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Prostate-specific membrane antigen (PSMA)–ligand PET imaging

provides unprecedented accuracy for whole-body staging of pros-

tate cancer. As PSMA-ligand PET/CT is increasingly adopted in

clinical trials and routine practice worldwide, a unified language
for image reporting is urgently needed. We propose a molecular

imaging TNM system (miTNM, version 1.0) as a standardized

reporting framework for PSMA-ligand PET/CT or PET/MRI. miTNM
is designed to organize findings in comprehensible categories to pro-

mote the exchange of information among physicians and institutions.

Additionally, flowcharts integrating findings of PSMA-ligand PET and

morphologic imaging have been designed to guide image interpreta-
tion. Specific applications, such as assessment of prognosis or impact

on management, should be evaluated in future trials. miTNM is a living

framework that evolves with clinical experience and scientific data.
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Prostate-specific membrane antigen (PSMA)–ligand PET/CT
or PET/MRI provides high sensitivity and specificity for prostate
cancer staging (1). The accuracy of PSMA-ligand hybrid imaging
is superior to that of conventional imaging and tracers such as
choline across a range of indications and disease extents (2–15).

Level 2b evidence for superior detection rates at early biochemical
recurrence after radical prostatectomy led to a grade A recommen-
dation for PSMA-ligand PET/CT by the European Association of
Urology (16). We anticipate increased adoption of PSMA-ligand
PET/CT fueled by upcoming evidence and inclusion into guidelines.
Thus, reporting standards must be created now to aid reproducibility,
enhance communication, and ultimately support acceptance of this
technology to the benefit of prostate cancer patients.
The Prostate Cancer Molecular Imaging Standardized Evalua-

tion (PROMISE) criteria reported in this issue of The Journal of
Nuclear Medicine summarize standards for study design and
reporting of prostate cancer molecular imaging. We acknowledge
that performance characteristics from different studies can be
compared only if target regions are properly described and uni-
formly used. Therefore, PROMISE recommends that definition of
anatomic regions be guided by reproducibility, general applicabil-
ity, and clinical relevance. Uniform frameworks for image report-
ing have previously been proposed for pelvic multiparametric
MRI (17), bone scintigraphy (18), and many other techniques
and indications (19,20). Precise description and organized classi-
fication of PSMA-ligand PET/CT findings are needed to serve
both clinical reporting (to help with defining tumor extent, tailor-
ing therapy, assessing prognosis, and facilitating exchange of in-
formation between centers) and research (to help with validating
findings, pooling data within multicenter trials, and performing
metaanalyses of published data).
The clinicopathologic TNM system of the American Joint Com-

mittee on Cancer and Union Internationale Contre le Cancer is
the most widely used prostate cancer staging system (21). In
clinical practice, the TNM score is based on a patchwork of in-
formation: local, nodal, and distant involvement are categorized
by histopathologic examination after surgery or other tissue sam-
pling, as well as clinical findings and imaging. Combination of all
modalities improves staging, as each single modality comes with
limitations: in prostate cancer clinical examination, ultrasound,
CT, and MRI have a low sensitivity for metastases (22), whereas
surgery and biopsy with subsequent histopathologic examination
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can evaluate only the dissected tissue and, thus, often underdiagnose
prostate cancer metastases at extrapelvic regions or locations out-
side the operating or sampling field (23).
Detection of prostate cancer with PSMA-ligand PET/CT de-

pends on target expression. On the basis of the high and specific
target expression level of most prostate cancer cells, PSMA-ligand
PET/CT detects more than 50% of lymph node metastases with a

short diameter of at least 2.3 mm and more than 90% of those with
a short diameter of at least 4.5 mm in a salvage lymphadenectomy
setting (24). Staging is provided for the entire field of view and for
regions otherwise inaccessible by surgery or biopsy. In view of
these unique characteristics, we propose a molecular imaging
TNM (miTNM) framework for PSMA-ligand PET/CT prostate
cancer staging. This framework may also be applied for PSMA-
ligand PET/MRI, SPECT/CT, or similar approaches. miTNM
serves to provide standardized reporting of the presence, location,
and extent of local prostate cancer and its pelvic spread; the pres-
ence, location, extent, and distribution pattern of extrapelvic me-
tastases; the PSMA expression level of tumor lesions; and diagnostic
confidence about reported findings.
To support acceptance, implementation, and correlation, defi-

nitions for the PSMA-ligand PET/CT miTNM framework were
designed in analogy with the clinicopathologic TNM framework
when possible. Categories describing the PSMA expression level
and pattern of bone involvement were added—for example, to aid
the planning of PSMA-directed therapy or the estimation of pa-
tient prognosis.
PSMA-ligand PET/CT provides high accuracy at substantial to

almost-perfect reproducibility for TNM staging among readers
with various levels of experience (25). Precise and reproducible
staging was achieved even without detailed criteria for lesion
positivity (25). Nevertheless, for successful application of miTNM
in prostate cancer staging, it is crucial to have criteria for perform-
ing and interpreting PSMA-ligand PET/CT (26–28), as recently

TABLE 1
miPSMA Expression Score

Score

Reported PSMA

expression Uptake

0 No Below blood pool

1 Low Equal to or above blood
pool and lower than liver*

2 Intermediate Equal to or above liver* and

lower than parotid gland

3 High Equal to or above parotid

gland

*For PSMA ligands with liver-dominant excretion (e.g., 18F-

PSMA1007) spleen is recommended as reference organ instead
of liver.

TABLE 2
miTNM Classification for PSMA-Ligand PET/CT or PET/MRI

Class Description

Local tumor (T)

miT0 No local tumor

miT2 Organ-confined tumor; report intraprostatic tumor location on sextant basis (Table 3)

u Unifocality

m Multifocality

miT3 Non–organ-confined tumor; report intraprostatic tumor location on sextant basis (Table 3)

a Extracapsular extension

b Tumor invading seminal vesicles

miT4 Tumor invading adjacent structures other than seminal vesicles, such as external sphincter,

rectum, bladder, levator muscles, or pelvic wall

miTr Presence of local recurrence after radical prostatectomy

Regional nodes (N)

miN0 No positive regional lymph nodes

miN1a Single lymph node region harboring lymph node metastases; report location by standardized
template (Table 4)

miN1b Multiple ($2) lymph node regions harboring lymph node metastases; report locations by
standardized template (Table 4)

Distant metastases (M)

miM0 No distant metastasis

miM1 Distant metastasis

a Extrapelvic lymph nodes; additionally report location by standardized miM1a template (Table 4)

b Bones; additionally report pattern (Table 5) and involved bones if unifocal or oligometastatic

c Other sites; additionally report involved organ
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recommended in a joint guideline by the European Association of
Nuclear Medicine and the Society of Nuclear Medicine and Mo-
lecular Imaging (27). Therefore, we have designed flowcharts on
morphologic and PSMA-ligand PET findings to guide standard-
ized image interpretation.
An overview of miTNM, version 1.0, is given in Tables 1

through 6 and Figures 1 through 4. Anatomic regions and disease
patterns are detailed in the following sections.

PSMA EXPRESSION SCORE AND INTERPRETATION CRITERIA

Rationale

PSMA expression based on immunohistochemistry is known to
correlate with tumor differentiation as well as prognosis (29–31).
Loss of PSMA expression in metastases can indicate dedifferen-
tiation and increasing tumor heterogeneity, leading to more ag-
gressive phenotypes and a nonresponse to PSMA-directed therapy
(32,33). In intraprostatic lesions, PSMA-ligand PET has been
shown to correlate with tumor aggressiveness as defined by the
Gleason score (6,34). Absence of PSMA expression as measured
by PET in a primary tumor raises concerns about missed PSMA
expression in its metastases and therefore provides important in-
formation for interpretation of PSMA-ligand PET results (5,35).
Thus, information derived from noninvasive mapping of tumoral
PSMA expression is valuable and should be reported for clinical
and research PSMA-ligand PET.

miPSMA Score

We propose a miPSMA score that enables standardized reporting
of PSMA expression as detected with PSMA-ligand PET. Expres-
sion categories are defined in relation to mean uptake in the blood
pool, liver, and parotid gland (Table 1; Fig. 1). Results are reported
as 0, 1, 2, or 3 for no, low, intermediate, or high PSMA expression,
respectively. Scores 2 and 3 are empirically considered typical for
prostate cancer lesions and favorable for PSMA-directed radioli-
gand therapy. Expression level is determined visually, and we do
not recommend uptake measurements on a regular basis. Occasion-
ally, quantitative analyses might be necessary to correctly assign a
specific miPSMA score.
On the basis of personal experience, we advise comparison of

the mean SUVs of the respective lesions and the reference organ.
The liver SUV can be measured by placing a 3-cm-diameter
circular region of interest in the normal inferior right liver lobe in
the axial plane; the blood pool, by centering a 2-cm-diameter
circular region of interest in the aortic arch in the axial plane; the
parotid gland, by centering a 1.5-cm-diameter circular region of
interest in the right parotid gland in the axial plane; and a tumor
lesion, by centering a 1-cm-diameter circular region of interest
over the voxel with maximum uptake in the axial plane. Notably,
SUV measurements in PSMA-ligand PET require further valida-
tion and investigation to clarify whether SUVmean, SUVmax, or
SUVpeak is the most appropriate parameter.
Detailed comparative data are lacking on the biodistribution of

various PSMA ligands. However, application of the miPSMA
score for different PSMA ligands appears feasible because their
biodistribution is grossly similar (Fig. 1). Known differences in
biodistribution (e.g., higher blood-pool activity for 18F-DCFBC or
higher liver uptake for 18F-PSMA1007) should be considered, es-
pecially when comparing studies using different ligands. For PSMA

TABLE 3
Sextant Segmentation of Prostate Gland

Segment miT2–4 template

LB Left base

RB Right base

LM Left mid

RM Right mid

LA Left apex

RA Right apex

TABLE 4
Lymph Node Regions

Region Template Report left/right

miN1a/b

II Internal iliac Yes

EI External iliac Yes

CI Common iliac Yes

OB Obturator Yes

PS Presacral (presciatic) No

OP Other pelvic (specify) No

miM1a

RP Retroperitoneal No

SD Supradiaphragmatic Yes or no

OE Other extrapelvic (specify) Yes or no

Details on anatomic definition of lymph node regions are

provided in Supplemental Table 1.

TABLE 6
Certainty and Final Diagnosis

Certainty Diagnosis

Consistent with Positive

Suggestive of Positive

Possible Equivocal

Unlikely Negative

No evidence of disease Negative

Final diagnosis should be reported as positive or negative for

prostate cancer. Equivocal diagnosis should be used only when
alternative techniques are available that may reasonably provide

clarification.

TABLE 5
Pattern of Bone Involvement

Abbreviation Pattern of bone involvement

Uni Unifocal

Oligo Oligometastatic (n # 3)

Diss Disseminated

Dmi Diffuse marrow involvement
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ligands with liver-dominant excretion (e.g., 18F-PSMA1007), the
spleen is recommended instead of the liver for comparison against
blood-pool and salivary gland uptake (36).

Interpretation

The miPSMA score alone is not suitable for diagnosing or
excluding prostate cancer. Interpretation of miPSMA scores must
be performed with consideration of the clinical context and other
imaging findings and can vary for different tissue classes and even
locations. A guide for the interpretation of PSMA-directed imag-
ing based on CT, MRI, and PET findings is given in Figure 2. We
designed flowcharts that are based on our clinical experience;
however, interpretation critically depends on multiple factors,
including indication, current therapy, prostate-specific antigen
level, and prior clinical, imaging, or histopathologic findings.
The criteria in Figure 2 are not to be taken as absolute definitions
for positive, negative, or equivocal findings. Especially in patients
with a rising, yet low, level of prostate-specific antigen and other-
wise unremarkable imaging findings, even faint but focal uptake
above the background level at a typical location may serve as an
indicator of prostate cancer. The usability and potential further
adoption of the miPSMA score is prone to prospective clinical
validation. Definition of more detailed criteria for certain clinical
situations, such as was recently proposed using a consensus read-
ing with multiple Delphi rounds (28), is recommended.
The miPSMA score may become useful for selecting patients

for targeted radiotherapy. At restaging, a decrease in the miPSMA
score in conjunction with morphologic findings can help to identify
dedifferentiation or response to therapy.

FINAL DIAGNOSIS AND CERTAINTY

The final diagnosis should ideally be either positive or negative
for prostate cancer. Equivocal findings should be avoided and
limited to certain settings, such as when other techniques may be
able to clarify the findings. In addition, we recommend reporting
diagnostic certainty using a 5-point scale (Table 6). Certainty will
substantially vary depending on uptake, location, and CT or MRI
findings. For instance, at biochemical recurrence, diagnostic cer-
tainty will be substantially higher when focal uptake is at a com-
mon location (e.g., internal iliac lymph node) than when at an
uncommon location (e.g., rib). Certainty is further influenced by
the specific clinical scenario; for example, faint uptake in the

prostate gland after radiation therapy may often represent physiologic
background activity, whereas any faint uptake in the former prostate
bed after radical prostatectomy is highly suggestive.
Standardized wording for the final diagnosis and level of

certainty will improve communication between the reader and

the treating physician. Implementation into study protocols will

allow identification of ambiguous judgments and potential pitfalls,

aiding future improvement of PROMISE and miTNM. It will also

be desirable to adjust the different categories with data based on

studies using histopathologic correlation. This step will in-

crease understanding between corresponding physicians and

facilitate any potential consequences, such as a change in

management.

LOCAL TUMOR (T)

Categorization of a local tumor is based on extent and organ
confinement (Table 2; Fig. 3A). miT0 describes the absence of

local recurrence in the pelvis both after radical prostatectomy and

after radiation therapy. miT2 to miT4 categorize tumor extent with the

prostate in place, either treated or untreated. Local-organ–confined

tumor is defined as miT2u for unifocal involvement and miT2m for

multifocal involvement. Extraprostatic extension is classified by 3

categories in accordance with the clinicopathologic TNM system:

limited extraprostatic extension (miT3a), involvement of seminal

vesicles (miT3b), and infiltration of external sphincter, rectum,

bladder, levator muscles, or pelvic wall (miT4). Because of the low

spatial resolution of PET, combination with appropriate cross-

sectional imaging is needed to adequately judge extraprostatic ex-

tension. This is best achieved by complementing PSMA-ligand

PET with multiparametric MRI either within a hybrid PET/

MRI study or as a separate dataset available for image fusion.

Notably, to avoid confusion with the clinicopathologic TNM

system, in which T1 defines a tumor on histopathology with no

correlation on palpation or any type of imaging, no miT1 cate-

gory is used.
To describe the anatomic distribution of intraprostatic tumor

extension and to facilitate a straightforward correlation between

imaging and histopathology (6,37), information on prostate in-

volvement is described on a sextant basis (Table 3). Sextant seg-

ments were chosen to provide information for biopsy, the common

method of diagnosing prostate cancer. For ultrasound biopsy,

FIGURE 1. miPSMA expression score. Thresholds are demonstrated on 68Ga-PSMA11 PET maximum-intensity projection (left). For comparison,

images are shown for 68Ga-PSMA-I&T scan, 18F-DCFPyL maximum-intensity projection at 1 h, 99mTc-MIP1404 planar scan at 3 h, and 18F-PSMA-

1007 scan. *For PSMA ligands in which the ligand has liver-dominant excretion, spleen is recommended as reference organ instead of liver.
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FIGURE 2. Guide for interpretation of PSMA-ligand PET/CT or PET/MRI. Criteria are given separately for imaging of

prostate bed after prostatectomy or after radiation therapy (A), imaging of prostate for tumor detection or primary

staging of cancer (B), imaging of lymph nodes (C), and imaging of bone or visceral organs (D). LN5 lymph node; PCa5
prostate cancer; SD 5 short-axis diameter; s/p 5 status post. *Consider PSMA-ligand–negative prostate cancer.
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image fusion encompassing both cognitive and software-based

approaches is recommended (38–41). For traditional sextant

segmentation, the craniocaudal extent of the prostate is divided

into 3 equal-thickness volumes separated as falling to the left or
right of the urethra: that is, left basal, right basal, left mid, right
mid, left apical, and right apical segments (6,42). We are aware
that more detailed descriptions of intraprostatic tumor involve-
ment exist, such as the local template provided by PI-RADS
(the Prostate Imaging and Reporting and Data System, version
2) (17). However, because our system is intended to harmonize
image findings across PET/CT and PET/MRI, the sextant approach
is most applicable. Outcome data, matched with the pathologic
tumor stage, has indicated that tumor extent on a sextant basis or
seminal vesicle infiltration is valuable prognostic information
(43,44). Nevertheless, in dedicated studies using PET/MRI tech-
nology, further discrimination of the prostate gland in the periph-
eral, transition zone is recommended for reporting of intraprostatic
tumor spread, such as by using the proposed template in PI-RADS.
Local recurrence after radical prostatectomy is categorized by

miTr. Infiltration of pelvic structures should be detailed in the

report. The probability of local tumor both after radical prosta-
tectomy and after radiation therapy increases with focal uptake,
higher miPSMA in the prostate (other than the bladder neck or
urethra area), MRI showing a typical appearance of local tumor
(diffusion restriction, contrast enhancement), or CT showing
circumscribed contrast enhancement or signs of extraprostatic
extension. A guide integrating the findings of PSMA-ligand PET
and morphologic imaging is given in Figure 2A for local tumor
after primary treatment and in Figure 2B for primary staging or
tumor detection. PI-RADS is applicable only for detecting tumor
in patients with an increased level of prostate-specific antigen;
therefore, it should not be combined with interpretation of
PSMA-ligand uptake for primary local staging after histologic
confirmation (Fig. 2B). PSMA-ligand–positive pitfalls such as
acute prostatitis and MRI-positive pitfalls such as postbiopsy
changes and benign nodules must be ruled out. Notably, tumors
with a low-Gleason-score pattern, and some rare entities such as
intraductal carcinomas, tend to be negative on PSMA-ligand
PET.

PELVIC NODES (N)

Pelvic node metastases are categorized as single involved nodal
regions (miN1a) or multiple involved nodal regions (miN1b). Clin-
ical data indicate that the number of metastatic lymph nodes on
histopathology significantly affects disease progression and survival
(e.g., recurrence-free survival at 10 y of .70% vs. 49% for patients
with 1 or 2 vs. .5 positive lymph nodes) (45,46). In addition, it is
generally accepted that histopathologic information from extended
lymph node dissection is important for prognosis (47).
PSMA-ligand PET/CT is currently regarded as the most pow-

erful application for providing a comprehensive overview of nodal
involvement in the entire field of view. However, because PSMA-
ligand PET/CT has failed to identify very small (,2 mm) lymph
nodes, we feel that reporting based on traditional surgical tem-
plates is appropriate (24). A standardized template for pelvic
lymph node regions provides anatomic information to facilitate
comparison with surgery, histopathology, or other imaging find-
ings (Table 4; Fig. 4). Such a template covers the different regions
usually approached when extended lymph node dissection is per-
formed (23). The anatomic structures delineating template re-
gions for the pelvis, as adopted in two published reports (48,49),
are described in Supplemental Table 1 (available at http://jnm.
snmjournals.org). Each region is encoded by its initials, with bi-
lateral regions further specified as left or right. Besides having
prognostic value for determining disease extent, the specific loca-
tion of lymph node metastases is critical for surgery and radiation

FIGURE 3. miTNM categories and pattern of bone involvement for

reporting prostate cancer stage by PSMA-ligand PET/CT: local tumor

extent (A) and pelvic node and distant metastases (B). Tumor involve-

ment is delineated in red. Diss 5 disseminated; dmi 5 diffuse marrow

involvement; oligo 5 oligometastatic; uni 5 unifocal.

FIGURE 4. miTNM standard template for pelvic lymph node regions.

Transition to retroperitoneal extrapelvic region is indicated.
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therapy planning. For instance, the presacral and mesorectal re-
gions, as well as the retroperitoneum, lie outside the typical sur-
gical field.
The probability of nodal involvement increases not only with

focal uptake and higher miPSMA score but also with lesion size,
contrast enhancement, and location. A guide integrating findings
in PSMA-ligand PET and morphologic imaging for pelvic N-
staging is given in Figure 2C. CT and MRI abnormalities such as
regional grouping, loss of fatty hilum, or focal necrosis may
serve as additional morphologic criteria. PSMA-ligand–positive
pitfalls such as focal uptake in the celiac ganglia or an adjacent
ureter, inflammation, or lymphedema must be ruled out
(7,25,50,51).

EXTRAPELVIC NODES AND DISTANT METASTASES (M)

PSMA-ligand PET/CT detects prostate cancer metastases with
better sensitivity and specificity than conventional imaging (13–
15). At biochemical recurrence, organ involvement can be diag-
nosed early (2,8,9) and the exact pattern of disease demonstrated.
In accordance with the clinicopathologic TNM system, distant
metastases are separated into 3 categories: extrapelvic lymph
nodes (miM1a), bone metastases (miM1b), and organ metastases
(miM1c) (Table 2; Fig. 3B). The location of miM1a nodes is
categorized using a standard template (Table 4) as retroperitoneal,
supradiaphragmatic, or other. Other lymph node regions or all
affected organs in patients with organ involvement (miM1c)
should be further specified in the final report.
PSMA-ligand PET/CT has been shown to be superior to bone

scintigraphy in describing the extent of bone involvement (13).
Bone disease is subcategorized as showing unifocal involvement,

oligometastatic involvement, disseminated involvement, or diffuse
marrow involvement (Table 5; Fig. 3B). Oligometastatic bone in-
volvement is diagnosed when there are 3 or fewer bone lesions
(52). When involvement is unifocal or oligometastatic, the in-
volved bones should be specified. We acknowledge that the con-
cept and final definition of oligometastatic disease are still under
debate and that, for example, certain authors count all types of
metastatic lesions up to a specific threshold (53). The pattern of
bone involvement can have important implications for prognosis
(52,54) and management (53). For instance, unifocal involvement
may be targetable with curative intent by external-beam radiation
therapy, and diffuse marrow involvement indicates elevated risk
for hematotoxicity after radionuclide therapy (55–57).
The probability of bone or organ involvement increases with

focal uptake, higher miPSMA score, and abnormalities on CT or
MRI. For bone metastases, common CT findings include sclerotic,
rarely lytic lesions with or without extraosseous extension, and
common MRI findings include a low signal on unenhanced T1-
weighted images. A guide integrating findings on PSMA-ligand
PET and morphologic imaging for M-staging is given in Figure 2D.
PSMA-ligand–positive pitfalls such as posttraumatic rib uptake and
primary malignancies not related to prostate cancer must be ruled
out (26). A comprehensive overview of the potential pitfalls for
PSMA-ligand PET imaging has recently been published (51).

EXAMPLES

Figures 5– 7 provide 3 examples illustrating the use of miTNM
in different clinical scenarios.

LIMITATIONS

The aim of miTNM is to create a framework for PSMA-ligand
PET reporting. We realize that—like the first clinicopathologic

FIGURE 5. Primary staging using 68Ga-PSMA11 PET/high-resolution

T2-weighted MRI of prostate in 65-y-old patient with histopathologically

proven prostate cancer: PET maximum-intensity projection (A) and axial

PET/MRI (B), coronal PET/MRI (C), and axial PET/MRI (PET at top, PET/

MRI in middle, and MRI at bottom). Sextant segment boundaries are

shown on coronal images in white. Maximum-intensity projection dem-

onstrates intermediate PSMA expression (score 2) in prostate gland

(solid arrow) and high PSMA expression (score 3) in regional pelvic

lymph node (dotted arrow). Axial and coronal MRI show bilateral T2-

hypointense lesions corresponding to uptake on PSMA-ligand PET and

clearly exceeding prostate margins, indicative of extraprostatic exten-

sion (T3a; solid arrows). Axial and coronal PET/MRI show bilateral in-

volvement of apical and mid segments and of left basal segment on MR

images. Axial imaging shows single lymph node metastasis in left ob-

turator region (dotted arrows). Final diagnosis was miT3aN1(OBL)M0. All

findings were confirmed by postoperative histopathologic examination.

FIGURE 6. 68Ga-PSMA11 PET/CT restaging in 62-y-old patient with

biochemically recurrent prostate cancer and rising level of prostate-

specific antigen: PET maximum-intensity projection (A) and 2 levels of

axial PET/CT (B and C), with PET at top, PET/CT in middle, and CT at

bottom. Maximum-intensity projection and axial images in B demon-

strate multiple retroperitoneal and supradiaphragmatic lymph node me-

tastases with intermediate PSMA expression (score 2, solid arrows). In

total, 3 bone lesions (dotted arrows) define oligometastatic bone in-

volvement. (C) Sclerotic bone metastasis in thoracic spine demonstrates

low PSMA expression (score 1). Final diagnosis was miT0N0M1a(RP, SD)

b(oligo).
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TNM proposal and other image classification systems—initial def-
initions are arbitrary and not supported by strong clinical evi-
dence. We admit that although our approach parallels the now
extensively validated clinicopathologic TNM, miTNM is based
only on our joint experience and the supporting evidence, with
no prognostic validation having been performed. The historical
development of classification systems for imaging (e.g., BI-
RADS, PI-RADS, RECIST, and PERCIST) demonstrates that
after an initial proposal with often a limited scientific basis,
further sequential adjustments have been made to optimize ap-
plicability and clinical validity. We expect and desire a similar
process for the miTNM system presented here. The system will
evolve as more evidence becomes available for PSMA-ligand
PET/CT and patient outcome. miTNM remains inclusive for
other staging systems focusing on local staging or management
decisions.
Currently, there are several different PSMA ligands in clinical

use. Because comparative data on biodistribution and uptake in
tumors are not currently available, caution is warranted when
comparisons are made between studies applying different PSMA
ligands. Therefore, we highly recommend that the specific PSMA
ligand be disclosed and that the same ligand be used when follow-
up imaging is performed. Notably, this proposal focuses on small
ligands, because antibodies (e.g., J591), minibodies, and other,
larger, molecules with affinity to PSMA demonstrate a substan-
tially different biodistribution and currently lack data describ-
ing their clinical use (58).

FUTURE DEVELOPMENT

PSMA-ligand PET enables unprecedented delineation of whole-
body tumor burden based on high target-to-background expression
levels (Supplemental Fig. 1) (59). Introduction of tools for whole-

body tumor volumetry based on a combination of molecular and
morphologic techniques might overcome several limitations of solely
morphology-based criteria, such as RECIST (60): lesions without
distinct morphologic boundaries, such as bone metastases, could
be included in the evaluation. Molecular imaging also offers the
potential to acknowledge target expression as part of a quanti-
tative imaging biomarker, and lesions can be subselected by
certain target definitions, minimizing potential bias. Conse-
quently, direct assessment of tumor volume, instead of assess-
ment of lesion diameter sums, could be done. For PSMA-ligand
PET, initial attempts have been made by introducing PSMA-
derived tumor volume, total lesion PSMA, or bone PET indices
(59,61). Further advances in the field of software-assisted tumor
delineation will help to automatically delineate—separately for
bone and soft tissue—total tumor volume, total tumor target
expression, or a combination of these. Prospective clinical eval-
uation is mandatory to assess their potential for predicting prog-
nosis and response in patients with PSMA-expressing prostate
cancer.

SUMMARY

We propose miTNM, version 1.0, as a standardized framework
for reporting the results of PSMA-ligand PET/CT or PET/MRI.
miTNM organizes the staging of whole-body prostate cancer by
including information on exact location, pattern of disease dis-
tribution, PSMA expression, and level of certainty. miTNM aims to
aid information exchange by unifying clinical and research report-
ing of PSMA-ligand imaging. Prospective evaluation of miTNM
needs to be performed and its impact on patient prognosis and
management assessed.
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