanoma’s metastasis pattern:
lymph nodes, lung, liver, bone, subcutaneous,

intramuscular, and other. Lesions with prior
radiotherapy were excluded as target lesions.

Quantitative PET/CT analysis was performed
using in-house software tools (Fig. 2) (10,11).

For radiomics analysis, 480 features were
extracted, pertaining to morphology (n5 22),

local intensity (n5 2), intensity-based statistics
(n 5 18), intensity-volume histogram (n 5 6),

intensity histogram (n 5 24), and texture (n 5
408) (Supplemental Table 1; supplemental mate-

rials are available at http://jnm.snmjournals.org).
Texture features were based on the gray level

co-occurrence matrix (GLCM), gray level run
length matrix (GLRLM), gray level size zone

matrix (GLSZM), gray level distance zone ma-
trix (GLDZM), neighborhood gray tone differ-

ence matrix (NGTDM), and neighboring gray
level dependence matrix (NGLDM) with up to

8 matrix calculation methods. The features un-
derwent 2 · 2 · 2 mm voxel resampling and

discretization with a fixed bin size of 0.25

SUV (10). All image-processing and feature
calculations conform with the image biomarker

standardization initiative (12). Conventional
PET features measured per lesion were MATV,

SUVmax, SUVpeak, SUVmean, and total lesion
glycolysis (TLG, defined as SUVmean ·
MATV). Uptake interval times, liver and blood
pool SUVmean were measured (13).

Statistical Analysis

A sample size calculation was performed

combining a mean melanoma SUVmax fromFIGURE 1. Patient selection flowchart.
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prior studies (14) and an expected biologically relevant difference of
at least 20% in SUVmax between the mutated and nonmutated groups.

This expected difference was based on a minimum biologically relevant

SUV difference (9,15). Assuming that mean SUVmax in the BRAF wild-
type group is 7.6 and SD of SUVmax is 5.4, with 60 patients and 3

lesions per patient, a difference between the 2 groups of at least 20%

can be detected with a power of 80%. Such a difference corresponds to
a mean SUVmax of at least 9.1 in the BRAFV600 group. These cal-

culations are based on a mixed-effects model with the logarithm of
SUVmax as the outcome. All continuous variables were assessed for

normality combining visual (histograms) and statistical inspection
(Shapiro–Wilk test). Normally distributed patient characteristics were

compared between BRAFV600 and BRAF wild-type groups with an
independent-samples t test. Not-normally distributed variables were

log-transformed to achieve normality. If the transformation did not
solve the distributional issue, a Mann–Whitney U test was conducted.

Categoric patient characteristics and target lesion distribution were
compared between groups with a Pearson x2 test or Fisher exact test.

Conventional PET features were compared between patient groups
with mixed models, to account for multiple lesions from the same

patient. The SUV metrics, TLG, MATV, and longest diameter were

analyzed with linear mixed models, whereas prior local intervention

was analyzed with generalized linear mixed models. Mutation status

was used as a fixed effect, and patient was used as a random effect in

the models. To facilitate interpretation of the mixed-model analysis,

the original means instead of the log-transformed values were report-

ed. To predict the BRAFV600 mutation with the conventional PET

features, first the best binary logistic regression model of each feature

and combination was determined, and then it was used for the final

binary logistic regression and random forest (RF) model.
Six different methods for radiomics feature selection were applied:

a correlation matrix of all features (method 1); a correlation matrix of

all features with the conventional PET features SUVpeak, MATV, and

TLG (method 2); a principal-component analysis (PCA) (method 3);

selection of features from prior studies (method 4); a penalized binary

logistic regression analysis of all features (method 5); and an RF

model of all features (method 6) (16). In method 1, correlation be-

tween any 2 features was calculated, and from highly correlated pairs

(Spearman correlation . 0.75) the one feature that had an average

highest correlation with all other features was removed. Method 2

followed the same principle, except feature reduction was first based

on all radiomics features with SUVpeak, TLG, and MATV and then on

the remainder of features. Method 3 began as method 1 did, but with a

threshold Spearman correlation higher than 0.85, considering its pre-

dictive nature. The residual features were standardized based on

mean 5 0 and SD 5 1 for entry into the PCA, a dimensionality

reduction method. PCA, using mathematic projection, transforms the

data into a set of orthogonal variables called principal components,

which get ranked based on the data variance along them. The highest

data variance is represented by the first principal component, whereas

the subsequent ones achieve the highest possible variance orthogonal

to the prior. From the first 10 principal components, the 20 most

important features per each were extracted. Finally, the 20 most im-

portant features over all 10 principal components were determined.

The number of features was based on the standard statistical practice

of approximately 10 observations per radiomics feature in line with

Collarino et al. and Chalkidou et al. (17,18). Since we had 179 lesions,

approximately up to 20 features could be included in a model. In

method 4, 10 features repeatedly reported as robust in prior studies

(10,19–23) were selected, focusing on the best test–retest repeatabil-

ity. Method 5 was built with all radiomics features; regression coeffi-

cients were penalized using the elastic net regularization correcting for

group effect (collinearity) and removing less relevant coefficients (24).

Method 6 was construed from all radiomics features, without recursive

feature elimination. RF is an ensemble method for building prediction

models and is especially useful for high-dimensional data for which

the number of features exceeds the number of observations. RF builds

several decision trees and eventually averages the results. Here, 1,000

trees were used for predicting the mutation class, and 21 variables were

randomly sampled at each split.

After feature selection methods 1–4, the final features were inserted
in a binary logistic regression model and RF model to predict the

BRAFV600 mutation. All models were cross-validated via 10-fold

cross-validation repeated 10 times, and their respective AUCs were

composed. Statistical analysis was performed with SPSS (IBM, ver-

sion 22.0) and R software (version 3.4.4) with, respectively, the non-

linear mixed effects and linear mixed effects 4 package for the linear

mixed model and generalized linear mixed model (25,26). Caret and

RF packages were used for the RF models, and generalized linear

models with lasso or elastic net regularization were used for the pe-

nalized binary logistic regression (27–29). A P value of less than 0.05

was considered significant.

RESULTS

Seventy patients were identified, 35 patients per BRAFV600 or
BRAF wild-type group (Fig. 1). Patient characteristics are listed
in Table 1. Per patient, 1–10 target lesions were analyzed. The
BRAFV600 and BRAF wild-type groups showed no statistically

significant differences in SUV metrics, MATV, TLG, longest di-
ameter, or prior local intervention (Table 2). SUV metrics and
TLG stratified per organ region showed the same result (Supple-

mental Table 2). The liver and blood pool SUVmean were tested
for confounding, which was not found (data not shown). The best
conventional PET features prediction model was achieved by

inserting all 5 features: SUVmean, SUVmax, SUVpeak, TLG, and
MATV (Fig. 3A; Supplemental Table 3A). Radiomics analysis
was performed on 176 lesions (3 lesions from scans with a differ-

ent voxel matrix were excluded). Four of the 480 radiomics

FIGURE 2. Anterior maximum-intensity-projections (A) with semi-

automatic delineation of target lesions (B), liver (C), and blood pool (D).
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TABLE 1
Patient Characteristics and Target Lesion Distribution

Characteristic BRAFV600, n 5 35 BRAF wild-type, n 5 35 P

Age (y) 55.5 (11.7) 64.7 (13.2) 0.003*

Sex 0.631†

Male 18 (51.4%) 20 (57.1%)

Female 17 (48.6%) 15 (42.9%)

Tumor type 0.071‡

Cutaneous 32 (91.4%) 25 (71.4%)

Mucosal 1 (2.9%) 6 (17.1%)

Unknown primary 2 (5.7%) 4 (11.4%)

AJCC stage, eighth edition 1.000‡

IIIB 2 (5.7%) 2 (5.7%)

IIIC 2 (5.7%) 2 (5.7%)

IV 31 (88.6%) 31 (88.6%)

Tumor load 0.626†

,6 lesions 15 (42.9%) 13 (37.1%)

$6 lesions 20 (57.1%) 22 (62.9%)

Organ involvement

Lymph nodes 26 (74.3%) 26 (74.3%) 1.000†

Lung 17 (48.6%) 19 (54.3%) 0.632†

Liver 14 (40.0%) 9 (25.7%) 0.203†

Bone 10 (28.6%) 11 (31.4%) 0.794†

Subcutaneous 15 (42.9%) 21 (60.0%) 0.151†

Intramuscular 10 (28.6%) 7 (20.0%) 0.403†

Other 24 (68.6%) 15 (42.9%) 0.030†

Scan characteristics

Glucose (mmol/L) 5.4¶ (0.82) 5.6 (0.98) 0.417§

Net injected activity (MBq) 194.7 (21.4) 203.5 (26.6) 0.155§

Body weight (kg) 78.9 (13.9) 84.1 (20.0) 0.397§

Uptake interval (min) 68.1 (9.0) 64.9 (8.5) 0.107§

Blood pool SUVmean 1.67 (0.26) 1.84 (0.27) 0.006*

Liver SUVmean 2.40‖ (0.40) 2.74# (0.41) 0.003*

Target lesion distribution

Total 100 lesions 79 lesions

Lymph nodes 37 32 0.162‡

Lung 5 13

Liver 17 10

Bone 13 6

Subcutaneous 11 8

Intramuscular 2 0

Other 15 10

*Independent-samples t test.
†Pearson χ2 test.
‡Fisher exact test.
¶n 5 32 (3 missing values).
§Mann–Whitney U test
ǁn 5 26.
#n 5 31.

AJCC 5 American Joint Committee on Cancer.
Data are displayed as mean followed by SD in parentheses or as n followed by percentage in parentheses. Data may not add up to

100% due to rounding.
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features maintained a value of 1 for all lesions and were removed,
which were from the neighboring gray level dependence matrix:
dependence count percentage (averaged over 2D slices and
directions), dependence count percentage (3D volume), de-
pendence count percentage (2D merged over all slices), and from
the intensity histogram: minimum. After removal of high correla-
tions in method 1, 23 features remained from the 476 with AUCs
of 0.55 (Fig. 3B; Supplemental Table 3B). Method 2 resulted in 26
features after removal of high correlations with AUCs of 0.54–
0.56 (Fig. 3C; Supplemental Table 3C). In method 3 the correla-
tion-based prereduction resulted in 49 features, which underwent
PCA. The first 10 principal components explained about 80% of
the variance (Supplemental Fig. 1). Twenty of the most important
features were selected from them with AUCs of 0.57–0.59 (Fig.
3D; Supplemental Table 3D). The following 10 features were
selected based on prior studies: entropy, joint entropy (GLCM),
inverse different moment (GLCM), inverse difference moment nor-
malized (GLCM), difference entropy (GLCM), sum average
(GLCM), sum entropy (GLCM), high gray level run emphasis
(GLRLM), short run emphasis (GLRLM), and zone percentage
(GLSZM) (10,19–23). The multiple aggregation methods used
in our dataset meant this translated to 52 features, which were
reduced back to 10 by removing features highly correlated with
entropy, resulting in AUCs of 0.60–0.62 (Fig. 3E; Supplemental
Table 3E). Method 5 selected 17 features (Supplemental Fig. 2),
and the 20 most important features are listed for method 6; both
had AUCs of 0.62 (Figs. 3F–3G; Supplemental Fig. 3).

DISCUSSION

To the best of our knowledge, this is the first melanoma study to
predict BRAFV600 mutation status with 18F-FDG PET/CT fea-
tures, while exploring several methods of feature selection in mel-
anoma radiomics. Based on the driving effect of the BRAF
mutation on the mitogen-activated protein kinase pathway and
glucose metabolism in colorectal and thyroid cancer, with BRAF
inhibitors in melanoma showing suppression of glycolysis and

18F-FDG uptake, a mutation-based difference in 18F-FDG uptake

would be expected (30–32). However, no relationship between

conventional PET features and BRAFV600 mutational status was

found, either as an association or as a prediction. This result is, for

most, inconsistent with prior research in thyroid and colorectal

cancer, except for prior results in 2 thyroid cancer subtypes and

1 recent melanoma study (31,33,34). Conventional SUVmax pre-

dicts the BRAF mutation in thyroid cancer with an AUC of 0.75

and achieves a predictive accuracy of 75% in predicting KRAS/

BRAF status in colorectal cancer (31,35). In Chang et al. (35), the

AUC of the SUVmax-based prediction model for BRAF changed

from 0.75 to 0.93 for lesions larger than 1 cm, and to 0.64 for

lesions smaller than 1 cm. By including only lesions 2 cm or

larger, we aimed to reduce such partial-volume effects, making

their influence on our low predictive result less probable. In con-

trast, Hatt et al. (36) have proposed the inclusion of tumor vol-

umes larger than 10 cm3 for radiomics research without excluding

smaller lesions, instead reporting their correlation with volume.

However, this study contained a variety of cancer types without

melanoma patients and no metastatic disease. Tumor volumes larger

than 10 cm3 in metastatic melanoma are rarer; therefore, our cut-

off seems more practical and clinically relevant for this patient

cohort, while taking the volume effect into account.
Radiomics features provide a more in-depth tumor character-

ization than purely 18F-FDG uptake, such as tumor heterogeneity.

Considering the influence of mutations on tumor phenotype, link-

ing mutational status to the tumor phenotype provided by radio-

mics is the next logical step. Our AUCs varied from 0.54 to 0.62,

delivering low diagnostic predictive values. In models 1–3, the

confidence intervals included the value 0.50, making them as valid

as random chance. PET radiomics-based RAS mutation prediction

in colorectal cancer shows AUCs of 0.65–0.79, and AUCs of 0.52–

0.67 for epidermal growth factor receptor mutations in lung can-

cer, which is in line with our findings (5–7). According to sample

size calculations for our study, we had a sufficient number of

patients to significantly detect our predetermined clinically relevant

TABLE 2
Conventional PET Features and BRAFV600 Mutation Association

Parameter BRAFV600, n 5 35 BRAF wild-type, n 5 35 P

SUVmax 13.3 (5.4) 15.1 (11.2) 0.791*

SUVpeak 10.7 (4.6) 11.8 (8.9) 0.979*

SUVmean 8.9 (3.6) 10.1 (7.6) 0.768*

TLGtarget
† 191.0 (360.3) 126.4 (183.6) 0.185*

MATV (cm3) 18.8 (33.0) 14.1 (22.4) 0.093*

Size (mm) 37.8‡ (20.6) 32.8¶ (16.5) 0.150*

Local intervention before baseline PET/CT per target lesion

Yes 25 (25%) 14 (17.7%) 0.240§

No 75 (75%) 65 (82.3%)

*Linear mixed model.
†TLGtarget: TLG based on target lesions only.
‡n 5 25, 84 lesions.
¶n 5 24, 68 lesions.
§Generalized linear mixed model.
Data are displayed as mean followed by SD in parentheses or as n followed by percentage in parentheses.
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effect in the conventional PET features analysis, which we did not

find. As is often the case in radiomics, the sample size was modest

for prediction model building, and future multicenter studies with

standardized protocols could provide a solution for this. Based on

our results, BRAF status in melanoma cannot yet be determined on
18F-FDG PET/CT scans alone and pathology remains the gold

standard.
We explored several feature selection methods in melanoma

radiomics. Highly correlated features essentially represent similar
information and carry little individual added value when both are
used in a predictive model: feature redundancy. In our first 3 methods,
we used correlation matrices to reduce feature redundancy. Our
results show that the extent of redundancy elimination varies dependent

on the correlation coefficient cutoff chosen, use of subsequent PCA,
and addition of conventional PET features. Raising the cutoff by 0.10

led to a 113% increase of selected features (49 vs. 23). Cutoffs of

0.90–0.95 have been used in PET radiomics studies in lung and

vulvar cancer (7,17). Interestingly adding conventional PET fea-

tures SUVpeak, MATV, and TLG did not reduce more variables and

even added 1 more variable than expected, compared with method

1. We showed that the PCA provided the best feature reduction

and highest AUC of these 3 methods.
In the final 3 methods we demonstrated a basic selection method

and the yield of forgoing reduction. Previous studies have analyzed

the radiomics robustness in several cancer types, providing a

starting point for selection (10,19–23). We chose often-mentioned

FIGURE 3. BRAFV600 prediction AUC. Shown are conventional PET features (A), method 1 (B), method 2 (C), method 3 (D), method 4 (E), method 5

(F), and method 6 (G), displayed with 95% confidence intervals in parentheses. Blue (straight) line 5 binary logistic regression; red (dashed) line 5 RF.
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robust features emphasizing good repeatability because multiple
delineation methods were not analyzed. Considering the wide
variability in choice, we focused on 10 features. Until more re-
search has been done and consensus has been reached, this
method is susceptible to the researchers’ individual choices,
making extrapolation difficult unless the same features are chosen.
The simplest method of feature selection based on prior studies
achieved the AUC value of 0.62, which was similar to values
achieved with the penalized binary logistic regression model and
RF model, and higher than the other 3 models. Thus, highly ad-
vanced statistical methods do not always have the highest accuracy.
Our study has several limitations, the first being its retrospec-

tive nature, which hinders the standardization of PET protocols
and reconstruction methods, another common problem in radio-
mics research. Overall, this effect was minimized in our study,
since it was single-center and our scanners were cross-calibrated.
In our study, 3 scans were found to be equal to the others except
for the voxel matrix reconstruction. Since this influences radio-
mics feature calculation but not conventional PET measure-
ments, these lesions were excluded from the radiomics analysis.
Contrary to other studies, clinical predictors were not added to
the prediction models. As often the case in radiomics, the sample
size was modest for prediction model building, and future
multicenter studies with standardized protocols could provide a
solution for this. During cross-validation of the models, no
separate external cohort was used, which would ensure a better
extrapolation to the intended patient cohort. As this study
shows, in PET melanoma radiomics research, as in all radiomics
research, it is imperative to realize that the chosen feature selec-
tion method influences model performance and that researchers
should make an informed decision on which method to choose.
However, with our current knowledge, 18F-FDG PET/CT–derived
features alone do not yet adequately predict BRAF status in
melanoma.

CONCLUSION

BRAFV600 mutation status is not associated with, nor can it
be predicted with, conventional PET features, whereas radiomics
features were of low predictive value (AUC 5 0.62). We showed
feature selection methods to influence predictive model perfor-
mance, describing and evaluating 6 unique methods. Detecting
BRAFV600 status in melanoma based on 18F-FDG PET/CT alone
does not yet provide clinically relevant knowledge.
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KEY POINTS

QUESTION: Can conventional or radiomics-based 18F-FDG

PET/CT features predict BRAFV600 mutation in melanoma, and

does radiomics feature selection influence this?

PERTINENT FINDINGS: This retrospective cohort study shows

that BRAFV600 mutation status is not associated with, nor can it

be predicted with, conventional PET features and that radiomics

features were of low predictive value (AUC 5 0.62), after extrac-

tion of features from baseline 18F-FDG PET/CT scans. Feature

selection methods influenced model performance.

IMPLICATIONS FOR PATIENT CARE: Detecting BRAFV600

status in melanoma based on 18F-FDG PET/CT alone does not yet

provide clinically relevant knowledge.
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