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Several reports have shown that radiomic features are affected by
acquisition and reconstruction parameters, thus hampering multicenter

studies. We propose a method that, by removing the center effect while

preserving patient-specific effects, standardizes features measured

from PET images obtained using different imaging protocols. Methods:
Pretreatment 18F-FDG PET images of patients with breast cancer were

included. In one nuclear medicine department (department A), 63 pa-

tients were scanned on a time-of-flight PET/CT scanner, and 16 lesions
were triple-negative (TN). In another nuclear medicine department (de-

partment B), 74 patients underwent PET/CT on a different brand of

scanner and a different reconstruction protocol, and 15 lesions were

TN. The images from department A were smoothed using a gaussian
filter to mimic data from a third department (department A-S). The pri-

mary lesion was segmented to obtain a lesion volume of interest (VOI),

and a spheric VOI was set in healthy liver tissue. Three SUVs and 6

textural features were computed in all VOIs. A harmonization method
initially described for genomic data was used to estimate the depart-

ment effect based on the observed feature values. Feature distributions

in each department were compared before and after harmonization.
Results: In healthy liver tissue, the distributions significantly differed

for 4 of 9 features between departments A and B and for 6 of 9 between

departments A and A-S (P , 0.05, Wilcoxon test). After harmonization,

none of the 9 feature distributions significantly differed between 2 de-
partments (P . 0.1). The same trend was observed in lesions, with a

realignment of feature distributions between the departments after har-

monization. Identification of TN lesions was largely enhanced after har-

monization when the cutoffs were determined on data from one
department and applied to data from the other department.Conclusion:
The proposed harmonization method is efficient at removing the multi-

center effect for textural features and SUVs. The method is easy to use,
retains biologic variations not related to a center effect, and does not

require any feature recalculation. Such harmonization allows for multi-

center studies and for external validation of radiomic models or cutoffs

and should facilitate the use of radiomic models in clinical practice.
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The number of publications involving texture analysis or radio-
mic studies in medical imaging in general, and in PET in particular,

is growing rapidly (1,2). Several authors have published promising

PET results suggesting that quantification of lesion heterogeneity

using radiomic features can predict patient outcome or treatment

response (3–6). Yet, in a recent study, Chalkidou et al. (7) pointed

out an inappropriate control of type I error in many radiomic

studies that involved the calculation of a large number of imaging

features in a small number of patients. These authors underlined

the need to confirm observations and validate models using in-

dependent patient cohorts in multicenter settings. Since the first

publication including texture analysis in PET images in 2009 (8),

77% of the radiomic or texture studies in PET have included fewer

than 100 patients (Fig. 1), and only 3 studies involved more than

200 patients (9–11). The difficulty in including a large number of

patients lies mostly in the need for a clinically homogeneous co-

hort with respect to lesion types, stages, treatments, and imaging

protocols. Indeed, it has been shown that radiomic features are

sensitive to acquisition and reconstruction parameters (12,13),

thus hindering the pooling of data acquired using different scan-

ners or protocols. More precisely, radiomic features are sensitive

to the reconstruction algorithm, number of iterations or subsets,

scan duration per bed position, postreconstruction filter, and voxel

size (12–22). This variability of radiomic features implies that a

radiomic model established using data from a given PET scanner

might not be directly applicable to data from another PET scanner,

as recently demonstrated in cervical cancer by Reuzé et al. (23).

This is obviously a severe limitation for the dissemination of radiomic

models and their transfer to clinical practice.
About 10 years ago, the genomics field faced a similar problem

called the batch effect, with batch referring to the settings used to

acquire the data, hence being identical to the scanner effect or

imaging-protocol effect in radiomics. In genomics, the batch effect

is a technical source of variations caused by the handling of samples

(e.g., different laboratories, different technicians, different days),

potentially masking individual variations, whereas the identification

of robust gene signatures to predict disease outcome requires thou-

sands of samples (24). Among the methods developed to deal with

the batch effect, ComBat harmonization was described in 2007 (25).

This method is now widely used in genomics and has an advantage

over other methods in that it provides satisfactory results even for

small datasets with a limited number of features (26).
In this context, the purpose of this study was to determine

whether the harmonization method initially described for genomic
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data analysis could successfully normalize radiomic features as
measured in PET so as to remove the center effect while retaining
the pathophysiologic information, in order to facilitate multicenter
studies and exportation of a radiomic model to different centers.

MATERIALS AND METHODS

Patients

Two groups of patients with nonmetastatic breast cancer, with a
total of 137 lesions, were included in this study. The first cohort

included 63 patients treated at Avicenne Hospital, Bobigny, France
(department A). The second cohort consisted of 74 patients scanned at

Institut Curie-René Huguenin Hospital, Saint-Cloud, France (depart-
ment B). This study was approved by the local institutional review

board (Ile-de-France X), and the requirement to obtain informed con-
sent was waived. A core-needle biopsy was performed for all patients

to determine the lesion type (27). The characteristics of each patient

group are summarized in Table 1.

PET/CT Imaging Protocol

Each 18F-FDG PET/CT scan was performed before the start of ther-
apy. For each patient, the capillary blood glucose level was less than 8

mmol/L at the time of 18F-FDG injection.
In department A, 18F-FDG PET/CT images were acquired using a

Gemini TF scanner (Philips) at 78 6 9 min (mean 6 SD; range, 59–
108 min) after injection of 18F-FDG (3 MBq/kg) at a rate of 1.45 min

per bed position. PET images were reconstructed using a list-mode
iterative algorithm (blob ordered-subsets time-of-flight, 2 iterations,

33 subsets). Attenuation was corrected using CT images, and no post-
reconstruction smoothing was used. The voxel size of the reconstructed

PET images was 4 · 4 · 4 mm.

In department B, 18F-FDG PET/CT images were acquired using a
Discovery 690 scanner (GE Healthcare) at 74 6 8 min (range, 55–

99 min) after injection of 18F-FDG (3–3.5 MBq/kg) at a rate of
2.5 min per bed position. PET images were reconstructed using an

ordered-subset expectation maximization iterative algorithm (2 itera-

tions, 24 subsets) and gaussian postfiltering (6 mm in full width at half
maximum). Attenuation was corrected using CT images. The voxel

size of the reconstructed PET images was 2.7 · 2.7 · 3.3 mm.
Last, we smoothed the PET images from department A using a 3-

dimensional gaussian filter (s 5 4 mm) to mimic a third department
(department A-S).

All PET images were converted into SUVs using standardization by
patient body weight.

Radiomic Feature Measurements

For each patient, 2 volumes of interest (VOIs) were delineated.
First, we segmented the primary lesion using a fixed threshold of 40%

of its SUVmax. Second, we located a spheric VOI of about 23 cm3 in
healthy liver tissue.

For each VOI, 9 features were measured using LIFEx software (www.
lifexsoft.org), including SUVmax, SUVmean in the VOI, and SUVpeak

(maximum average SUV in a 1-cm3 sphere). For textural feature calcu-
lation, voxel intensities were resampled using 64 discrete values between

0 and 20 SUV units, corresponding to an absolute resampling with a bin

width of about 0.3 SUV (28). Six textural features previously selected
for their robustness with respect to the segmentation method in each

texture correlation group (29) were calculated: homogeneity and entropy
from the cooccurrence matrix, short-run emphasis and long-run empha-

sis from the gray-level run length matrix, and high–gray-level zone
emphasis and low–gray-level zone emphasis from the gray-level zone

length matrix. The method of calculating textural features was previ-
ously described in detail (29).

Harmonization Method

To pool SUV and textural features measured from different PET
protocols, we tested a harmonization method, ComBat, previously

described for genomic studies by Johnson et al. (25) to correct the
batch effect. The harmonization model assumes that the value of

each feature y measured in VOI j and scanner i can be written as
follows:

yij 5 a1Xijb1 gi 1 dieij; Eq. 1

where a is the average value for feature y; X is a design matrix for the

covariates of interest; b is the vector of regression coefficients corre-
sponding to each covariate; gi is the additive effect of scanner i on

features, supposed to follow a normal distribution; di is the multiplica-
tive scanner effect, supposed to follow an inverse gamma-distribution;

and eij is an error term (normally distributed with a zero mean), as

TABLE 1
Patient Characteristics for Departments A and B

Characteristic A B

Mean age ± SD (y) 55 ± 15 51 ± 14

Molecular subtype

Luminal A 9 (14%) 11 (15%)

Luminal B 35 (56%) 44 (59%)

TN 16 (25%) 15 (20%)

HER2-positive 3 (5%) 2 (3%)

Unknown - 2 (3%)

HER2 5 human epidermal growth factor receptor 2.

Data are n followed by percentage, except for age.

FIGURE 1. Number of patients involved in texture or radiomic studies

from PET images since 2009, as found in a PubMed search for “(radio-

mics OR texture OR textural) AND PET.”
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explained by Fortin et al. (30). Harmonization consists of estimating

gi and di using empiric Bayes estimates (denoted as gi* and di*) as
described previously (25). The same model can be used in its non-

parametric form in which no assumptions are made regarding the laws
followed by gi, di, and eij. The normalized value of feature y for VOI j

and scanner i is then obtained as follows:

yComBat
ij 5

yij 2 â 2 Xijb̂ 2 g�i
d�i

1 â1Xijb̂;

Eq. 2

where â and b̂ are estimators of parameters

a and b, respectively. The harmonization de-
termines a transformation for each feature

separately, based on the batch (here, depart-
ment) effect observed on feature values. In

the first part of this study, we used harmoni-
zation without accounting for any biologic

covariate (i.e., X 5 0), and in the second
part, we used TN status as the covariate of

interest.
For each tissue separately (lesion and liver

tissues), we applied harmonization on all
features using the R function called ComBat,

available at https://github.com/Jfortin1/Com-
BatHarmonization/, using the non-parametric

settings.

Statistical Analysis

To test the ability of the harmonization

method to remove the center effect from the
feature values, we plotted the probability

density function of all features in the liver
VOI as a function of the department, before

and after harmonization. We used Wilcoxon
tests to determine whether the features dif-

fered significantly between departments, with
P values of less than 0.05 considered statisti-

cally significant.
For the lesion VOI, we displayed the box

plots of all features as a function of lesion
type—TN or non-TN—for each department separately, before and

after harmonization. Wilcoxon tests were used to investigate the im-
pact of harmonization on the features in the TN and non-TN groups in

each department.
To study the usefulness of harmonization in multicenter studies, we

determined the cutoff for each feature as that maximizing the Youden

TABLE 2
P Values of Wilcoxon Tests Between Feature Values in Departments A and B and in Departments A and A-S Before

and After Harmonization

A vs. B A vs. A-S

Feature Before harmonization After harmonization Before harmonization After harmonization

Homogeneity ,0.0001* 0.7592 ,0.0001* 0.9300

Entropy ,0.0001* 0.7828 ,0.0001* 0.9611

Short-run emphasis ,0.0001* 0.8930 ,0.0001* 0.7922

Long-run emphasis ,0.0001* 0.4708 ,0.0001* 0.8491

Low–gray-level zone emphasis 0.5961 0.1319 0.9397 0.9650

High–gray-level zone emphasis 0.2328 0.8100 0.0233* 0.8759

SUVmax 0.0522 0.7424 ,0.0001* 1.0000

SUVmean 0.4042 0.8409 0.9980 1.0000

SUVpeak 0.3407 0.9666 0.0614 0.9766

*P , 0.05.

FIGURE 2. Probability density function (%) of homogeneity (A and B) and SUVmax (C and D) in

liver tissue as observed in departments A (pink), B (green), and A-S (blue), before (left) and after

(right) harmonization.
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index, defined as (sensitivity 1 specificity – 1), in separating TN from
non-TN groups using data from department A. We then used these

cutoffs to determine whether lesions from department B were TN or
non-TN, and we assessed the accuracy of this classification without

and with harmonization. The accuracy of the TN classification was
also measured using the Youden index.

Finally, we investigated the impact of setting a covariate of interest
by removing the TN lesions from department A to obtain 2 datasets

with different biologic compositions: depart-

ment A without TN and department B in-
cluding 20% of TN. We studied how TN

lesions in department B were distinguished
from non-TN lesions in department A using

Wilcoxon tests before and after harmonization,
without and with TN status as a covariate of

interest.

RESULTS

Liver Tissue

The plots of features in liver tissue show
a shift in distribution among the 3 depart-
ments (Fig. 2; Supplemental Fig. 1 [sup-
plemental materials are available at http://
jnm.snmjournals.org]). For instance, ho-
mogeneity in the liver VOI was lower in
department A than in department B or A-S
(Fig. 2A). Conversely, SUVmax was higher
in department A than in B, which was
higher than in A-S (Fig. 2C). Homogene-
ity, entropy, short-run emphasis, and long-
run emphasis differed significantly between
departments A and B and between depart-
ments A and A-S (P , 0.05; Table 2) when
the features were not harmonized. High–
gray-level zone emphasis and SUVmax also
differed significantly between departments
A and A-S.

After harmonization, the distributions overlapped better for all
features (Fig. 2; Supplemental Fig. 1), and no feature differed
significantly between 2 departments (P . 0.1; Table 2).

Lesion Tissue

In our cohorts, 16 of 63 lesions (25%) were TN in departments
A and A-S, and 15 of 74 lesions (20%) were TN in department
B (Table 1). The mean lesion volume was 28.1 6 39.1 cm3

TABLE 3
P Values of Wilcoxon Tests Between Feature Values in TN and Non-TN Lesions in Departments A and B Before and

After Harmonization

Before harmonization After harmonization

Feature

TN(A) vs.

non-TN(A)

TN(B) vs.

non-TN(B)

TN(A) vs.

TN(B)

Non-TN(A) vs.

non-TN(B)

TN(A1B) vs.

non-TN(A1B)

TN(B) vs.

non-TN(A)

TN(A) vs.

TN(B)

Non-TN(A) vs.

non-TN(B)

TN(A1B) vs.

non-TN(A1B)

TN(B) vs.

non-TN(A)

Homogeneity 0.0810 0.0078* 0.4232 0.0074* 0.0014* 0.4635 0.5986 0.8737 0.0015* 0.0093*

Entropy 0.0205* 0.0410* 0.5196 0.3906 0.0031* 0.0875 0.7405 0.9139 0.0027* 0.0254*

Short-run emphasis 0.2175 0.0091* 0.2995 0.0004* 0.0063* 0.9481 0.1294 0.8338 0.0062* 0.0061*

Long-run emphasis 0.2618 0.0072* 0.2814 0.0004* 0.0072* 0.9352 0.0055* 0.3871 0.0162* 0.0004*

Low–gray-level

zone emphasis

0.0005* 0.0119* 0.0405* 0.0244* 5.69e-05* 0.3786 0.1102 0.3059 0.0002* 0.0003*

High–gray-level

zone emphasis

0.0002* 0.0119* 0.0494* 0.0282* 3.20e-05* 0.2886 0.2814 0.3337 2.27e-05* 0.0058*

SUVmax 0.0006* 0.0111* 0.0544 0.0278* 7.54e-05* 0.4058 0.5717 0.7943 4.47e-05* 0.0072*

SUVmean 0.0003* 0.0139* 0.0448* 0.0359* 3.20e-05* 0.2394 0.4463 0.7747 3.05e-05* 0.0052*

SUVpeak 0.0004* 0.0167* 0.0267* 0.0306* 9.75e-05* 0.4736 0.3581 0.7894 4.99e-05* 0.0061*

*P , 0.05.

FIGURE 3. Box plots of homogeneity (A) and SUVmax (B) for TN and non-TN lesions before and

after harmonization in 3 departments separately.
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(range: 4.8–229.1 cm3) in departments A and A-S and 12.36 13.0
cm3 (range: 2.0–77.3 cm3) in department B (P , 0.05).
Figure 3 and Supplemental Figure 2 show that, in each de-

partment separately, uptake heterogeneity was higher in TN
than non-TN lesions, with lower values for homogeneity, long-run
emphasis, and low–gray-level zone emphasis and higher values for
entropy, short-run emphasis, high–gray-level zone emphasis, and
SUV.
Before harmonization, we observed a shift between features

for the lesion VOI among the 3 departments (Supplemental Fig. 2)
with, for example, a lower homogeneity and a higher SUVmax in
department A than in department B or A-S (Fig. 3; Supplemental

Fig. 3). Table 3 shows that no feature could distinguish between
non-TN lesions from department A and TN lesions from depart-
ment B (P . 0.08). Five of 9 features did not significantly differ
between non-TN lesions from department A and TN lesions from
department A-S (Supplemental Table 1). All features differed sig-
nificantly between the 2 types of lesions in each center separately,
excepting short-run emphasis and long-run emphasis in departments
A and A-S and homogeneity in department A.
Figure 3 and Supplemental Figure 2 show that, after harmoniza-

tion, there was a realignment of features among the 3 departments
for TN and non-TN lesions. Table 3 shows that before harmoni-
zation, there was a significant difference between departments A

and B for 4 of 9 features in TN lesions and
8 of 9 features in non-TN lesions. Supple-
mental Table 1 shows that before harmoni-
zation, 7 of 9 features in non-TN lesions
differed significantly between departments
A and A-S. After harmonization, the only
feature (for either lesion type) that differed
significantly between either A and B or A
and A-S was long-run emphasis in TN le-
sions between A and B (Table 3; Supple-
mental Table 1; Supplemental Fig. 3). The
P values for distinguishing between non-
TN lesions in department A and TN lesions
in department B or A-S were always lower
with harmonization than without (Table 3;
Supplemental Table 1).
To mimic a multicenter study, we de-

termined for each feature a cutoff to
distinguish between TN and non-TN le-
sions based on data from department A
and then applied these cutoffs to data from
department B. Table 4 shows that, before
harmonization, all Youden indices were
between 0.05 and 0.23, reflecting poor to
moderate distinction between TN and non-
TN lesions. After harmonization, the You-
den indices for 8 of 9 features increased
to between 0.20 and 0.36, significantly higher
than before harmonization (P 5 0.008).

TABLE 4
Youden Indices for Distinction Between TN and Non-TN Lesions from Department B with Department A–Based Threshold

and Department B–Based Threshold

Thresh. A

Feature Before harmonization After harmonization Thresh. B

Homogeneity 0.23 0.28 0.36

Entropy 0.21 0.20 0.39

Short-run emphasis 0.12 0.35 0.38

Long-run emphasis 0.08 0.28 0.41

Low–gray-level zone emphasis 0.07 0.33 0.39

High–gray-level zone emphasis 0.16 0.21 0.39

SUVmean 0.15 0.30 0.37

SUVmax 0.05 0.25 0.32

SUVpeak 0.05 0.36 0.37

FIGURE 4. Box plots of homogeneity (A) and SUVmax (B) for TN and non-TN lesions before and

after harmonization without and with TN status as covariate, for departments A and B separately

when all TN are removed from department A to determine transformations.
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These Youden indices after harmonization were close to those
obtained when the cutoff was directly based on data from depart-
ment B (Table 4). For instance, with a department A–based cutoff,
the Youden index for SUVpeak for department B was 0.05 before
harmonization and increased to 0.36 after harmonization—similar
to that (0.37) obtained with a department B–based cutoff.

Setting a Covariate of Interest

When we removed the TN lesions from department A and
applied harmonization for departments A and B, the P values for
distinguishing between TN lesions in department B and non-TN
lesions in department A decreased for 8 of 9 features compared
with P values obtained before harmonization (Fig. 4; Supplemen-
tal Fig. 4; Supplemental Table 2). The P values further decreased

when the TN status was set as a covariate of interest in the har-
monization; all features were then statistically significant for dis-

tinguishing between TN lesions in department B and non-TN
lesions in department A (Supplemental Table 2).

DISCUSSION

In this study, we demonstrated that it is possible to pool radiomic
features and SUV measurements from different PET imaging
protocols by applying a harmonization method, ComBat, initially
used in genomics. The efficiency of the method was illustrated using
measurements of healthy liver tissue and breast lesions on 18F-FDG
PET images acquired in 2 different departments and with signifi-
cantly different spatial resolutions (i.e., the same images acquired

with and without gaussian smoothing of
9.4 mm in full width at half maximum). In
addition, we found that with this method, a
lesion-subtype–distinguishing cutoff estab-
lished using data from one PET scanner is
applicable to data from another PET scanner.
Among the methods developed to deal

with the batch effect, the ComBat harmo-

nization has already been used to normalize
histopathologic images for cancer diagnosis
(31) and cortical-thickness measurements
from MR images (32). The method has sev-
eral advantages. It is easily accessible, prac-
tical (thanks to an R function available for
free), and fast. It is a department-specific
harmonization that is based only on patient
data acquired in the different departments,

and it does not require any phantom exper-
iment, making it suitable for retrospective
data analysis. An additional advantage is
that it applies directly to the radiomic fea-
tures and not to the PET images from which
those features are calculated. Therefore, it
does not reduce the quality of an image set
to match the lower quality of other sets. With-
out covariates of interest, affine transforma-

tions are used to harmonize the features.
The transformations are different for each fea-
ture, each VOI type, and each department, so
that the transformed data lie in a common
space in which the department effects have
been removed or at least reduced. Because
the transformations are estimated and applied
to the measured data themselves, the trans-
formed data can be pooled afterward without

the need for learning sets. The only constraint
is that data from the different departments
must be available so that the transforma-
tions can be identified. In the context of
radiomic modeling, this implies that when
a published predictive radiomic model is
based on data from a certain department,
that department must make available the

radiomic feature values used to establish
the model, as well as the model equations
and coefficients, if the model is to be appli-
cable to data from a different department.

FIGURE 5. Simulated pooling of data from different imaging protocols (one protocol for de-

partment A and another for department B). (A) True values for hypothetical lesion types X and

Y as randomly drawn from normal distributions, with mean of 10 and SD of 0.5 for both types

(n 5 10 X[A] lesions, 10 Y[B], 100 Y[A], and 100 X[B]). Data pooling showed no significant

difference between lesion types, but addition of department-dependent scanner effect (11 for

A and −1 for B) did show significant difference. (B) True values for hypothetical lesion types W and

Z as randomly drawn from normal distributions, with respective means and SDs of 10 and 0.5 for

W and 12 and 0.5 for Z (n 5 10 W[A] lesions, 10 Z[B], 100 Z[A], and 100 W[B]). Data pooling

showed significant difference between lesion types, which was no longer present after addition

of department-dependent scanner effect (−1 for A and 11 for B).
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Despite continuous and commendable efforts by the international
community and societies to produce guidelines for harmonized
imaging procedures (33–35), the acquisition and reconstruction
protocols for PET images are not yet standardized. The method
we propose offers a solution to performing multicenter studies even
when data have been acquired under different conditions. ComBat
harmonization is usable not only for radiomic textural features but
also for SUV measurements. In our data, we observed that SUVmax

distributions in the liver differed between departments A and B
(P 5 0.05) before harmonization but overlapped better after har-
monization (Table 2; Fig. 2). Similarly, all SUV P values were
greater than 0.2 between non-TN lesions from department A and
TN lesions from department B (Table 3), meaning that SUV mea-
surements failed to distinguish TN from non-TN lesions. After
harmonization, SUV P values were less than 0.007 between non-
TN lesions from department A and TN lesions from department B,
close to the P values observed when distinguishing between TN
and non-TN lesions in department A (P# 0.006) and in department
B (P # 0.02). This harmonization method is therefore useful for
SUVs in a multicenter investigation or for retrospective analysis of
PET images acquired on different scanners at the same institution
or on one scanner but with different acquisition and reconstruction
parameters. Supplemental Figure 3 demonstrates how harmoniza-
tion greatly reduced the differences in SUVs or feature values
between departments A-S and A, although some differences remained
for individual lesions. Residual differences after harmonization
are also due to the strong smoothing in A-S data, which induces
some information loss that obviously cannot be recovered using
harmonization.
In each of the 3 PET image–based radiomic studies that in-

cluded more than 200 patients (Fig. 1)—one to evaluate somatic
mutations (9), another to predict prognosis in non–small cell lung
cancer (10), and a third to predict treatment response in esopha-
geal cancer (11)—the PET images came from different PET scan-
ners but the scanner effect was not explicitly accounted for. Many
studies have reported the impact of acquisition and reconstruction
parameters on radiomic features. Ignoring the scanner effect when
pooling data from different centers can affect the results in two
ways: either making the results more significant than they are or
hiding significant differences (Fig. 5).
Although entropy was the most robust feature in previous

publications (Supplemental Table 4 of Orlhac et al. (22)), we
observed a shift in entropy in liver tissue among the 3 departments
(Supplemental Fig. 1A), with higher entropy in department A than
in department B or A-S (P , 0.0001; Table 2). The shift was no
longer present after harmonization (P . 0.7), suggesting that even
when a feature is robust with respect to different imaging proto-
cols, a scanner effect can still be present and require compensation
in multicenter studies.
If covariates of interest are properly set (Eq. 1), ComBat har-

monization may be used even if the patient groups have different
characteristics, as explained by Fortin et al. (32). ComBat harmo-
nization therefore removes the center effect without altering the
biologic information conveyed by the radiomic features. When
patient characteristics are very different between departments,
the ComBat harmonization procedure should define any covariates
that are to be protected—that is, are not to enter the harmonization
process. For example, when removing the TN lesions from de-
partment A, we observed better discrimination between TN le-
sions from department B and non-TN lesions from department
A (Supplemental Table 2) if TN status was defined as a covariate

(using the X design matrix (Eq. 1)) than when no covariate was
defined. Yet, with ComBat harmonization being a data-driven tech-
nique, it is preferable to use clinically and biologically similar data-
sets whenever possible.
ComBat has been described in a parametric version, with as-

sumptions about the statistical distribution of the model param-
eters, and in a non-parametric version (25). Because our data did
not closely fulfil these assumptions, we used the nonparametric
version instead.
Differences between images from different PET systems could

also be due to calibration differences. We performed a test (data not
shown) to ensure that the image differences removed by ComBat
harmonization could not have been sufficiently removed by simple cor-
rections involving a rescaling or offset factor estimated from healthy
liver.
A limitation of our study was the small number of patients in

each department, although the number was consistent with most
PET radiomic studies (Fig. 1). Studies of other imaging protocols
and other cancer types are needed to more extensively validate the
radiomic use of ComBat harmonization. The minimum number of
patients required per department should also be further explored,
especially in the nonparametric setting. ComBat has been specif-
ically designed to be robust to small samples (25,32) and has been
used in genomics with as few as 25 samples in each batch (25).

CONCLUSION

Using ComBat harmonization, a procedure initially described for
genomic analysis, we showed that radiomic feature values and
SUVs from images acquired in different departments or under
different conditions could be pooled for further analysis. Harmoni-
zation preserved the individual variations in healthy liver tissue and
breast lesions while removing the imaging-protocol effect. This
method is easily available and does not require any feature
recalculation since it applies directly to the radiomic feature
values as opposed to the images. The ComBat harmonization ap-
proach appears to be a promising way to build radiomic models
using data pooled from different departments. This harmonization
method is also useful to apply a radiomic model derived from
images acquired in one department to images acquired in another
department.
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