A New Type of Prostate Cancer Imaging: Will ⁶⁴CuCl₂ PET/CT Flourish or Vanish?

Francesco Ceci^{1,2}, Wolfgang Fendler^{1,3}, and Matthias Eiber^{1,4}

¹Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California; ²Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; ³Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany; and ⁴Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany

See the associated article on page 444.

In this issue of *The Journal of Nuclear Medicine*, Piccardo et al. (1) propose the use of ${}^{64}CuCl_2$ as an alternative PET radiopharmaceutical for investigating recurrent prostate cancer. The authors evaluated 50 prostate cancer patients with biochemical recurrence after definitive therapy (47/50 patients) or after palliative hormonal therapy (3/50 patients). Their specific aims were analysis of biodistribution and dosimetry and comparison of the diagnostic performance of ⁶⁴CuCl₂ with that of ¹⁸F-choline PET and multiparametric MRI (mpMRI). Copper concentration is generally increased in several tumors. Human copper transporter 1 is well represented in human cancers, including prostate cancer cells (2). However, the use of ⁶⁴CuCl₂ as a PET tracer has not yet been extensively validated. Previously, the European Medicines Agency approved the use of ⁶⁴CuCl₂ as a precursor for the radiolabeling of carrier molecules specifically developed and authorized for ⁶⁴Cu labeling (3). ⁶⁴Cu has been labeled with diacetyl-bis(N⁴-methylthiosemicarbazone) and proposed as a PET radiopharmaceutical for hypoxia imaging (4), for instance. In addition, ⁶⁴Cu was labeled with prostate-specific membrane antigen (PSMA)-617 and recently used for investigating prostate cancer patients before surgery (5).

Piccardo et al. (1) report a ⁶⁴CuCl₂ effective dose similar to those of ¹⁸F-choline and ⁶⁸Ga-PSMA-11. ⁶⁴CuCl₂ has a favorable biodistribution for imaging of prostate cancer, with no excretion via the urinary tract. This characteristic represents a potential advantage over ¹⁸F-choline for evaluating the pelvis and prostatic bed. As expected, no drug-related pharmacologic effects or physiologic responses were observed immediately after the injection or up to 10 d afterward. From a diagnostic point of view in patients with biochemical recurrence, ⁶⁴CuCl₂ PET/CT showed a higher detection rate than did ¹⁸F-choline PET/CT and mpMRI. The detection rate for the assessment of lymph node metastases (⁶⁴CuCl₂,

E-mail: francesco.ceci3@unibo.it

Published online Dec. 14, 2017.

32%; ¹⁸F-choline, 30%; mpMRI, 28%) and bone metastases (⁶⁴CuCl₂, 8%; ¹⁸F-choline, 8%; mpMRI, 10%) were approximately equal for both radiotracers. The main advantage for ⁶⁴CuCl₂ was in the evaluation of local recurrence (⁶⁴CuCl₂, 64%; ¹⁸F-choline, 30%; mpMRI, 50%).

Nevertheless, on a closer look, among patients with suspected local relapse, mpMRI and ⁶⁴CuCl₂ PET/CT were concordant in 19 patients; 4 patients were ⁶⁴CuCl₂ PET/CT–positive and mpMRI-negative; and 2 patients were mpMRI-positive and ⁶⁴CuCl₂ PET/CT–negative. Although histopathologic confirmation is given for one patient in whom both ⁶⁴CuCl₂ PET/CT and mp-MRI concordantly detected local relapse (Fig. 3), it remains unclear whether discordant cases were true- or false-positive by ⁶⁴CuCl₂ PET/CT. As the authors noted, lack of histopathologic confirmation poses a significant limitation of this study, questioning the true superiority of ⁶⁴CuCl₂ PET/CT over mpMRI. mpMRI is a well-established and widely validated technique for the detection of local recurrence of prostate cancer (*6*). Of note, ¹¹C-choline is cleared primarily via the hepatobiliary route and might have revealed higher local detection rates (*7*,*8*).

Several properties of ⁶⁴CuCl₂ may limit its clinical use in prostate cancer patients: the decay of ⁶⁴CuCl₂ is suboptimal for clinical PET/CT workflows. ⁶⁴Cu provides 18% β^+ decay at a half-life of 12.7 h. Accordingly, acquisition times need to be increased significantly to achieve the counting rates and image quality observed with ⁶⁸Ga-, ¹⁸F-, or ¹¹C-labeled agents. Piccardo et al. performed PET/CT at 6 min per bed position, resulting in a 2–3 times longer total scan time than for ⁶⁸Ga-, ¹⁸F-, or ¹¹C-labeled agents (2–3 min per bed position).

The authors also discuss the possible therapeutic effectiveness of ⁶⁴Cu delivered by emission of β^- -radiation and Auger electrons. Previously, Auger therapy has been applied in patients with neuroendocrine tumors by targeting the somatostatin receptor (9). However, because of low response rates, more effective β^- -emitting probes were developed and approved (10). Dosimetry reveals the highest ⁶⁴CuCl₂ uptake in the liver, with an approximately 10 times higher radiation dose than that with ⁶⁸Ga-PSMA. The liver is generally considered a radiosensitive organ, with increased rates of severe hepatitis and liver failure beyond an 18-Gy total organ dose. Thus, the low efficacy of Auger therapy, and the high liver radiation dose, might limit the therapeutic potential of ⁶⁴CuCl₂.

In conclusion, ${}^{64}CuCl_2$ imaging is feasible, with a favorable biodistribution and dosimetry. We congratulate Piccardo et al. for reporting high ${}^{64}CuCl_2$ PET/CT detection rates in patients with biochemically recurrent prostate cancer. The results of their study

Received Sep. 6, 2017; revision accepted Nov. 9, 2017.

For correspondence or reprints contact: Francesco Ceci, Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, University of California at Los Angeles, 200 Medical Plaza, Los Angeles, CA 90095.

COPYRIGHT © 2018 by the Society of Nuclear Medicine and Molecular Imaging. DOI: 10.2967/jnumed.117.199885

will support a discussion of the use of ${}^{64}CuCl_2$ or ${}^{64}Cu-labeled$ probes for imaging prostate cancer and other malignancies. Initial data for prostate cancer detection are promising, but further work is needed. The included comparator, that is, choline PET/CT, has been considered suboptimal by most academic PET facilities, which have transitioned to PSMA-directed PET/CT or 18 F-fluciclovine PET/CT over the past 2 y (*11*). We encourage a head-to-head comparison using central image interpretation to investigate the current additional value of 64 CuCl₂ as compared with currently available receptor-based radiotracers such as 68 Ga-PSMA-11 or metabolic radiotracers such as 18 F-fluciclovine.

Whether ⁶⁴CuCl₂ will become a real option for prostate cancer diagnosis will clearly depend on its performance compared with PSMA ligands and its regulatory approval and reimbursement.

DISCLOSURE

No potential conflict of interest relevant to this article was reported.

REFERENCES

 Piccardo A, Paparo F, Puntoni M, et al. ⁶⁴CuCl₂ PET/CT in prostate cancer relapse. J Nucl Med. 2018;59:444–451.

- Safi R, Nelson ER, Chitneni SK, et al. Copper signaling axis as a target for prostate cancer therapeutics. *Cancer Res.* 2014;74:5819–5831.
- Hillier SM, Maresca KP, Femia FJ, et al. Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. *Cancer Res.* 2009;69: 6932–6940.
- Lopci E, Grassi I, Chiti A, et al. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. *Am J Nucl Med Mol Imaging*. 2014;4:365– 384.
- Cantiello F, Gangemi V, Cascini GL, et al. Diagnostic accuracy of ⁶⁴copper prostate-specific membrane antigen positron emission tomography/computed tomography for primary lymph node staging of intermediate- to high-risk prostate cancer: our preliminary experience. *Urology*. 2017;106:139–145.
- Maurer T, Eiber M, Fanti S, Budäus L, Panebianco V. Imaging for prostate cancer recurrence. *Eur Urol Focus*. 2016;2:139–150.
- Tolvanen T, Yli-Kerttula T, Ujula T, et al. Biodistribution and radiation dosimetry of [¹¹C]choline: a comparison between rat and human data. *Eur J Nucl Med Mol Imaging*. 2010;37:874–883.
- Mapelli P, Incerti E, Ceci F, Castellucci P, Fanti S, Picchio M. ¹¹C- or ¹⁸F-choline PET/CT for imaging evaluation of biochemical recurrence of prostate cancer. *J Nucl Med.* 2016;57(suppl 3):43S–48S.
- Krenning EP, Kooij PPM, Bakker WH, et al. Radiotherapy with a radiolabeled somatostatin analogue, [¹¹¹In-DTPA-d-Phe1]-octreotide. Ann N Y Acad Sci. 1994; 733:496–506.
- Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of ¹⁷⁷Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376:125–135.
- Fendler WP, Eiber M, Beheshti M, et al. ⁶⁸Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. *Eur J Nucl Med Mol Imaging*. 2017;44:1014–1024.