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Precise definition of the mitral valve plane (VP) during segmentation

of the left ventricle for SPECT myocardial perfusion imaging (MPI)

quantification often requires manual adjustment, which affects the
quantification of perfusion. We developed a machine learning

approach using support vector machines (SVM) for automatic VP

placement. Methods: A total of 392 consecutive patients undergo-

ing 99mTc-tetrofosmin stress (5 min; mean 6 SD, 350 6 54 MBq)
and rest (5 min; 1,024 6 153 MBq) fast SPECT MPI attenuation

corrected (AC) by CT and same-day coronary CT angiography were

studied; included in the 392 patients were 48 patients who under-

went invasive coronary angiography and had no known coronary
artery disease. The left ventricle was segmented with standard clin-

ical software (quantitative perfusion SPECT) by 2 experts, adjusting

the VP if needed. Two-class SVM models were computed from the
expert placements with 10-fold cross validation to separate the

patients used for training and those used for validation. SVM prob-

ability estimates were used to compute the best VP position. Auto-

matic VP localizations on AC and non-AC images were compared
with expert placement on coronary CT angiography. Stress and rest

total perfusion deficits and detection of per-vessel obstructive ste-

nosis by invasive coronary angiography were also compared.

Results: Bland–Altman 95% confidence intervals (CIs) for VP local-
ization by SVM and experts for AC stress images (bias, 1; 95% CI,

25 to 7 mm) and AC rest images (bias, 1; 95% CI, 27 to 10 mm)

were narrower than interexpert 95% CIs for AC stress images (bias, 0;
95% CI, 28 to 8 mm) and AC rest images (bias, 0; 95% CI, 210 to

10 mm) (P , 0.01). Bland–Altman 95% CIs for VP localization by

SVM and experts for non-AC stress images (bias, 1; 95% CI, 24 to

6 mm) and non-AC rest images (bias, 2; 95% CI,27 to 10 mm) were
similar to interexpert 95% CIs for non-AC stress images (bias, 0;

95% CI, 26 to 5 mm) and non-AC rest images (bias, 21; 95% CI,

29 to 7 mm) (P was not significant [NS]). For regional detection of

obstructive stenosis, ischemic total perfusion deficit areas under the
receiver operating characteristic curve for the 2 experts (AUC, 0.79

[95% CI, 0.7–0.87]; AUC, 0.81 [95% CI, 0.73–0.89]) and the SVM

(0.82 [0.74–0.9]) for AC data were the same (P 5 NS) and were
higher than those for the unadjusted VP (0.63 [0.53–0.73]) (P ,
0.01). Similarly, for non-AC data, areas under the receiver operating

characteristic curve for the experts (AUC, 0.77 [95% CI, 0.69–0.89];

AUC, 0.8 [95% CI, 0.72–0.88]) and the SVM (0.79 [0.71–0.87]) were

the same (P 5 NS) and were higher than those for the unadjusted VP
(0.65 [0.56–0.75]) (P , 0.01). Conclusion: Machine learning with SVM

allows automatic and accurate VP localization, decreasing user de-

pendence in SPECT MPI quantification.
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SPECT myocardial perfusion imaging (MPI) is widely used for
the detection and quantification of cardiac ischemia (1). Relative
perfusion deficit quantification at stress and rest on the basis of
total perfusion deficits (TPD) (2) allows the quantitative estimation
of ischemia. Recently, specialized cardiac SPECT scanners dramat-
ically improved count sensitivity and image resolution, enabling
lower patient radiation doses and faster acquisitions (3). However,
the imaging geometry and reconstruction techniques are often dif-
ferent from those used with the conventional Anger camera, result-
ing in a somewhat different appearance of images (4) and new
image artifacts (5). In this context, MPI software analysis packages
may need to be updated for accurate quantification with the new
camera systems.
Successful software-based analysis of MPI requires accurate

segmentation of the left ventricular (LV) myocardium to correctly
estimate myocardial perfusion deficits by comparison with normal
limits. This step sometimes requires reader interaction to localize
the left ventricle and the mitral valve plane (VP). From these steps,
manual adjustments of the VP lead to the greatest operator
intervention (6). We aimed to develop a novel machine learning
approach for fully automated VP localization and to validate it with
stress and rest MPI obtained with a new-generation SPECT system.

MATERIALS AND METHODS

Study Population

A total of 392 consecutive patients undergoing hybrid coronary

CT angiography (CCTA) as well as stress and rest MPI scans on a
cadmium–zinc–telluride SPECT camera for the assessment of suspected

coronary artery disease between February 2010 and February 2013 were
considered. Of the 392 patients, 350 underwent both stress and rest MPI,

and the remaining 42 underwent stress-only MPI. Invasive coronary
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angiography (ICA) was performed in 48 of the 392 patients; these 48

patients had no myocardial infarction and no history of bypass sur-
gery. The ICA cohort was used in the diagnostic validation. The study

was approved by the institutional review board, and the requirement to
obtain informed consent was waived.

SPECT

The protocol consisted of 1-d stress and rest MPI with standard

adenosine (0.14 mg/kg/min over 6 min) or dobutamine (incrementally
administered, starting at 5 mg/kg/min and increasing at 1-min intervals

to a maximal dose of 60 mg/kg/min, until 85% of the age-predicted
heart rate had been achieved) infusion, or bicycle stress. Approximately

60 min after the injection of 3506 54 MBq of 99mTc-tetrofosmin, stress
MPI was performed for 5 min on a Discovery NM530c scanner (GE

Healthcare) equipped with a multipinhole collimator and 19 cadmium–
zinc–telluride detectors (7). Next, rest MPI was performed several minutes

after the administration of 1,024 6 153 MBq of 99mTc-tetrofosmin
(5,8). Attenuation correction was performed on stress and rest images

with a low-dose 64-slice CT scan acquired with prospective electrocar-
diography triggering (9,10). Cadmium–zinc–telluride images were recon-

structed on a dedicated Xeleris workstation (GE Healthcare) by use of an
optimized iterative reconstruction algorithm with maximum-likelihood

expectation maximization (8), as in our clinical routine.

SPECT Quantitative Analysis

Attenuation-corrected (AC) and non-AC myocardial perfusion
images were processed with standard clinical software (quantitative

perfusion SPECT; Cedars–Sinai Medical Center) (11). LV contours
were verified independently on stress and rest images by 2 experienced

observers (expert 1 and expert 2), both nuclear medicine technologists
with more than 15 y of dedicated experience in nuclear cardiology.

Experts were unaware of any of the clinical results. When needed, they
corrected the gross initial LV localization and the LV mask (region

containing the left ventricle), and adjusted the VP position. Stress and
rest TPD (2) and per-vessel TPD for the coronary vessel territories

were obtained (2). To avoid ambiguity during machine learning train-
ing, the interobserver normal and abnormal discrepancies of global

TPD measures (at a threshold of 5%) due to VP positioning were
resolved by a third experienced observer (imaging cardiologist), who

was unaware of the previous results.

CCTA

CCTA images were acquired on a 64-slice CT system (Lightspeed
VCTor Discovery HD750; GE Healthcare) (12,13). Contrast-enhanced

prospective electrocardiography-triggered CCTA was performed with

inspiration breath-hold at 75% of the R-R interval as previously reported

(12). Metoprolol was administrated intravenously before the examina-
tion if the heart rate was greater than 65 beats/min, and 2.5 mg of

isosorbide dinitrate was administrated sublingually to obtain optimal
image quality. Iodixanol (Visipaque 320; 320 mg/mL; GE Healthcare)

was injected into an antecubital vein, followed by 50 mL of saline
solution, via an 18-gauge catheter. The contrast medium volume (40–

105 mL) and the flow rate (3.5–5 mL/s) were adapted to body surface
area (9).

CCTA Analysis

CCTAwas used only as the anatomic reference for the evaluation of

the algorithm and was not used by the machine learning algorithm.
The distance from the endocardial surface of the apex to the anatomic

VP centroid was defined by 2 additional experienced observers (different
from experts 1 and 2) in the vertical and horizontal long-axis orientations

(Fig. 1). During CCTA measurements, the interpreters were unaware of
the SPECT measurements. The mean of the 2 values for each observa-

tion (horizontal and vertical long-axis orientations) was used for com-
parison with the corresponding apex–VP distance obtained from MPI.

ICA

ICA through the femoral or radial artery was performed in a

catheterization laboratory (University Hospital Zurich) in accordance
with our clinical protocol, which consists of biplane angiography of

the left coronary artery in 4 orientations and of the right coronary
artery in 2 orientations. Each vessel was visually scored as being normal

or stenosed by an experienced interventional cardiologist, reflecting
daily clinical routine in the catheterization laboratory. Obstructive

stenosis was defined as a diameter reduction of greater than 70%.

Machine Learning: Overview

Experts 1 and 2 localized the VP on SPECT images using their
inferred knowledge of heart anatomy. The proposed machine learning

approach encapsulates this knowledge and estimates the VP position
by use of a 2-class model that enables a continuous estimation of VP

correct position probability. This approach requires the definition of
correct and incorrect VP positions on the basis of the distance from the

expert placements (Fig. 2). VP positions defined by both experts were
used as examples of “correct” positions, whereas “incorrect” positions

were generated every 2.5 mm along the LV long axis, between 50 and
150 mm from the apex (Fig. 2), to reflect anatomic constraints. There-

fore, 784 correct positions (392 images, 2 experts) for the stress im-
ages and 700 for the rest images were generated. In addition, 6–40

incorrect positions were generated for each image.

Machine Learning: Feature Selection

In total, 22 heuristically derived features
related to the VP position computed from

intensity, shape, and patient sex were in-
cluded in the search for the best features

during model training. Intensity attributes
included values for raw intensity as well as

individual extent and TPD in the basal
segments. Shape attributes included myocar-

dial mass and VP contour perimeter. Pre-

viously proposed VP and gross LV shape
failure indicators were also considered (6).

LV segmentation on gated images has been
demonstrated to outperform that on ungated

images (6); therefore, the ungated-to-gated
VP distance and the differences in myocar-

dial masses were also included. Attributes
obtained from gated studies were included

only if the segmentation quality control flag

FIGURE 1. Example of mitral VP localization in contrast-enhanced CCTA. Inner LV length from

apex in endocardial wall to blood-pool centroid in VP was measured in horizontal and vertical

long-axis views from ungated stress MPI. Average value (88.5 mm) was obtained for this subject.
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indicated correct segmentation (6) without any manual adjustment
of gated studies. These features were evaluated for their incremen-

tal value in deciding whether the VP was correctly placed on myo-
cardial perfusion images. We ranked the attributes in accordance

with their information gain, as in our previous work (14), and
selected the top-ranked attributes that provided a gain greater than

0 and also monotonically increased the area under the receiver
operating characteristic curve.

Machine Learning: Support Vector Classification

Automatic VP localization was achieved by finding the position
with the highest probability of being correct. We used a 2-class

support vector machines (SVM) classification approach (15) that au-
tomatically estimated the VP position and its probability from a set of

potential positions sampled by 1 mm between the limit bounds defined
earlier (Fig. 2). The radial basis function SVM model, defined by the

regularization and kernel parameters, was selected. The 2 classes were
defined as correct VP position and incorrect VP position. The numbers

of correct and incorrect samples were balanced during training by
penalty weighting (15).

Machine Learning: 10-Fold Cross Validation

The separation of training and testing data was achieved with a

nested 10-fold cross-validation procedure. The main advantages of
this procedure are that it reduces the variance in prediction error,

leading to a more accurate estimate of model performance; maximizes
the use of data for training and validation without overfitting or

overlap between test and validation data; and guards against testing
hypotheses suggested by arbitrarily split data (16). The procedure di-

vided the study population into 10 nonoverlapping groups of patients
of approximately the same size (17). Ten folds were built, with each

group being used in turn as the validation set and the remaining 9
groups being used as training sets. Ten models were then trained and

validated with these folds. The validation results were stacked to
provide overall performance. The SVM regularization and kernel

parameters were computed inside the folds with a standard grid
search procedure (17).

Anatomic Validation

The anatomic validation included comparisons of VP positions
obtained by the 2 experts with the automatic VP localization by SVM,

as well as with the position of the anatomic mitral VP in CCTA. In the
comparison with CCTA, half of the distance between the end-diastolic

VP and the end-systolic VP was added to the VP position to correct
for the expected difference between the VP position for ungated MPI

and the mitral VP position in CCTA from the 70% diastolic phase. In

addition, a comparison of the transient ische-

mic dilation ratios (18) estimated by the 2 ex-
perts and the SVM was also performed.

Diagnostic Validation

The prediction of obstructive stenosis in

the coronary vessel territories by per-vessel
ischemic TPD and stress TPD was used to

evaluate diagnostic accuracy after VP local-
ization. The prediction before manual VP

adjustment by experts (unadjusted) has also
been provided for reference.

Statistical Analysis

Bland–Altman difference plots (19) depict-

ing bias and agreement limits (95% CIs) were
used to assess agreement in VP positions,

transient ischemic dilation ratios, and TPD.
A paired Wilcoxon test was used to evaluate differences in bias.

The Levene homogeneity-of-variance test was used to assess differ-

ences in 95% CIs. Pearson correlations and differences between paired
correlations were also computed (20). A paired DeLong test was used

to evaluate differences between areas under the receiver operating
characteristic curve (21). Two-sided P values of less than 0.05 were

considered to be significant. All statistical analyses were implemented
in R programming language, version 3.2.3 (22).

RESULTS

Patients

The clinical characteristics of the population are shown in Table 1.
All subjects underwent SPECT MPI and CCTA. For the CCTA
analysis, 18 stress and 16 rest images were rejected because the
apex could not be observed on CCTA (11 cases) and because
studies were of poor quality (7 cases). Therefore, 374 stress stud-
ies and 334 rest studies were retained for the validation of VP
positions against CCTA.

TABLE 1
Population Characteristics

Characteristic

All

(n 5 392)

Men

(n 5 279)

Women

(n 5 113)

Age (y)* 62.5 ± 9.9 61.9 ± 10 64 ± 9.4

BMI (kg/m2)* 27.5 ± 4.9 27.6 ± 4.5 27.1 ± 5.9

Obesity (BMI,

.30 kg/m2)†
100 (26) 69 (25) 31 (27)

Previous cardiac

events†

Myocardial

infarction

64 (16) 56 (20) 8 (7)

PCI 58 (15) 51 (18) 7 (6)

CABG 33 (8) 30 (11) 3 (3)

*Continuous variables, reported as mean ± SD.
†Reported as numbers of patients, with percentages of patients

in parentheses.
BMI 5 body mass index; PCI 5 percutaneous coronary inter-

vention; CABG 5 coronary artery bypass grafting.

FIGURE 2. Machine learning localization of VP in MPI. Two-class SVM model trained from VP

positions verified by 2 experts was used to estimate the most likely VP localization in left ventricle.
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For the 48 patients with ICA correlations and no myocardial
infarction (144 territories), 34% of vessels (49/144) had obstruc-
tive stenosis distributed in 22 left anterior descending, 13 left
circumflex, and 14 right coronary artery territories.

VP Positioning on SPECT MPI

For stress images, the VP position assigned by the standard
software was adjusted in 38% of AC (149/392) and 18.6% of non-
AC (73/392) cases by expert 1, and in 44.4% of AC (174/392) and
21.2% of non-AC (83/392) cases by expert 2. For rest images, the
VP position was adjusted in 64.9% of AC (227/350) and 61.4% of
non-AC (215/350) cases by expert 1, and in 65.4% of AC (229/350)
and 63.7% of non-AC (223/350) cases by expert 2. VP positions on

6.9% of AC (27/392) and 5.1% of non-AC (20/392) stress images
and on 13.7% of AC (48/350) and 8.3% of non-AC (29/350) rest
images were reviewed by a third expert to resolve the diagnostic
discrepancies between experts 1 and 2 for SVM model training.

Feature Selection

During the feature selection step, 6 attributes were selected for
AC images and 8 attributes were selected for non-AC images

TABLE 2
Attributes Selected During Support Vector Machine Model Training

AC Non-AC

Type Attribute Stress Rest Stress Rest

Intensity QC for VP failures (6) ✓ ✓ ✓ ✓

Sum of basal counts normalized to maximum segment (%) ✓ ✓ ✓ ✓

Sum of basal counts normalized to background (%) ✓

Shape QC for gross LV contour failures (6) ✓ ✓ ✓ ✓

Normalized perimeter of VP contour (%) ✓ ✓ ✓ ✓

VP contour perimeter (mm) ✓ ✓

Myocardial mass (g) ✓

Data from gated scan Distance to VP on gated image (mm) ✓ ✓ ✓ ✓

Difference in myocardial mass (g) between ungated and gated

images

✓ ✓ ✓ ✓

QC 5 quality control.

FIGURE 3. Distance to VP in CCTA. Box plots show distances to VP

positions in CCTA and VP positions on AC and non-AC stress and rest

images from MPI for 2 experts (red and green) and automatic SVM

procedure (blue). Similar stress and rest 95% CIs were found for expert

1, expert 2, and SVM (P 5 NS).

FIGURE 4. VP localization agreement. Bland–Altman difference plots

show distances from apex to VP center on stress (red) and rest (blue)

images, with VP positions from expert 1, expert 2, average positions from

experts [experts 5 (expert 1 1 expert 2)/2], and automatic VP localization

procedure (SVM). 95% CIs for SVM vs. experts were narrower for AC

stress and rest images (P , 0.01) and the same for non-AC stress and

rest images (P 5 NS) as compared with 95% CIs for expert 2 vs. expert 1.
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(Table 2; Supplemental Fig. 1) (supplemental materials are available
at http://jnm.snmjournals.org). Both previously proposed quality
control indicators (6) were selected for AC and non-AC images.

Anatomic Validation

The differences between VP positions on CCTA and VP positions
on MPI for expert 1, expert 2, and SVM had similar 95% CIs (Fig. 3).
For stress images, a high correlation between the 2 experts (AC:
r 5 0.79; non-AC: r 5 0.90) was observed. The SVM–expert 2 cor-
relation (AC: r 5 0.87; non-AC: r 5 0.86) was higher for AC images
but lower for non-AC images than the SVM–expert 1 correlation (AC:
r5 0.78; non-AC: r5 0.92) (P, 0.001). For rest AC images, similar
(P was not significant [NS]) correlations were found between experts
1 and 2 (r5 0.72), between SVM and expert 1 (r5 0.68), and between
SVM and expert 2 (r 5 0.69). For rest non-AC images, expert 1–
expert 2 (r 5 0.80) and SVM–expert 1 (r 5 0.73) correlations were
higher than the SVM–expert 2 (r 5 0.66) correlation (P , 0.01).
For AC images, the 95% CIs for VP positions between SVM

and the experts were narrower than those between the experts; for
non-AC images, they were similar (Fig. 4). For AC stress images,
similar biases were observed between SVM and the experts and
between the experts (P 5 NS), whereas the biases for AC rest and
non-AC stress and rest images were higher for SVM (P , 0.05).
The 95% CIs between SVM and the experts were the same as
those for CCTA (Supplemental Fig. 2).
For transient ischemic dilation ratios, the biases and 95% CIs

between SVM and the experts were lower and narrower, re-
spectively, than those between the 2 experts (Fig. 5). Significant
AC and non-AC transient ischemic dilation ratio correlations were
found between the 2 experts (AC: r 5 0.65; non-AC: r 5 0.72),

between SVM and expert 1 (AC: r 5 0.67; non-AC: r 5 0.88),
and between SVM and expert 2 (AC: r 5 0.82; non-AC: r 5 0.66).
For AC images, the correlation between SVM and expert 2 was
higher than that between SVM and expert 1; for non-AC images, it
was lower (P , 0.001).

Diagnostic Validation

Global TPD biases between SVM and the experts were similar
to those between the 2 experts (Fig. 6). For both AC and non-AC
images, high correlations were found for global stress TPD and
rest TPD between the 2 experts (AC stress: r 5 0.96; non-AC
stress: r 5 0.98; AC rest: r 5 0.97; non-AC rest: r 5 0.92),
between SVM and expert 1 (r 5 0.96, 0.97, 0.96, and 0.86, re-
spectively), and between SVM and expert 2 (r 5 0.97, 0.98, 0.97,
and 0.87, respectively). The correlation between SVM and expert
2 was higher than that between SVM and expert 1 (P , 0.001).
For the 2 experts and SVM, the areas under the receiver

operating characteristic curve for the per-vessel detection of
obstructive stenosis by regional ischemic TPD (Fig. 7) and by stress
TPD (Supplemental Fig. 3) were similar to those for the 2 experts
(P5 NS) and higher than those for the unadjusted VP, respectively.

DISCUSSION

We proposed a novel method for automatic VP localization in
MPI. The machine learning approach allowed us to encapsulate
expert knowledge and capture the complex pattern changes caused
by VP variations, using an optimal combination of high-level
image features. These tasks could be difficult to accomplish by

FIGURE 5. Transient ischemic dilation (TID) ratio agreement. Bland–Altman

difference plots show TID ratios for VP positions from 2 experts and auto-

matic VP localization procedure (SVM) on AC and non-AC stress and rest

images. Average TID ratio from experts [experts 5 (expert 1 1 expert 2)/2]

was used as reference for SVM plot. Lower biases and narrower 95% CIs

were found for SVM vs. experts than for expert 2 vs. expert 1 (P , 0.001).

FIGURE 6. TPD agreement. Bland–Altman difference plots show global

stress TPD (red) and rest TPD (blue) for VP positions from 2 experts and

automatic VP localization procedure (SVM). Average TPD from experts

[experts 5 (expert 1 1 expert 2)/2] was used as reference for SVM plot.

Similar stress and rest biases were found for AC and non-AC images (P5 NS).

Similar 95% CIs were found for AC images and for non-AC stress images

(P 5 NS). Wider 95% CI for non-AC rest images was found for SVM vs.

experts than for expert 2 vs. expert 1 (P , 0.05).
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traditional image-processing approaches. The SVM model com-
bined features such as intensity, shape, and information from gated
images to localize the most likely VP position in MPI. The validation
was performed in a rigorous fashion with nested 10-fold cross
validation. Therefore, only patient data unseen by the algorithm were
used in the validation, avoiding possible bias.
VP adjustment is the only explicitly defined (without further

algorithm override) adjustment made by the user in most software
packages. This adjustment is subjective and time-consuming; conse-
quently, it is the major contributor to the interobserver variability of
quantitative perfusion parameters (6). Xu et al. previously proposed 2
quality control indicators of myocardial segmentation quality, one
indicating VP failures (6). However, although the detection of gross
shape failures in the LV segmentation algorithm was excellent, the
detection of VP failures was less optimal. Indeed, such variability
could lead to potential degradation of the diagnostic accuracy of MPI
performed by inexperienced users. Incorrect VP localization leads to
inaccurate definition of the LV base and, consequently, flawed polar-
map subdivision of the myocardial segments. TPD computation relies
on the comparison of normalized local intensity counts with corre-
sponding local normal limits (2). Therefore, precise VP placement is
required to avoid a polar-map localization mismatch in comparisons
with normal limits.
The automatic VP positioning was evaluated with CCTA as

the anatomic reference standard and ICA as the diagnostic
reference standard. The results showed that automated VP
localization performed as well as the experts and resulted in
similar diagnostic accuracy. Therefore, the results suggest
that the algorithms trained by expert annotations could be deployed
to entirely eliminate manual adjustment of VP in MPI, thus
significantly decreasing quantification subjectivity and facilitating
optimal perfusion quantification for less experienced readers.
Although major efforts to standardize MPI analysis (23–26)

have been reported, the current recommended method for MPI
interpretation is still based on time-consuming and subjective
visual scoring of regional perfusion tracer uptake (27). Auto-
matic quantification of MPI would reduce this subjectivity, but
current techniques still require the user to make manual adjust-

ments. In the present study, 2 highly expe-
rienced observers corrected VP failures in
a substantial number of MPI studies. We
showed here that without this user correc-
tion, the diagnostic accuracy of MPI was
significantly degraded. By applying the
machine learning approach, we were able
to totally automate the VP selection.
The present study has some limitations.

First, it was limited to the localization of
the VP center, which is the only adjust-
ment performed in the current clinical
routine. Second, it was a single-center
study with a 1-vendor camera. However,
the methodology proposed here can be
applied to other systems. Further tests of
conventional camera images with avail-
able CCTA correlations should be per-
formed. Third, for anatomic validation, we
relied on CCTA measurements; these pro-
vide excellent anatomic information but
have limitations (due to phase matching
with ungated myocardial perfusion im-

ages) that may have contributed to the systematic bias of the
CCTA comparisons. Finally, the angiographic validation was
available only for a subset of the overall population.

CONCLUSION

We demonstrated that a machine learning approach allows
full automation of VP localization in MPI with new-generation
SPECT cameras. This approach represents an important step in
efforts to provide objective quantification of MPI without the need
for expert intervention for contour correction.
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