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It is now recognized that intratumoral heterogeneity is associ-
ated with more aggressive tumor phenotypes leading to poor pa-
tient outcomes (1). Medical imaging plays a central role in related
investigations, because radiologic images are routinely acquired
during cancer management. Imaging modalities such as 18F-FDG
PET, CT, and MRI are minimally invasive and would constitute an
immense source of potential data for decoding tumor phenotypes
(2). Computer-aided diagnosis methods and systems exploiting
medical images have been developed for decades, but their wide
clinical implementation has been hampered by false-positive rates
(3). As a consequence, routine clinical exploitation of images still
consists mostly of visual or manual assessments. Today, the de-
velopment of machine-learning techniques and the rise of compu-
tational power allow for the exploitation of a large number of
quantitative features (4). This ability has led to a new incarnation
of computer-aided diagnosis, “radiomics,” which refers to the
characterization of tumor phenotypes via the extraction of high-
dimensional mineable data—for example, morphologic, intensity-
based, fractal-based, and textural features—from medical images
and whose subsequent analysis aims at supporting clinical deci-
sion making.
A first proof-of-concept study dedicated to the prediction of

tumor outcomes using PET radiomics-based multivariable models
built via machine learning was published in 2009 (5). The term
radiomics was then first used in 2010 to describe how imaging
features can reflect gene expression (6). Other early radiomics
studies followed (7,8), including some highlighting early on that
the reliability of existing features is affected by acquisition pro-
tocol, reconstruction, test–retest consistency, preprocessing, and
segmentation (9–13). The overall framework of radiomics was
then explicitly described in 2012 (14), and in the years that fol-
lowed, this emerging field experienced exponential growth (15).
In the context of precision oncology, the radiomics workflow for

the construction of predictive or prognostic models consists of 3
major steps (Fig. 1A): medical image acquisition, computation of
radiomics features, and statistical analysis and machine learning.
To apply the models to new patients for treatment personalization,
a prospective model evaluation (preferably in a multicenter setup)
is necessary.

Radiomics research has already shown great promise for sup-
porting clinical decision making. However, the fact that radiomics-
based strategies have not yet been translated to routine practice
can be partly attributed to the low reproducibility of most current
studies. The workflow for computing features is complex and in-
volves many steps (Fig. 1B), often leading to incomplete reporting
of methodologic information (e.g., texture matrix design choices and
gray-level discretization methods). As a consequence, few radiomics
studies in the current literature can be reproduced from start to end.
Other major issues include the limited number of patients available
for radiomics research, the high false-positive rates (similar to those
of analogous computer-aided diagnosis methods), and the reporting
of overly optimistic results, all of which affect the generalizability of
the conclusions reached in current studies.
Medical imaging journals are currently overwhelmed by a large

volume of radiomics-related articles of variable quality and associ-
ated clinical value. The aim of this editorial is to present guidelines
that we think can improve the reporting quality and therefore the
reproducibility of radiomics studies, as well as the statistical quality
of radiomics analyses. These guidelines can serve not only the
authors of such studies but also the reviewers who assess their
appropriateness for publication.

GUIDELINES FOR IMPROVING QUALITY OF

RADIOMICS ANALYSES

The complexity of the radiomics workflow increases the need to
standardize computation methods (16–19). Since September 2016,
about 55 researchers from 19 institutions in 8 countries have par-
ticipated in the Image Biomarker Standardization Initiative (IBSI),
which aims at standardizing both the computation of features and
the image-processing steps required before feature extraction (e.g.,
image interpolation and discretization). First, a simple digital
phantom with few discrete image intensities was used to standard-
ize the computation of 172 features from 11 categories. Then, a set
of CT images of a lung cancer patient was used to standardize the
image-processing steps. The initiative is now reaching completion,
and a consensus on image processing and computation of features
was reached over time (20,21). However, more work is likely
necessary to define and benchmark MRI- and PET-specific image-
processing steps. Nonetheless, the standardized workflow (Fig.
1B), along with benchmark values, can serve as a calibration
tool for future investigations. Ultimately, it may also lead to stan-
dardized software solutions available to the community, as the
widespread use of standardized computation methods would
greatly enhance the reproducibility potential of radiomics studies.
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It would also be desirable that the code of existing software be
updated to conform with future standards to be established by the
IBSI. Furthermore, it is essential to rely on supplementary ma-
terial (usually allowed in most journals) to provide complete
methodologic details, including the comprehensive description
of image acquisition protocols, sequence of operations, image
postacquisition processing, tumor segmentation, image interpo-
lation, image resegmentation and discretization, formulas for the
calculation of features, and benchmark calibrations. Table 1 pro-
vides guidelines on feature computation details to be reported in
radiomics studies.
After feature extraction, statistical analysis relates features to

clinical outcomes. No consensus exists about what defines “good”
radiomics studies. For example, the demonstration that a newly
designed feature is strongly associated with a given outcome, or
that a novel radiomics method holds great potential, may be of
interest if compared with the most reproducible and robust fea-
tures or prognostic clinical information already used. Nonetheless,
for the construction of prediction models via multivariable analy-
sis, there are two basic requirements. First, all methodologic de-
tails and clinical information must be clearly reported or described
to facilitate reproducibility and comparison with other studies and
metaanalyses. Second, radiomics-based models must be tested in
sufficiently large patient datasets distinct from teaching (training

and validation) sets to statistically demonstrate their efficacy over
conventional models (e.g., existing biomarkers, tumor volume,
and cancer stage). Ideally, for optimal reproducibility potential,
all data and programming code related to the study should also be
made available to the community. Table 2 provides guidelines
based on the “radiomics quality score” (www.radiomics.world),
which can help evaluate the quality of radiomics studies. More
guidelines on reproducible prognostic modeling can be found in
the TRIPOD statement (transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis) (22).

RESPONSIBLE RESEARCH IS THE KEY

Some guiding principles already exist to help radiomics scientists
further implement the responsible research paradigm into their
current practice. For one, the Responsible Research and Innovation
website (www.rri-tools.eu) provides useful guidelines. Furthermore,
a concise set of principles for better scientific data management
and stewardship—the “FAIR guiding principles” (23)—has been
defined, stating that all research objects should be findable, acces-
sible, interoperable, and reusable. Implementation of the FAIR
principles within the radiomics field can facilitate its faster clinical
translation. Many research tools and online repositories already
implement a variety of aspects of the FAIR principles (23), and

FIGURE 1. Radiomics workflow. (A) From medical imaging acquisition to treatment personalization. (B) Workflow of computation of radiomics

features. Depending on the specific imaging modality and purpose, some steps may be omitted. In the figure, the feature calculation part is

expanded to show different feature families with specific processing steps. IH 5 intensity histogram; IVH 5 intensity-volume histogram; GLCM 5 grey

level cooccurrence matrix; GLRLM5 grey level run length matrix; GLSZM5 grey level size zone matrix; NGTDM 5 neighborhood grey tone difference

matrix; NGLDM 5 neighboring grey level dependence matrix; GLDZM 5 grey level distance zone matrix. *Discretisation of IVH differs from IH and

textural features. (Adapted from (20); ©2016-2017 IBSI. Creative Commons Attribution 4.0 International License.)
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TABLE 1
Reporting Guidelines on Computation of Radiomics Features

Category Guideline.

General

Image acquisition Acquisition protocols and scanner parameters such as equipment vendor,

reconstruction algorithms and filters, field of view and acquisition matrix

dimensions, MRI sequence parameters, PET acquisition time and injected
dose, CT x-ray energy (kVp), and exposure (mAs).

Volumetric analysis Specification of whether imaging volumes were analyzed as separate images

(2-dimensional) or as fully-connected volumes (3-dimensional).

Workflow structure Sequence of processing steps leading to extraction of features.

Software Software type and version of code used for computation of features.

Image preprocessing

Conversion How data were converted from input images (e.g., conversion of PET activity

counts to SUV and calculation of ADC maps from raw diffusion-
weighted MRI signal).

Processing Image-processing steps after acquisition (e.g., noise filtering, intensity
nonuniformity correction in MRI, and partial-volume effect corrections).

ROI segmentation*† How ROIs were delineated in images (e.g., software or algorithms used, number of

persons and their level of expertise [specialty, experience], method of

reaching consensus, and mode [automatic or semiautomatic]).

Interpolation

Voxel dimensions Original and interpolated voxel dimensions.

Image interpolation method Method used for interpolating voxel values (e.g., linear, cubic, or spline) and for

aligning original and interpolated grids.

Intensity rounding Rounding procedures for noninteger interpolated gray levels (if applicable) (e.g.,

rounding of Hounsfield units in CT images after interpolation).

ROI interpolation method Methods used for interpolating ROI masks and for aligning original and interpolated grids.

ROI partial volume Minimum partial-volume fraction required to include an interpolated mask voxel in the

interpolated ROI (if applicable) (e.g., minimum partial-volume fraction of 0.5 when using

linear interpolation).

ROI resegmentation

Inclusion/exclusion criteria Criteria for inclusion or exclusion of voxels from the ROI intensity mask (if applicable)
(e.g., exclusion of voxels with Hounsfield unit values outside predefined range

inside the ROI intensity mask on CT images).

Image discretization

Discretization method Method used for discretizing image intensities before feature extraction (e.g., fixed

bin number, fixed bin width, and histogram equalization).

Discretization parameters Parameters for image discretization (e.g., number of bins, bin width, and

minimal value of discretization range).

Feature calculation

Feature set Description and formulas of all calculated features.

Feature parameters Settings for calculation of features (e.g., voxel connectivity, with or without

merging by slice, and with or without merging directional texture matrices).

Calibration

Image-processing steps Specification of which image-processing steps match benchmarks of the IBSI.

Feature calculation Specification of which feature calculations match benchmarks of the IBSI.

*To reduce interobserver variability, automatic and semiautomatic methods are favored.
†In multimodal applications (e.g., PET/CT or PET/MRI), ROI definition may involve propagation of contours between modalities via

coregistration. In that case, technical details of registration should also be provided.
ROI 5 region of interest.
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TABLE 2
Quality Factors in Radiomics Studies

Factor Description

Imaging

Standardized imaging

protocols

Imaging acquisition protocols are well described and ideally similar across patients.

Alternatively, methodologic steps are taken toward standardizing them.

Imaging quality assurance Methodologic steps are taken to incorporate only acquired images of

sufficient quality.

Calibration Computation of radiomics features and image-processing steps matches

benchmarks of the IBSI.

Experimental setup

Multiinstitutional/external

datasets

Model construction or performance is evaluated using cohorts from different

institutions, ideally from different parts of world.

Registration of prospective

study

Prospective studies provide the highest level of evidence supporting clinical validity

and usefulness of radiomics models.

Feature selection

Feature robustness Robustness of features is evaluated against segmentation variations and

varying imaging settings (e.g., noise fluctuations and interscanner differences).
Unreliable features are discarded.

Feature complementarity Intercorrelation of features is evaluated; redundant features are discarded.

Model assessment

False-discovery corrections Corrections for multiple testing comparisons (e.g., Bonferroni or Benjamini–Hochberg)
is applied in univariate analysis.

Estimation of model
performance

Teaching dataset is separated into training and validation sets to estimate optimal
model parameters (e.g., using bootstrapping, cross-validation, and random subsampling)

Independent testing A testing set distinct from the teaching set is used to evaluate performance of

complete models (i.e., without retraining and without adaptation of cutoffs).

Evaluation of performance is unbiased and not used to optimize model parameters.

Performance results

consistency

Model performance in training, validation and testing sets is reported. Consistency

checks of performance measures across the different sets are performed.

Comparison to conventional

metrics

Performance of radiomics-based models is compared against conventional metrics

such as tumor volume and clinical variables (e.g., staging) to evaluate the added
value of radiomics (e.g., by assessing the significance of AUC increase with the DeLong test).

Multivariable analysis with
nonradiomics variables

Multivariable analysis integrates variables other than radiomics features (e.g., clinical
information, demographic data, and panomics).

Clinical implications

Biologic correlate Relationship between macroscopic tumor phenotypes described with radiomics and

underlying microscopic tumor biology is assessed.

Potential clinical application Current and potential applications of proposed radiomics-based models in clinical

setting are discussed.

Material availability

Open data Imaging data, tumor region of interest, and clinical information are made available.

Open code Software code for computation of features, statistical analysis, machine learning, and

exact reproduction of results, is open-source. Code package is ideally shared as

easy-to-run organized scripts pointing to other relevant pieces of code, along
with useful sets of instructions.

Open models Complete models are available, including model parameters and cutoffs.

AUC 5 area under the receiver-operating-characteristic curve.
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we can add two other tools of interest: the Cancer Imaging Archive
(www.cancerimagingarchive.net), a service that anonymizes and
hosts medical images for public download, and the Radiomics On-
tology (www.bioportal.bioontology.org/ontologies/RO), a repository
on the National Center for Biomedical Ontology BioPortal aiming
to improve the interoperability of radiomics analyses via consistent
tagging of radiomics features, segmentation algorithms, and imaging
filters. This ontology could provide a standardized way of reporting
radiomics data and methods, and would more concisely summarize
the implementation details of a given radiomics workflow (e.g.,
Table 1).
To conclude, initial pioneer studies in radiomics have paved the

way to an exciting field and to most promising methods for better
personalizing cancer treatments. Yet, better standardization, trans-
parency, and sharing practices in the radiomics community are
required to improve the quality of published studies and to achieve
a faster clinical translation. The best way to reach this goal is
through responsible radiomics research, which can be summarized
into three working principles that we should all try to follow as a
research community: design and conduct high-quality radiomics
research, write and present fully transparent radiomics research,
and share data and methods.
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