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This paper is an attempt to apply present day concepts of information con

tent and information capacity to scintiscanning in order to compare various

techniques and possibly to optimize any one technique. It must be recognized
that such a development can be very complicated and approximations are neces
sary for a practical solution. Such approximations will be noted and their influ

ence discussed at the time of application. Further, no attempt will be made to

assess philosophically the significance of â€œbitsâ€•of information or systems having

an information capacity of, say, 100 â€œbitsper square inchâ€•( or â€œbitsper secondâ€•)
â€”this being more a matter of practical judgement through experience with a
number of systems with various capacities.

From the basic tenets of information theory, it is obvious that any precise
message like the letter â€œ5â€•has an infinite information content. If we now look
at â€œnoiseâ€•as a message with a random distribution of probabilities, it follows
that any one sampling will not produce the desired information ( i.e. the magni
tude and shape of the distribution ) but rather will only have a certain probabil
ity that it is the desired information. It has been shown ( 1 - 10) that the infor

mation content of a gaussian distribution is measured by the logarithm ( to the
base 2) of its variance. When the base 2 is used, the content is measured in
â€œbitsâ€•(or â€œbinitsâ€•)where one bit is the amount of information gained by know

ing with certainty which of two alternate choices will occur. Thus, if we have
a random distribution of black dots ona white plane with an average density of
S per unit area and a variance of @/SAin a typical sampling of area A, the in
formation content Cg of such a single sample is

C2 = log2 -@â€˜SAbits.
Now, each separate sampling adds more information, and since information
from independent measurements of the same signal are additive, and there are
A' sample areas per unit area, then we may say that the information content
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per unit area is

C2 A' log2 \ISA bits/unitarea (I)
when the signal is â€œscannedâ€•with an aperture of area A. Since 1 is a more
rapidly varying function than the logarithm, it follows that even though the in
formation content for one sample area diminishes as the sampling area gets
smaller, the information content per unit area increases. Thus, a large number
of determinations of a unit area with a very small test area will tell us more about

the distribution than one measurement of the unit area itself. This effect might be
considered a resolution weighting effect, since making the test area smaller will
not reveal more about the average value, but rather will produce finer detail
about the shape of the distribution itself. Information content obviously involves
both of these parameters. It is important to note that negative logarithms are not
allowed, since they imply a choice of less than one â€œbitâ€•which is meaningless.
Fractional bits per unit area are, however, permissible.

A second term of importance is â€œinformationcapacityâ€• which is a measure
of the amount of information that a given system may handle. Consider the case
where we have a similar black-dot presentation consisting of a signal of average
value S per unit area ( i.e. density ) containing â€œnoiseâ€•with an mis variation of
N in each scanning area A. Information theory (2, 3, 4, 5, 6, 8 ) then states that
the information capacity of the system when decoding a distribution by scanning
with area A is

-1 KS -, KS . .
Cc = A log2 [1 + 71]@ A log2@ bits/unit area

for@ >> 1.

This formula holds for a mean square limited system which has no inter
symbol interference. It thus applies only when the process of scanning is such
that the signals in adjacent areas do not contribute to the signal from the area
being scanned. However, since the log term is slowly varying, moderate inter
ference will change the results only slightly. K is a constant that essentially de

termines the risk of error involved ( 10, pg. 148). For K = %, one would expect
about three sampling areas at random in 1000 such areas to have the minimum
detectable signal; for K = %, the chance would be about 1 in 10.6 While we shall
use K = as a reasonable criterion, the fact that K = 3@for the eye (12) is for
tuitous and has nothing to do with the problem at hand. It is interesting that if
we consider the signal to be the average value of a gaussian source as before
and the noise to be the variance in the signal itself, then

N = @..JS/Aand Cg = Cc for K = 1.
Thus, for these circumstances, the information capacity per unit area is equal
to the information content per unit area. It is important to note that the above
equation for N results from the fact that the rms deviations in the average num
ber per unit area S becomes larger as the test area becomes smaller. This is a
well known effect in the scanning of optical images (Selwyn Coefficient, see 6).
Typical computed values of information capacity (6, 7) are 106 bits/cm2 for film,
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1.9 x 10@bits/cm2 for the eye at 25 cm viewing distance and brightness of 100
millilamberts and 260 bits/cm2 for one frame of a 20 inch television picture, or
0.6 x 10Â°bits/frame for any television picture.

If we could convert the signal seen by a scanning aperture to a signal vary
ing in time ( i.e. an electrical signal along a cable), it can be shown that the
bandwidth required is

w =@ (dA/dt).

This equation implies that resolution and bandwidth are related and that if a
given recorded scintiscan ( i.e. a â€œphotoscanâ€•) is replayed by television tech
niques in order to enhance contrast, etc., the bandwidth of the electronic system
could limit the resolution if it were too small. Actually, most black and white
television systems have a horizontal bandwidth of 4 megacycles, while that re
quired for a typical single-bore scintiscan is on the order of 100 kilocycles. One
must not confuse this bandwidth with that required to accommodate the single
pulses that may be used to construct a picture.

Let us now consider the case where we have a gaussian signal with an aver
age S per unit area and added gaussian noise of average N per unit area and
ask for the information capacity of a system that scans with area A. The observed
variance in A would be

/S+N
@A

Thus, Cc = A' log2 [@ + (2@@)l] bits/unit area (III)

In this case, the information capacity will always be less than the informa
tion content of the message unless N = 0, as might be expected. Equation III
is applicable to scintiscanning where the source consists of random signals from
radioactivity and the noise consists of random signals from scatter, leakage and

background. The function of the collimator interposed between the source and
detector is to identify and locate the detected signal, but in doing so it reduces
considerably the amount of possible detected signal. All radioactive sources
radiate into a@ solid angle, but any collimator will detect only a very small
fraction of this due to its small solid angle of acceptance. Thus, purely geometric
considerations demand that the information capacity of the detecting system be
far less than the information content of the distributed radioactive source. Most
collimators are simply a hole in a thick block of lead (straight bore collimator)
or some arrangement of holes (focussing and honeycomb collimators). Tapered
holes may be closely approximated by straight bores and pinholes will be shown
later to follow similar considerations and formulations.

Consider now a source of radiation distributed in a plane and a collimator
that has an effective detecting area A@on the plane of activity. If S* is the de
tected source signal (i.e. number of counts in a given time due to the viewing
aperture) and NÂ° the disturbing noise signal received in the same time, then
the average detected signal and noise per unit area are S*/A@ and NÂ°/A2. Sub
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stitution of these in equation III leads to

Cc = (A@)@ log2 [@ + (K2@@2)l] (IV)

This formulation allows a convenient separation of projected aperture size and
sensitivity. Now for a single bore collimator of true bore area A viewing a plane
of specific activity r disintegrations per unit area per unit time, for a time r, it

will be shown that 5Â°= K1r A2r, where K, is a geometrical constant. Likewise,
NÂ°= ( K2@A2 + K3ff + Rb)@ where the separate factors are scatter, leakage and
background. K2 and K3 obviously involve integration over the whole area of ac

tivity, since the total activity in the plane contributes to both. Further, scatter
involves the volume viewed by the collimator ( above and below, if the plane is
immersed in a scattering medium ) since the scattering points must be seen by
the collimator. The leakage coefficient K3 involves only the geometry and at
tenuation of the shield. Further, if we scan a large area A@in time T8 then

F = T,A@/A , = T'A@ = K4A T' where A,, = K4A

and T' is the time per unit area of the scan. This formulation assumes that the
whole area A, is scanned but is not concerned with the details ( i.e. the amount
of overlap, etc. ). Substitution of the above relations in IV leads to the informa
tion capacity C.b of a single bore collimator as

C@@;@b0@2 [@ + (A@'..@@2)@] bits/unit area (V)

where C, =@ , L' and C2 = (K3 o + Rb)/(Kl + K2) @.
.LtI â€”1â€”.L%2

This equation was programmed on an IBM 1620 computor and some of the re
suits are shown in Figs. 1-3, for K4 = 4, K = 3@,and various representative values
of C, and C2. It is obvious that the information capacity passes through a maxi
mum as A is changed and that the optimum value of A and the corresponding in
formation capacity depend upon the value of the constants chosen. For example,

if an optimum collimator is being used and the time of scan reduced, the only way
to return to very nearly the same capacity is to increase the source strength. On
the other hand, if the source strength is not changed, then the aperture must be
increased in order to maximize the capacity for the reduced scan time. However,
the same (larger) value of capacity will never be achieved. In general, C$b in
creases with source strength, scan time and lower noise, as would be expected.

Returning to equation V, it is obvious that C1 involves the source strength
and the time of scan while C2 involves both the â€œnoiseâ€•and source strength.
Ifthe source of noiseismostly background, C2 diminishesas C1 increases.Ifthe

noise is mostly leakage, C2 remains constant. Figure 2 shows that the capacity
varies only slightly with C., for two representative values of A and C,, while
Fig. 3 shows for two representative values of C2 and A that the information
capacity varies with the logarithm of C, as expected. It is to be particularly
noted that the capacity varies only over a range of 5 to 1 for an enormous range
of the constants and the maximum value presented is 15.5 bits per square inch.
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Fig. 1. Information capacity of a Single Bore Collimator as a function of bore area for
several values of signal and noise.
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eral values of signal and bore area.
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If we had used K = 1 (optimum coding) this would only increase to 18.1 bits
per square inch. The problem that remains is to evaluate the constants for
typical collimators.

SINGLE BORE COLLIMATOR

Consider now a straight bore collimator as shown in Fig. 4 with a typical
point source response shown in Fig. 5. Making a straight line approximation and
integrating over the figure of revolution, we find for detected counts

(VI)

where@ is the efficiency of detection. The width at half-max is X = dl/t and the

projected area A,, â€˜= @d2l2

For most single bore collimators, the response changes little ( < 10%) with 1
around 1 = 2t and we may approximate further by

_2(21 21 â€˜\@
1

Thus,
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Fig. 3. Information capacity of a Single Bore Collimator as a function of signal for sev
eral values of bore area and noise.
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plane shown in Fig. 4.
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Since !: d2 = A we have then, S'@ = â€”@-@iA2 r (VII)
4 l6irt

from which K1 =@@ (VIIA)
16 @rl

Figure 6 shows observed count rates of various sized collimators as a func
tion of the distance 1 of a planar source of activity 1.41 @.tc/sqinch of 1311 (367
key) from a 2 x 2 inch crystal detector with a 50 key window. This count rate
is constant as expected. After correcting for background and leakage, calcula
tions involving the known bore size led to values of K1 that agree within 5 per
cent of those calculated from expression VII A with c = 50 per cent. This was
also true of tapered bores when a bore diameter equal to the average bore di
ameter plus 10 per cent was used. This value of efficiency is quite reasonable for
the circumstances.

Scatter was checked by observing the count rate over a 2 inch diameter
empty hole in the plane of activity (now made 1 inch thick) and over a plastic
plug of the same size immersed in the same medium. While no difference was
observed in this case, such may not be true at lower energies. For the more prac

tical examples discussed later we shall assume K2@ 0.

Regarding leakage and collimator design, this is a much more difficult prob

lem than first appears. Measurement of what might be called â€œleakageâ€•,how
ever, is simply accomplished by observing the count rate when aiming the col
limator at a large â€œholeâ€•in a thick slab of activity. The results are generally
much higher than expected for straight leakage through the lead shielding be
cause of scatter at the edges of the collimator. Thus, analyzer window width,
small percentage of higher energy gamma rays in the source, area of field ac
tivity, bore diameter and length, etc., all determine the apparent â€œleakageâ€•. Most

single-bore collimators are about 3 inches long, which for â€˜@â€˜Iradiation amounts
to 46 half-value layers or a reduction of about 10â€”14@ linearly transmitted in
tensity. One can easily conclude that most collimators are designed from geo
metrical considerations only and made of thick lead to possibly reduce natural
background and the influence of extraneous room sources and contamination. The
geometrical considerations must obviously be a compromise between producing
a well defined aperture (at various depths) and preserving a reasonably high
count rate. A more exact calculation of these geometrical considerations may be
made by referring to Fig. 4 and letting r be the distance from the center of a

circularly symmetric plane are (A8 = â€”@j-d82) of activity per unit area to any

point in the plane. The leakage count rate then becomes

d@f 2

e@Ace_st@ rdr
R= 2 J

R =@ Ace@ log (@ + Will)
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Where @zis the linear absorption coefficient of the shielding and A, is the effective
cross sectional area of the crystal. For the case A8/T12 < 1, we may approximate

R@ wAcA,e@t
l6ir t

sinceS */@isthe detected count rate R' when viewing the plane we see

R K3 AcAs@ @â€˜
= K1 A@ = or,

AcAs@ @â€˜10_16 for a typical 4 inch collimator considering leakage only.
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Fig. 6. Observed count-rate as a function of the distance ( 1 â€”t) to a planar distribution
of activity for various diameter single bore collimators. The source is â€œ'Iwith a density of
1.41@uc/sqinch.
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Now, measurements on a typical 4 inch single bore collimator with a 2 x 2 inch
crystal and a 50 key window viewing a liver of 80 square inches containing an

activity of 8 @cper square inch of 1311shows negligible scatter and an Rb of 60
cpm of which 40 is due to background and 20 due to edgescatter. Since K, =
3.2 x 10â€”sand u = 1.8 x 107/min/square inch, we see K3 /K,@ 4 x 10@.
While this ratio is small compared to Rb/u it is very large compared to the leak
age effect calculated earlier.

Under the above circumstances and assuming for a typical liver scan that
T = 3@mm/sq inch and that we are observing at 1 = 2t where K4 = 4, we obtain
Cl = 4800 and C9 = 1.1 x 10@.

Using the appropriate curves in Fig. 1, we see that the capacity rises to a
peak of about 3.4 bits per sq inch for a collimator area of 0.12 sq inches (0.4
inch diameter ) . Further, the variation with A is slow except at very small values
of A. This variation is bourne out in practice where not much apparent difference
in scans is obtained for large ranges of A until A becomes small. The use of two
opposing single bores doubles C, and halves C9 which only raises the maximum
capacity to 4.4 bits per sq inch. Since a factor of 2 in C9 produces little change
in the capacity, one could consider a collimator constructed of holes in two
slabs of lead an outside distance t apart to preserve the geometry. One would
need a total of only 2.6 cm of lead before affecting C2 by more than 2. Such a
design might also reduce edgescatter as well as the volume of lead.

Considering the fact that the capacity varies slowly with area above 0.08
sq inches in the above example, one can rightfully ask the advantages of small
versus large bore collimators over this range. The original formulation of in
formation capacity did not weigh any particular resolution but merely asked the
ability of the system to handle all sizes of signals. It is obvious that a large bore
will be able to detect large defects well because of its high count rate, but miss
the ones smaller than its projected area. Likewise a small bore will be able to
find many more small defects but less well because of its lower count rate. It
follows that the clinician must weigh the size by his clinical objectives and
that for certain diseases, it may well be very desirable to work with the smallest
bore possible even to the extent of having a reduced information capacity. The
disadvantages, however, are twofold. Firstly, the smaller bore will see more
â€œdefectsâ€•including those variations in the normal organ and a new set of normals
will have to be established. Secondly, the count rate may be so low ( even with
the same information capacity ) that the method of presentation will affect the
actual overall capacity. The above formulation assumes that the density of counts
is great enough that the eye can integrate over an area and sense an average
density. If the spots are too far apart, this process becomes difficult and the
K value drops considerably. Partial compensation can be accomplished by mini
fication of the image but the ability of the eye to resolve two adjacent defects
then becomes the limitingfactor.If one then proposes a superpositionof less

dense dots to produce an average density over an area A@,recording compression
usually enters and one must resort to contrast enhancement. This approach,
however, has the pitfall that film â€œnoiseâ€•becomes the limiting factor. While this
particular problem has not yet been satisfactorily solved, clinical results to date
indicate that a % to % inch diameter straight bore is acceptable for most prob
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lems, and that in some cases little is lost by going up to % inch. In most cases

of controversy, the method of presentation is usually at fault.

FOCUSSING COLLIMATORS

A focussing collimator is simply an aggregate of single bore collimators all
arranged to look at the same plane. While each single bore has a much smaller

information content, the combined action of all is, of course, higher. One may

look upon these collimators simply as devices that increase the optical efficiency
where now the counts detected by the crystal are@ = nK, r A2 r for n holes
looking at the same point in space. The actual aperture area, however, is some
what larger than A@for each hole of area A, since the outside holes are at an
angle 0 with respect to the central hole and the planar diameter is the projected

diameter divided by Cos 0. This effect will lower the information capacity as
graphed in Figs. 1-3 by about 25 percent, since A2 is sensitive to the square of the

diameter.

Consider now a typical 19 hole focussing collimator, 4 inches thick with a
total measured background of 110 cpm. For the same scan conditions as for the
single bore collimator analyzed previously, we have

Cl = K1K4K'uT' = 9.1 X i0@ and C2 = Rb/nKl = 1.0 x i0@

Interpolating from the curves shown in Fig. 1, we see that there is a pro

nounced peak in the capacity of 9.2 bits/sq inch at A = 0.06 sq inches ( diameter

of 0.28 inches ). The actual capacity due to angulation of the bores is about 7
bits per square inch, which is only twice that of the single bore collimator. It is
interesting that a commercially available collimator of this size used clinically
for liver and kidney scans has tapered holes that have an effective diameter of
0.25 inches illustrating that long practice and experience generally result in op
timum design. While the capacity of this focussing collimator is larger than an
optimum single bore, a factor of two at these low values is generally considered
unimportant and several investigators have reported their opinion that, clinically,

the two produce similar results. It does remain, however, that the count rate is
much higher and this probably makes crude presentation techniques more ac
ceptable and easier to perceive as mentioned.

Focussing collimators, however, do have one disadvantage and that is for
off-plane defects the capacity drops considerably. For example, consider at
tempting to see a small defect so far off the focal plane that only one collimator
hole detects it. The remaining n-i holes are still recording signals from the
plane which signals must be considered noise since they do not originate from
the same point in space. This would lower considerably the information capacity

for this particular plane. Rather than pursuing this approach, we may note that
equation IV would hold for any SÂ° (even that originating in a volume) pro
vided a unique A@could be specified. Since SÂ°and NÂ° are independent of 1,
we can now calculate an average information content over the range of 1 en
countered in a medium.
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2 24

@ = Avg. {+ log2 [i + (@ + N*) ]}@ =

@ = (Const.) Avg. (:f'@@ = (Const.) (+â€˜@ (IX)

\@ V @/
. . . 22 2

Consider a straight bore collimator where A,, = @rd I /4t

f-i-'\ 1 1 4t2\ fâ€•dl
Now tâ€”I = @â€”-rJI -@r

@A,,i 12â€”11 \Td/ J 1

(_i_\ 412
\\A@;)= ;@ l@12

For a medium t thick starting a distance t/2 below the bottom of the collimator,
we find

(i\ iâ€˜@:@;)=;c@r
which is fortuitously the same as that used previously for the straight bore
looking at a plane at a distance t from the bottom of the collimator.If we had

used a medium 2t thick starting at the bottom of the collimator, then ( i_ )
NA,,, @rd

which would show a higher capacity than that for the single bore mentioned.
This higher capacity results since 1/Ar preferentially weights smaller areas which
occur at shorter distances for the straight bore. Thus, a straight bore collimator
looking at a volume t thick starting a distance t/2 from the collimator will have
an average information capacity the same as if it were looking at a planar dis
tribution a distance t away.

If we now look at the geometry for a fOCussing collimator shown in Fig. 7
and assume that the aperture diameter diminishes linearly from d + 2t Tan
0' to 2d/Cos 01, we ultimately find for a medium of thickness t starting t/2 away
from the bottom of the collimator

(T\ 4 ( d d+ 21Tano'\' ( 2d
= + 2 1 \@Cos o')

2CosO d d 1
ifor i+â€”<< (TanO

,rdlTan0 CosO 2

which is usually the case. For most focussing collimators, 01 30Â°and t
lÃ³d,so

1

This result states that the average information capacity for a focussing col
limator looking at a volume is about 3@that of the capacity when looking at the
focal plane. This obviously arises because of the weighting of the large effective
aperture areas on both sides of the focal plane. Thus, we have for the practical



INFORMATION CAPACITY OF SCINTISCANS 453

examples sited previously, average information capacities of 4.4 bits per square
inch for the straight bores and 1.1 bits per square inch for the focussing col
limator when viewing defects in a large medium.

In practice, this large difference probably does not exist since (a) most de
fects of clinical interest are located near the focal plane and (b) the observation
of one defect reduces the clinical importance of observing additional ones. If
one knows the plane of interest (i.e. as in most brain scans), the focussing col

2d
Cos e'

t

Fr
t

nHOLESOFDIAMETERd

Fig. 7. Ceometic relations assumed for Focussing Collimators. The outside lines are the
envelope for A, as a function of distance from the collimator.

d+2t Tan
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limator is superior by the factor of 2 mentioned previously. A typical i99 hole
focussing collimator designed for brain scans gave a calculated capacity of 10
bits/sq inches for focal plane activity. This magnitude of improvement is be
coming significant.

HONEYCOMB COLLIMATORS

A honeycomb collimator is simply an aggregate of straight bore collimators
with a system that detects and presents in its proper place the activity seen by
each â€œhole.â€•The Bender-Blau â€œautofluoroscopeâ€•(13, pg. 151) is an example of
this type collimator. There is no scanning motion involved, which means that
each hole is recording for the complete scan time T,,.

Now S@ = K1@ 2 T, and N* (K2 u 2@ K3@ + Nb) T,.

This formulation neglects the change in efficiency and background as A becomes

smaller. In other words, it assumes that the volume of the detecting crystal
remains constant. This assumption should not change the conclusions appreciably.
Letting Ch represent the capacity of a honeycomb collimator, substitution of
the above produces

1 K2 K@ : TS log2 [ 1 + (@@@4@)4] (X)

where C, = â€”@,@ and C2 = (K3@ + Nb)/(Kl + K2)@
@@@1â€”r fl2

as before. Assume now that we are looking at the same field of activity as in the
previous examples with a honeycomb collimator 4 inches thick. Also assume as
before that K4 = 4, K = 3@, T,, = 27 minutes, Nb = 100 cpm in each detector,
and that volume scatter (K2) and leakage (K3) are negligible. Thus,

C@= iÃ¸@and C2 = 1.7 X i.0@

Since the equation (X) is slightly different than (V), due to the lack of

scanning motion, a different computing program was written for thisand the
results are plotted in Fig. 8 for K4 = 4, K = 3@,and various values of Ci and C2.
For the above examples, Ch is a maximum of about 22 bits per square inch at
A = .02 sq inches. This corresponds to holes of 0.16 inch diameter. No extensive
experience with this type collimator is available to check these results. It is to
be noted that a tacit assumption is that the honeycomb is so designed that each
A@is contiguous with surrounding Ar's and that there are no blank spots. This
assumption states that for the plane of observation at l = 2t, the thickness of
shielding between holes is equal to the hole diameter. The equation also assumes
that the signal detected by each hole is finally presented over an area A,,. This
can be accomplished by placing the detecting plane as far above the honeycomb
as the observed plane is below it. In the usual honeycomb detecting system,
sidescatter of the absorbed gamma rays generally affects the apparent resolution
when the detecting crystals are close together and are not shielded from each
other. This effect has been estimated to be about 10 per cent which amounts to a
25 per cent reduction in the calculated capacity. Partial compensation can be
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accomplished by constructing the detecting plane closer to the crystal so that
scatter essentially increases the recorded area to A,,.

PINHOLE CAMERA

For the pinhole camera (14) as shown in Fig. 9, each point source irradiates
a circle of area A,, = irD2/4. This is the minimum resolvable area. Now each point

in A,, sees an activity ot (D')2/16l2, so that for the usual case of 1 = 2t, the total

activity seen in A,, is 5* o@TT,d4/16t2. Letting A = ird2/4, then A,, = 4A, and
5* K1@ A2 T,, where

K1 = â€”r.
irt

In this style camera, the detector is a continuous plane (or crystal) and the

background is a constant rate per unit area rather than per A,, as before. Hence,

neglecting volume scatter, N* 4 (Nb + K3o@ A T,. Letting C,@represent the
capacity of a pinhole collimator, we find

C,, =@ log2 [@ + (AC@I@A:;l)i] bits/unit area, where C, = K2K,@T5

and C2 = 4(Nb + K3r)/Ki@. This equation is plotted in Fig. 10 for K = 34@,and
various values of C1 and C2.

In order to compare with other style collimators assume the same activity
per unit area as before, T, = 27 minutes and t = 4 inches. Since the previous data

0:3 0.40 0.I 0.2 0.5
BORE AREA IN SQUARE INCHES

Fig. 8. Information capacity of a Honeycomb Collimator as a function of the bore area
of each hole for several values of signal and noise.
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for background (N + K3o@b 100 cpm) was for a 2 inch diameter crystal, we

. 100 .
have for this case (Nb + K3@) = â€” â€” 30 cpm/sq inch. Now most designs of

this style camera use a thinner detector, so we may assume@ = 0.2 instead of 0.5

as before. These assumptions lead to C1 = 1.2 X 10@and C2 = 2 X 10@.

From the given curves, these data produce a maximum capacity of 43 bits!
sq inch at A = .08 sq inches. This is the area of the actual pinhole and it is
suspected that in practice it could be physically smaller, since edge leakage would
tend to make it appear slightly larger. The information capacity for the pinhole
is higher than that for the honeycomb simply because of the shielding present

between holes in the honeycomb.

It is interesting that if we assume that the previously discussed honeycomb
collimator is constructed of long crystals whose area changes as the holes change,

we achieve exactly the same formulation as above. The only difference is that
C, is 1/3 as great and C, is three times larger than the pinhole because of the
different formulation for K1. This difference arises because of the poorer geo
metrical efficiency of straight bores as mentioned. Thus, overlooking practical
difficulties, (relative leakage, crystal efficiency, etc.) the pinhole has the possi
bility of a higher information capacity than the honeycomb.

SOURCE DETECTING
PLANE PLANE

D'=IFI

Pinhole
Diameterd

I- -@

FIg.9.Geometricrelationsassumedfora Pinholecamera.
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SCAN TIME AND SOURCE STRENGTH CONSIDERATIONS

Consideration of the previous formulations will show that for a fixed source
strength@ and resolution A,,, the time of scan for a given collimator is related to

the information capacity by

@ = 2Ap (C1 â€” C2)

where C, and C, are the information capacities for times T, and T2. Thus, the
optimum honeycomb discussed earlier will produce the same information capacity

as an optimum straight bore if a scan time of 9 minutes is used instead of 27

minutes. With a scan time of 12 minutes, the capacity will be the same as for the
optimum 19 hole focussing collimator scanning the same plane for 27 minutes.

It is to be emphasized, however, that the resolutions are different for all three
cases even though the capacities are equal. For the optimum straight bore to

produce the same capacity as the optimum 19 hole focussing collimator scanning
a plane, the time of scan must be increased by about a factor of 3. The same con
siderations will hole for variations in source strength for constant time provided
the noise is due to background only. If leakage is present, the logarithmic teim
will not change as rapidly as the change in source strength would imply.

@ON@LUSIONS

1. Scintiscans have an information capacity quite low compared with conven
tional visual presentations (i.e. films, television, etc.).

Fig. 10. Information capacity as a function of Pinhole area for several values of signal
and noise.

PINâ€”HOLEAREA IN SQUAREINCHES
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2. All styles of collimators are characterized by having an optimum bore size
above which and particularly below which the information capacity dimin
ishes.

3. The straight bore collimator is slightly superior to the focussing collimator
when viewing distributions in depth; the focussing collimator is superior
when viewing reasonably well located planar distributions.

4. Honeycomb and pinhole collimators have a much greater information ca
pacity than mechanically scanned collimators simply because there are more
detectors and each detector is recording during the total scan time.

5. The visual presentation method is most important and cruder methods, such
as â€œdot-on-paperâ€•,reduce the available capacity simply due to the charac
teristics of the eye. The presentation system must be carefully designed to
achieve the calculated maximum capacities.

6. Information capacity calculations do not weight any particular size of signal
areas. Minimum bore size should be selected by a compromise between din
ical desires and (2) and (5 ) above.

7. The information capacity of a given scintiscanning system changes roughly
as the logarithm of the product of the specific activity and the time of scan.
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