
linearity or absence of a threshold for carcinogenesis; both are simply
assumed or based on faulty reasoning.
Although linearity may describe initial damage after low-dose

exposure, the body’s complex multilevel response to this damage
is nonlinear, making the overall result nonlinear. Only at high
doses are these responses inhibited or overwhelmed, thereby pre-
serving this linearity: thus, nonlinearity in the low-dose range and
linearity in the high-dose range.
The second bulleted misconception above contains 2 assertions by

Duncan et al.: that LNT (a) ‘‘remains the best’’ and (b) provides ‘‘the
most conservative’’ estimate of risk. First, from what we have shown,
LNT is not the ‘‘best,’’ because, while being a mathematic convenience,
it is empirically false. And second, it would be the most conservative
only if there were no negative side effects from overestimating risk or
imputing risk where none exists and where there is actual benefit.
However, as we have indicated elsewhere, the radiophobia reinforced
by LNT and its corollary ALARA (as low as reasonably achievable)
has several negative side effects (6). These include refusal of med-
ically indicated radiologic imaging; misdiagnoses due to underdos-
ing, which can lower test accuracy; and unwarranted and deadly
forced relocations in the vicinity of nuclear power plant accidents.
Duncan et al. offer assumptions without evidence, irrelevant

facts, and serious misconceptions, instead of evidence and rational
argument. The search for the truth requires a critical reading of the
literature, not uncritical acceptance of proclamations by recog-
nized voices of authority devoid of evidence (7).
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6. Siegel JA, Pennington CW, Sacks B. Subjecting radiological imaging to the linear no-

threshold hypothesis: a non sequitur of non-trivial proportion. J Nucl Med. 2017;58:1–6.

7. Sacks B, Siegel JA. Preserving the anti-scientific linear no-threshold myth: authority,

agnosticism, transparency, and the standard of care. Dose Response. 2017;15:

1559325817717839.

Jeffry A. Siegel*
Bill Sacks

Bennett Greenspan
*Nuclear Physics Enterprises

4 Wedgewood Dr.
Marlton, NJ 08053

E-mail: nukephysics@comcast.net

Published online Aug. 10, 2018.
DOI: 10.2967/jnumed.118.217950

REPLY: We read with interest the letters from Siegel et al.,
Bevelacqua, Doss, and Pennington (1–4). We respectfully disagree
with the logic they use to refute the linear no-threshold model.

However, we are encouraged that Siegel et al. agree that ‘‘linearity
may describe initial (DNA) damage after low-dose exposure’’
(emphasis added). We remain convinced that they and the other
authors underestimate the long-term ramifications of that damage.
Although selective removal of cells harboring DNA damage can
occur, the available evidence indicates that most cells survive
exposure to ionizing radiation at the levels used for medical im-
aging (5,6). The vast majority of the DNA double-strand breaks
(DSBs) caused by ionizing radiation are repaired by nonhomolo-
gous end joining, an error-prone process (7). As a result, the
surviving cells are left with mutations as permanent ‘‘information
scars.’’ Finally, there is little, if any, evidence that cells containing
these DNA mutations are later removed with sufficient reliability
to eliminate the low but finite risk of future cancers.
In a series of elegant in vitro experiments, Asiaithamby and

Chen exposed human cells to between 5 and 1,000 mGy of g-ir-
radiation (8). They then studied the distribution of YFP-53BP1, a
fluorescent marker of DNA DSBs. Irradiation resulted in a linear
increase of nuclear foci that then recruited YFP-53BP1 within the
next 30 min. They observed approximately 19 DNA DSBs per Gy,
which is similar to the 20–40 DNA DSBs per Gy of g-irradiation
reported by other groups (9–11). After sustaining this damage, the
same cells did not succumb to apoptosis but rather showed reso-
lution of the fluorescent nuclear foci over the next 8 h related to
their repair at those sites.
With this data in mind, we suggest that Siegel et al. and the other

authors reconsider the fate of cells with DNA DSBs. During coronary
angioplasty procedures, skin cells at the beam entry point frequently
receive greater than 1 Gy (12). Even though this dose likely leads to
more than 20 DNA DSBs per cell, the skin remains viable. Observable
tissue reactions occur once the acute dose exceeds 2 Gy (13). This
agrees with other studies that demonstrate how repair is the typical
response to low-level damage even though repair of DNA DSBs is
error-prone (5–7). In contrast, the DNA damage response pathways
favor apoptosis when faced with more severe damage (5,6). These
findings argue against Siegel et al.’s contention that ‘‘all that is
required is that fewer cells be left with mutations after radiation
exposure than before’’ (1). After a 50-mGy exposure where on
average there will be 1 DNA DSB per cell, removing even half
the damaged cells would have a profound effect on tissue integrity
and still leave an increased number of cells with DNA mutations.
The assertion by Siegel et al. that ‘‘mutations . . . are not sufficient

for the development of clinical cancer’’ runs counter to our current
understanding of carcinogenesis (1). A recent review by Martincorena
and Campbell summarizes how clinically relevant neoplasms are
caused by the accumulation of multiple mutations over time (14).
The mutations caused by each medical imaging study will be
superimposed on preexisting mutations arising from inheritance,
normal metabolism, environmental radiation, or exposure to other
carcinogens. We agree that at some low level of ionizing radiation,
the additional risk becomes small relative to DNA damage asso-
ciated with reactive oxygen species intrinsic to physiologic oxidative
respiration. Although there is little we can do about the mutations
acquired from natural causes, the additional risk caused by medical
imaging is under our control. We therefore reaffirm the need to
optimize radiation use in medical imaging, especially in children (15).
We strongly disagree that such efforts are detrimental (16).
The letters’ authors suggest that DNA damage from low doses of

ionizing radiation is a nonissue because humans possess systems
that can reliably protect us from radiation-induced cancers (1–4).
They suggest the immune system and other adaptive responses as
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examples. Studies of cancer immune surveillance demonstrate that
the immune system can protect the host against tumor development
but that tumors often circumvent the immune system (17,18). The
term immunoediting has been used to describe the process and its
3 phases, namely elimination, equilibrium, and escape. Although our
critics focused exclusively on the immune system’s ability to elim-
inate developing tumors, we believe a more balanced approach is
needed. There is no escaping the fact that cancers commonly occur
in humans with fully functional immune systems. Furthermore,
Martincorena and Campbell considered the evolution of protective
mechanisms against cancer and observe that ‘‘selection is virtually
powerless to fight causes of death after reproductive age, so mech-
anisms will mainly evolve to reduce cancer in the young’’ (14).
The letter from Bevelacqua suggests a need to consider dose

rates (2). However, as nicely summarized by Beyea, there is com-
pelling evidence from several epidemiologic studies that future
cancer risk increases with protracted, low-dose exposures (19).
This supports our claim that radiation-induced mutations accrue
over time. That review also rightfully acknowledged that a sub-
stantial number of patients in developed countries already have
lifetime exposures from medical imaging that exceed 100 mSv.
This again emphasizes the need to carefully balance the benefits
of medical imaging against its relatively low risks.
In summary, we appreciate the interest in our recent commen-

tary but stand by its conclusions.
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