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Transit time is the mean time interval required for the molecules of an
indicator to traverse a particular system ( 1 ) . The system usually employed con
tains a fluid which is in motion, and transit time is calculated from the graph
of indicator concentration in the effluent fluid plotted against time ( 1-3 ) . This
graph is called the indicator-dilution curve through the system under study.

During the performance of the â€˜@â€˜Ihippuran renogram, hippuran traverses
the kidney and is carried away in the urine (4) . Therefore, the graph of the
urine hippuran concentration plotted against time is, by definition, an indicator
dilution curve from which the renal transit time of hippuran can be calculated.
In this study, it will be shown that renal transit time can also be measured by
directly employing the renogram curve, thus obviating the necessity for de

termining urine hippuran concentration.
In the derivation of equations necessary for calculating renal hippuran

transit time from the renogram, it is useful to define a number of terms. For con
venience, these are listed below:

fr = renal transit time of hippuran (mm).

K = hippuran clearance of a single kidney (cc/mm).

C(t) = graph of blood hippuran concentration plotted against time.

U(t) = graph of urine hippuran concentration plotted against time.

V urine flow rate (cc/mm).
131 .SR = the amount of I labeled hippuran within the kidney.

SR(t) graph of renal hippuran radioactivity content plotted against time.

CALCULATION OF tr FROM U(t)

Let M (t) be the total amount of hippuran which leaves the kidney during
the time t. Let h (U)be defined as the fraction of M (t) leaving the kidney at a given
time. If time zero is defined as the moment when hippuran becomes available to
the kidney, (C(t) > 0), b@ti)is the magnitude of that fraction requiring ti minutes
to enter and traverse the kidney. Thus, the graph of h(tj) against time, h(t), is
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the frequency distribution function of a set of time intervals, each representing
the sum of an entry time and a renal transit time. It can be shown that the mean
renal transit time for hippuran (fr) is obtained by subtracting the mean entry
time (i@@.)from the mean of h(t) (1-3).

Let the total dose of hippuran which enters a kidney be denoted by D. Let
g(ti) be the fraction of D which enters the kidney at a particular time, ti, and let

g(@) be the graph of g(0) against time. Thus, g@ is the frequency distribution of

entry times, and its mean is @eâ€¢Employing standard equations for the means of
h(t) and g@ (1, 2, 3):

1. tr I: th(t, dt â€”I: tg(() dt

In terms of actually observed concentrations:

ftU(t) dt [tC(t) dt h(t) U(t)/ I U(t) dt
â€” .10 JO I J(,

2. tr â€”â€”

f:u1dt fwC(t)dtg(t)C(@),/fC(t)dt
CALCULATION OF tr FROM THE RENOGRAM CURVE

Until now, we have defined@ as the mean time interval required for hip
puran to traverse the kidney. It is now possible to define@ with greater opera
tional specificity, as the mean time interval during which a molecule of â€˜@â€˜I
hippuran constitutes a portion of intrarenal radioactivity, SR. Since the value of
SR at a given time is the difference between the amount of hippuran which has
entered and the amount which has left the kidneys:

3.@ = K [ C(t) dt â€”V [ U(t) dt; or, @R(@)= KC(@) â€”VU(@)
Jo Jo

By substituting equation 3 into equation 2,@ may be directly calculated in
terms of SR(t) and C(t), without the necessity of estimating U(s):

Kf tC(t) dt â€”f t@R(t) dt f tC(t) dt
4. 1= Â° Â° â€”-â€”-s____

Kf C(s) dt â€”SR(t) f C(t) dt
0 0

It is obvious that this expression specifies the mean transit time of only
those hippuran molecules which leave the kidney during the time interval 0 to t.
The equation for calculating the transit time of all the hippuran molecules which
traverse the kidney is obtained by assuming that the renogram study is pro
longed until SR(t) becomes quantitatively insignificant. Calling this time t =
and letting lim SR(t) = 0:

t â€”+@

@.fr = _f:@@R@dt /Kf C@,dt
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Integrating by parts, this can be further simplified:

6. [t@R(t) dt = tSR(t) / [SR(t) dt
Jo /0 JO

It is apparentthat l[mtS@R(t) = 0.

It is known that indicator-dilution curves such as U(t) become exponential as
they decay (1 , 3). From equat@n 4, the decline of SR(t) depends upon U(t).

Therefore, lim t SR(t) urn te@ = 0 (where X is an arbitrary time constant).
tâ€”@ cu tâ€”@ Co

Employing this result and equation 6, one then obtains the equation for the mean
transit time of all the hippuran molecules which traverse the kidney:

I SR(t)
7 t Jo area
. r r@ dose

K] C(t) dt
0

DISCUSSION

The preceding derivation indicates that a serious limitation is inherent in
the nieasurement of renal transit time. Since equation 4 is based upon the single
assumption that all the hippuran in the effluent urine has traversed some portion
of the kidney, it is possible, by employing this equation, to calculate values of
mean transit time with an accuracy that is limited solely by errors in the measure
ment of K, SR(t) and Cu). However, values of transit tinie calculated in this
manner reflect the traversal rates of only those hippuran molecules that leave

the kidney during the time of the renogram study. As a result, such values repre
sent an underestimate of f@which is, by definition, the mean transit time of all
the hippuran molecules that traverse the kidney.

This systematic error in the measurement of @rmay be lessened by merely

increasing the time of the renogram study. Whether sufficient accuracy may be
achieved in this manner without unduly prolonging the renogram can only be
ascertained by experiment and by clinical experience.

Another approach to this problem derives from the previously noted fact
that SR(t) becomes exponential in the latter phases of its decline. Therefore, a
semilogarithmic plot of SR(t) will ultimately become linear, whereupon the graph
can be extrapolated to a value SR(S) = 0, and @rcan be calculated from equation 7.
Of necessity, this approximation excludes those hippuran molecules with transit
times greater than the tinie at which SR(t) is extrapolated to zero. Therefore, the
accuracy with which @ris estimated can only be determined experimentally.

In addition to the problems inherent in the measurement of Ir, the pre
ceding mathematical analysis provides insight into the mechanism by which
certain alterations of renogram contour are produced.

The reasoning process employed in the derivation of equation 4 relies upon
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the fact that the fraction h(t) = U@ specifies, in effect, the frequency with

fU@ dt

which the particular time interval ti is required for hippuran to enter and traverse
the kidney. A consequence of this fact is that U(t) has the contour of a frequency
distribution function. This may be shown by expanding and rearranging the
definition of h(1):

Mh(t) M . .
8. U(t) â€”v--@ where@ is the total amount of hippuran which leaves the

kidney divided by urine flow rate.

Thus, U(t) derives its contour from the frequency distribution function h(t) and
its magnitude from a constant M/V.

Because of this, U (t) shares a well known property of distribution functions:

as t@ increases, such a curve rises more slowly and attains a peak which becomes

progressively decreased in amplitude and delayed in onset (1â€”3).

The effect of these alterations in U(t) upon the renogram curve derives from
equation 4. SR (t) attains its peak at a time when:

9. @R(t) 0; .@. KC(t) VU(t)

By definition, this time is called Tmax (4, 5). The renogram declines at a rate
given by:

10. â€”@R@ = V1J(t) â€” KC(,)

Therefore, a more gradual rise of U(t) will prolong Tmax, a decreased amplitude
of U (t) will proportionally decrease the descent rate of the renogram curve, and
a delayed peak of U(t) will correspondingly delay the attainment of the maximal
renogram descent rate. As a result, the renogram curve associated with prolonged
transit tinie will be characterized by a prolonged Tmax, a slow decline, and,
consequently, an increased area as predicted by equation 7.

This isa wellknown patternwhich has been describedboth inobstructive
renal disease (5) and in the presence of decreased urine flow rate (6). The occur
rence of this single pattern in these two dissimilar states has not been explained

by previous studies. However, an immediate explanation arises from the prop
erties of tr.

It can be shown that if V is the volume and Q the flow rate of a fluid-filled
system, the transit time, @,of an indicator dissolved in the fluid is given by:

11. t = @. (1-4).

If flow varies as a continuous function of volume, one may write the transit time
contribution, df, of a small volume element, dv, with a flow, Q (v) as:

12. dt =
Qv
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Then, integrating and employing the mean value theorem of the integral calculus:

- (VdV V â€”-1

13. tr J ,:Ã§â€”@Tâ€˜whereQ isthemean valueoftheintegral;i.e.,the
0 S@(t)@

@ average flow rate through the volume V.

Undoubtedly, many factors affect renal transit time. However, the fact that
all hippuran leaving the kidney must traverse some volume of urine assures
that tr depends to some extent upon the volume to average flow ratio of urine
within the kidney and renal pelvis.

Therefore, obstructive disease with increase in urine volume or states char
acterized by a decreased urine flow rate would both tend to produce the renogram
pattern of prolonged transit time. The same pattern would also be produced by

mechanical interference to urine drainage caused by irregular ureteral peristalsis
(6), as well as by polycystic renal disease and hemodynamically significant renal
artery stenosis (5). Moreover, since a significant portion of renal transit time
appears experimentally to be secondary to actual traversal of parenchymal
structures (7), infiltrative or inflammatory diseases of the kidney may also
prolong tr.

The preceding relationship between renal transit time and the dynamics of
urine flow applies only to mean transit time. Mean transit time has, on occasion,
been confused with other parameters, such as median transit time or the first
appearance time of the indicator in the effluent fluid (3). Such confusion is par
ticularly likely to arise in discussion of renal transit time, because the first ap
pearance time of hippuran in the urine has been employed in a previous study (8).

The relative importance of mean transit time and first appearance time can only be
established by experiment. However, unlike first appearance time, mean transit
time has well established theoretical significance and is universally employed in
indicator-dilution calculations (3).

SUMMARY

The mean renal transit time of hippuran can be calculated from the 131Jhip
puran renogram, and is the common denominator which explains the occurrence
of a single renogram contour in a variety of disease states. Furthermore, several
well known properties of mean transit time indicate that this parameter may be
useful in characterizing the effects of disease upon both the permeability of renal
parenchyma and the dynamics of urine flow. Finally, mean transit time must be
distinguished from the first appearance time of hippuran in the urine.

APPENDIX

The renogram transit time equations may be derived using integral equations.
While no increase of rigor results, this form of derivation simplifies comparison
between the renogram and indicator-dilution curves.

The outflow rate of hippuran, VU(t), can be written as the convolution of
h(e)Ofl KC (,)(ref. 3):

1) VU(t) = Kf h(@)C(@_t)dt
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thus:

2) SR(t) K[ C(t)dtâ€”K[ J h(t)C(tt)dt

By definition, [ C(t)dt = [ C(,@..t)dt. Therefore, rewriting the double integral

and letting 1,@bh(t)dt = H(11):

3) SR(@) = K (1@H(t))/ C(t)dt

Integrating, and letting SR@ = 0:

4) / SR(t)dt = K[ C(@)dt . @r (1H(t) )dt = Dose[ (1-H(t) )dt

Integrating by parts:

5) / (1-H(l))dt = (1-H(t))t L + @[ th(t)dt = @[ th(t)dt = I.

Usingthisresultand equation4,thefundamentalrenogramtransittimeequa
tion (equation 7) is obtained:

I SR@dt
6) t ________ Area

C(t)dt Dose
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