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In this study, we described and validated an unsupervised seg-
mentation algorithm for the assessment of tumor heterogeneity

using dynamic 18F-FDG PET. The aim of our study was to objec-

tively evaluate the proposed method and make comparisons with
compartmental modeling parametric maps and SUV segmentations

using simulations of clinically relevant tumor tissue types.Methods:
An irreversible 2-tissue-compartmental model was implemented to

simulate clinical and preclinical 18F-FDG PET time–activity curves
using population-based arterial input functions (80 clinical and 12

preclinical) and the kinetic parameter values of 3 tumor tissue types.

The simulated time–activity curves were corrupted with different

levels of noise and used to calculate the tissue-type misclassifica-
tion errors of spectral clustering (SC), parametric maps, and SUV

segmentation. The utility of the inverse noise variance– and Lap-

lacian score–derived frame weighting schemes before SC was also
investigated. Finally, the SC scheme with the best results was

tested on a dynamic 18F-FDG measurement of a mouse bearing

subcutaneous colon cancer and validated using histology. Results:
In the preclinical setup, the inverse noise variance–weighted SC
exhibited the lowest misclassification errors (8.09%–28.53%) at all

noise levels in contrast to the Laplacian score–weighted SC

(16.12%–31.23%), unweighted SC (25.73%–40.03%), parametric

maps (28.02%–61.45%), and SUV (45.49%–45.63%) segmentation.
The classification efficacy of both weighted SC schemes in the

clinical case was comparable to the unweighted SC. When applied

to the dynamic 18F-FDG measurement of colon cancer, the pro-
posed algorithm accurately identified densely vascularized regions

from the rest of the tumor. In addition, the segmented regions and

clusterwise average time–activity curves showed excellent correla-

tion with the tumor histology. Conclusion: The promising results of
SC mark its position as a robust tool for quantification of tumor

heterogeneity using dynamic PET studies. Because SC tumor seg-

mentation is based on the intrinsic structure of the underlying data,

it can be easily applied to other cancer types as well.
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Tumors exhibit widespread genetic and phenotypic heteroge-
neity. The local tissue variability is known to mediate drug re-

sistance and influence therapeutic efficacy (1). The magnitude of

intratumor diversity is also linked with tumor aggressiveness and

has been shown to predict cancer mortality (2). The robust char-

acterization of the tumor heterogeneity is an urgent requirement

for not only precision medicine, but also for preclinical and phar-

maceutical research (3).
The sensitivity and quantitative ability of PET make it a promising

prognostic tool for cancer diagnosis and in vivo monitoring of

therapy response. Accumulation of 18F-FDG in cancerous lesions is

widely associated with tumor grade and prognosis (4,5). The most

common clinical assessment of 18F-FDG is based on visual inspec-

tion and basic quantification of the SUV. Although the SUV as a

metric is practical and easy to measure, it is vulnerable to numerous

sources of variability (6). Whereas static measures lack the ability to

distinguish between nonphosphorylated and phosphorylated 18F-

FDG, kinetic methods measure the complete aspects of the tracer

distribution, providing vital information about glycolysis and blood

flow. Kinetic modeling can play an especially essential role when

evaluating the drug response of cancer patients with low pretherapy
18F-FDG uptake, which results in poor sensitivity of the SUV and

other static measures (7,8).
Despite the quantification benefits over static measures, kinetic

methods such as compartmental modeling and graphical analysis

have not been widely adopted, partly due to their reliance on the

acquisition of time–activity curves with low noise and a precise

measurement of the arterial input function (AIF). Moreover, to

improve signal-to-noise ratios, a common practice in dynamic

PET studies is to perform region averaging (9) before compartmen-

tal modeling. Because compartmental modeling assumes the region

of interest to be functionally homogeneous (10), user-defined delin-

eations might lead to incorrect estimation of kinetic parameters in

regions with tissue variability.
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Avoxel-level analysis is essential to create a holistic profile of the
spatial and temporal heterogeneity of cancerous lesions (11). Over
the past decades, several segmentation methods have been proposed
for the region-wise analysis of PET images (12). Recently, one
investigation has applied spectral clustering (SC) on dynamic PET
data for brain image segmentation (13). The study by Mouysset
et al., however, lacked a histologic validation. In the present
study, we aimed to examine the suitability of SC in the segmen-
tation of the tumor microenvironment. Through comprehensive
simulations, we present an objective evaluation of SC and com-
pare its robustness with the parametric maps and SUV segmen-
tation. We also tested the proposed methodology in vivo on a
mouse model of subcutaneous colon cancer with a histologic
validation.

MATERIALS AND METHODS

The widely accepted pharmacokinetic modeling tool COMKAT (14)

was used to simulate 18F-FDG PET time–activity curves. The complete
details of the implemented compartmental model, preclinical experi-

ments, and histology are provided in the supplemental materials (available
at http://jnm.snmjournals.org).

Clinical and Preclinical Tissue Class Simulation

To simulate clinically relevant and comparable scenarios, the kinetic

parameter values of different tissue classes were derived from Sugwara
et al. (15). The authors studied 21 patients with primary germ cell

tumors using 18F-FDG PET and reported the kinetic parameter values
of 3 different tumor tissue classes, namely the viable tissue, mature

teratoma, and necrosis. Because tumor tissue types were confirmed by
histologic findings, we extended the average kinetic parameter values of

each tissue type as corresponding class representative. Likewise, the
clinical AIF was selected from a population-based AIF model (16).

The study identified the parameters of the mathematic equations by
fitting a 3-compartment blood-pool model (17) on the arterial blood

samples taken from 80 different patients. We contacted the authors to
obtain the complete dataset because the published details were insuffi-

cient for simulations.
To extrapolate the clinical scenario into the preclinical setting,

twelve 60-min dynamic 18F-FDG PET scans (4 mice · 3 scans) were
acquired from 8-wk-old Naval Medical Research Institute nu/nu mice

bearing subcutaneous Colo-205 tumors. The AIFs of all the measure-
ments were approximated using a minimal blood sampling scheme

(18). A 2-tissue-compartmental model was fitted to the mean time–
activity curve of each tumor, for each measurement. The obtained

kinetic parameters from all 12 PET scans provided realistic values
of kinetic parameters observable in preclinical studies, which formed

the basis to simulate the preclinical tumor tissue classes. First, the

averages of these kinetic parameters were used to simulate the viable
tissue. Afterward, the parameters of teratoma and necrotic tissues

were obtained by scaling the viable parameters to achieve the same
parameter ratios (between different tissue classes) as in the clinical

settings. The SDs were chosen to match the mean-to-SD ratio of the
respective clinical tissue type. All the animal experiments were per-

formed in accordance with the German Animal Welfare Act, and local
authorities approved all experimental protocols.

A total of 2,000 time–activity curves were sampled from a trun-
cated Gaussian distribution (Table 1) for each tumor tissue class.

The distributions were truncated to avoid sampling time–activity
curves with an unrealistic shape. The framing protocol was kept

the same for both clinical and preclinical simulations: {30 · 2 s, 8 ·
5 s, 8 · 10 s, 6 · 1 min, 5 · 2 min, 5 · 10 min}. For simplicity,

throughout this article, we refer to the simulated tumor tissue clas-
ses (viable, teratoma, and necrosis) as class 1, class 2, and class 3,

respectively.

Noisy Time–Activity Curves

The noisy realizations of the simulated time–activity curves were
obtained by estimating the noise SD for each time frame and distrib-

uting it log-normally to the noise-free curve (9,19). The noise SD for
each frame i can be computed as follows:

SD 5 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2lti · ROIðtiÞ

Dti

s
;

where ROIðtiÞ is the decay-corrected activity concentration of the

region of interest, e2lti is the decay uncorrection factor, l refers to
the ratio lnð2Þ

half-life, Dti is the frame duration, and b is a scale factor to

limit the amount of noise within practical conditions. An illustrative
example of noisy time–activity curves can found in Supplemental

Figure 1.

SC

SC (20) uses the eigenstructure of the affinity matrix and one of the

classic clustering methods (e.g., k-means, fuzzy c-means, Gaussian mix-
ture modeling) (21) to partition voxels into disjoint clusters. The affinity

matrix Wij of the dynamic PET data was computed as follows:

Wij 5

�
e2kxi 2 xjk2

=2s2

if   i 6¼ j
0 otherwise:

Here,
��xi 2 xj

�� is the Euclidian distance between the time–activity
curves i and j, and s is the scale parameter of the Gaussian kernel.

TABLE 1
Summary of Kinetic Parameters and Corresponding Truncation Limits Used for the Simulation of Preclinical

and Clinical Tumor Tissue Classes

Class 1 Class 2 Class 3

Kinetic parameter Preclinical Clinical Preclinical Clinical Preclinical Clinical Truncation limits

K1 0.138 ± 0.043 0.110 ± 0.034 0.123 ± 0.033 0.114 ± 0.026 0.045 ± 0.006 0.036 ± 0.005 0.01–1.0

k2 0.116 ± 0.136 0.195 ± 0.228 0.180 ± 0.069 0.301 ± 0.116 0.105 ± 0.025 0.176 ± 0.042 0.01–1.0

k3 0.085 ± 0.056 0.073 ± 0.048 0.014 ± 0.008 0.012 ± 0.007 0.005 ± 0.002 0.004 ± 0.001 0.001–1.0

Data are mean ± SD.
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Subsequently, the affinity matrix Wij was used to compute the normal-
ized graph Laplacian using the following expression:

L 5 Dinv · Wij · Dinv;

where Dinv 5 D20:5, and D is the diagonal matrix with di 5 +n
j 5 1Wij

as the diagonal vector. To perform unsupervised clustering, the set of

first k eigenvectors (corresponding to k largest eigenvalues (20)) of

the normalized graph Laplacian was fitted using Gaussian mixture mod-

eling. Throughout the study, we used the first 6 eigenvectors (k5 6) of

the normalized Laplacian matrix and set s equal to 40 and 55 for

segmentation of preclinical and clinical time–activity curves, respec-

tively. The scale was chosen experimentally, based on the misclassifica-

tion error of the method on the noise-free time–activity curves. The same

scale was used for segmentation of the preclinical example, but we could

determine that segmentation was robust to the choice of s.

PET Frame Weighting

In this study, the performance of 2
different weighting schemes for SC was

investigated. In the first case, weights for
each frame were set equal to the inverse of

the noise variance (INV) of the respective
frame, thus, dependent on frame length

and total amount of activity in that specific
frame. In the second scheme, weights were

derived from the Laplacian scoring (LS)
algorithm (22). In the end, the weighted

SC scheme with the best results (for pre-
clinical simulations) was applied on the

experimental data.

Clustering Comparisons

The clustering potential of SC was

tested on the simulated data over varying
levels of noise. The proposed methodol-

ogy was also compared with SUV and para-
metric map segmentation. In the former

case, the average of the last 2 frames of
the simulated dataset was clustered using

k-means, and in the latter case the estimated
kinetic parameters (K1, k2, k3, and Ki) were

segmented into 3 tissue classes using k-means
and SC.

Evaluation Metrics

The percentage kinetic parameter esti-

mation error (e) was defined as:

eð%Þ 5

8>>><
>>>:

�
2

Kptrue

Kpestimated

1 1

�
· 100 true# estimated

�
Kpestimated

Kptrue

2 1

�
· 100 true. estimated;

where Kpestimated
is the estimated and Kptrue is the true value of the

compartmental modeling rate constant. The misclassification error
was defined as follows:

+NTAC

i 5 1+
K

j 5 1I
�
Oi;j;Ti;j

�
NTAC · K

;

where Oi;j is the output and Ti;j is the true label of the time–activity

curve i from class j, NTAC represents the total number of time–activity

FIGURE 1. Classwise simulated time–activity curves and corresponding AIF for clinical (A and C)

and preclinical (B and D) scenarios. Kinetic parameters for each class were sampled from truncated

Gaussian distributions. Shaded regions depict the distribution of time–activity curves up to unit SD

of the respective tumor tissue type.

TABLE 2
Kinetic Parameter Estimation Errors Obtained After Fitting the Preclinical and Clinical Noise Free Time–Activity

Curves Using Respective AIFs

Kinetic parameter estimation error (ε) %

Preclinical Clinical

Kinetic parameter Median Interquartile range Median Interquartile range

K1 −0.003 −0.020 to 0.012 0.012 −0.073 to 0.116

k2 −0.040 −0.180 to 0.071 0.050 −0.140 to 0.287

k3 −0.121 −0.649 to 0.213 0.049 −0.260 to 0.387

Ki −0.033 −0.385 to 0.091 0.000 −0.143 to 0.165
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curves in each class, and K is equal to the number of tumor tissue

types (i.e., 3). The indicator variable I is given as:

I 5

�
1 if  Oi;j 6¼ Ti;j
0 otherwise:

RESULTS

Examples of simulated time–activity curves of class 1, class 2,
class 3 and corresponding AIF for clinical and preclinical scenarios
are shown in Figure 1. To assess the influence of selected framing
and the bias introduced by COMKAT, noise-free curves were fitted
using their respective AIF. The interquartile range and median e
for K1, k2; k3, and Ki for preclinical and clinical simulations are
reported in Table 2.

Noise Evaluation

Figure 2 shows the absolute e for noisy preclinical time–activity
curves with different levels of log-normally distributed noise (b 5
0.1–1.5). Among all, k2 and k3 showed the highest deviations from
the true parameter values. Moreover, the errors in k2 and k3 also
propagated to Ki. A similar tendency was seen in the case of noisy
clinical time–activity curves (Supplemental Fig. 2), although the e
for k3 and Ki in the clinical case carried less variability than those
in the preclinical settings.
The segmentation ability of different clustering methods for noisy

preclinical time–activity curves is shown in Figure 3. While the
INV-weighted SC exhibited the lowest misclassification error, both
the weighted and the unweighted SC techniques outperformed other
clustering schemes. Figure 3 also depicts the misclassification errors
obtained after clustering the SUV and estimated kinetic parameters.
Up to moderate noise levels (b, 0.7), k-means and SC applied on the
estimated kinetic parameters yielded lower errors in comparison to

clustering the SUV, signifying the efficacy of dynamic measures over
the static ones. Supplemental Figure 3 shows the aforementioned
clustering results for the clinical scenario. At low noise levels (b ,
0.5), SC on the estimated kinetic parameters displayed the highest
accuracy but became worse with a gradual increase in noise. Overall
for clinical simulations, the misclassification error of LS-weighted SC
remained most steady at all noise levels.

FIGURE 2. Absolute ε for preclinical simulations with an increase in the amount of noise (β) for K1 (A), k2 (B), k3 (C), and Ki (D). The boxes depict the

interquartile range, and whiskers represent the 10th and 90th percentiles of the data.

FIGURE 3. Misclassification error of various clustering schemes for

preclinical simulations with increase in the amount of noise (β).
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Supplemental Figure 4 shows the ground truth and clustering affinity
matrices for the noise-free preclinical time–activity curves (shown in
Fig. 1B). It is clearly visible that the clustering solution retains the
approximate block diagonal structure of the original affinity matrix.
Here, the clustering solution corresponds to the INV-weighted SC of
the simulated noise-free preclinical time–activity curves. The grid
lines in Supplemental Figure 4B give an impression as to the extent
of overestimation of class 3 and respective underestimation in class 1.

Example

Figure 4 shows the segmentation result of INV-weighted SC on
an 18F-FDG measurement. The algorithm effectively identified the

densely vascularized regions (depicted with blue and red) from the

rest of the tumor (green cluster). The segmented regions were

visually validated by CD-31 histology of the tumor section (Fig.

4A). The affinity matrix of the aforementioned clustering solution is

shown in Supplemental Figure 5B. The average time–activity

curves of well-perfused areas also showed a significantly higher

uptake than that of the rest of the tumor (Supplemental Fig. 5C).

The parametric maps of this tumor are presented in Figure 5; the

figure also shows an 18F-FDG PET image exhibiting the tumor

uptake in the last 20 min of the scan. The outcome of segmenting

the tumor parametric maps using SC is shown in Supplemental Fig-

ures 5D–5F. It is evident from Supplemental Figure 5B that cluster-

ing the tumor time–activity curves yielded compartments with

high intracluster similarity, whereas the uncertainties in the para-

metric maps resulted in poor segmentation of the tumor with low

within-cluster similarity (Supplemental Figs. 5D–5F).

DISCUSSION

This study shows the potential of spectral clustering for the as-
sessment of tumor heterogeneity using dynamic 18F-FDG PET
data. It also contrasts SC with the widely used 2-tissue-compartmen-
tal model and the SUV, using dynamic PET simulations of clin-
ically relevant tumor tissue types. The clinical tissue classes
were duplicated in the preclinical setting and studied for differ-
ent levels of noise. A meaningful comparison of the proposed
algorithm with compartmental modeling was performed by fitting
the noisy time–activity curves and subsequently clustering the esti-

mated kinetic parameters using k-means and
SC. Furthermore, as a proof of principle we
also applied the suggested method to an in
vivo mouse model of colon cancer and val-
idated it with histology. Recently, the value
of unsupervised segmentation has been
shown in a translational study (23). The
promising results of SC on the simulated
datasets as well as on an in vivo mouse
model strongly indicate its potential for dy-
namic 18F-FDG PET clinical investigations.
A precise characterization of the tumor

microenvironment requires a robust voxel-
level analysis. However, the variability of
kinetic rate constants with the amount
of noise and distortions in AIF (9,24) indi-
cate the shortcomings of compartmental
modeling for a voxel-wise analysis. Al-
though clustering the estimated kinetic pa-
rameters in the preclinical case produced

more accurate results than clustering the SUV (b , 0.7), the mis-
classification error of the INV-weighted SC was lower than that of
any of the other schemes. In clinical simulations, SC applied on the
estimated kinetic parameters seemed promising at low noise levels
but failed to distinguish tumor tissue types accurately as the time–
activity curves became noisier. k-means and SC errors on the esti-
mated kinetic parameters reflect the best-case scenario for compart-
mental modeling–based tumor tissue segmentation, because the
noisy time–activity curves were modeled using their respective true
AIFs (without any shape distortions). Uncertainties in AIF are most
likely to introduce adverse effects on kinetic parameter estimation
and consequently in parametric map–based tumor tissue segmenta-
tion. The poor predictive ability of the SUV in both preclinical and
clinical settings was due to the considerable overlap in the last time
points of the time–activity curves of all 3 tumor tissue types. This
shows that the faster static PETacquisition comes at the cost of vital
physiologic information, which can play a principal role in probing
intratumoral heterogeneity. The errors caused by noise in kinetic
modeling on the other hand, can be minimized to a moderate extent
by first using the proposed algorithm for region segmentation
and later estimating the kinetic parameters from the averaged
time–activity curves.
In dynamic PET imaging, early, middle, and late frames capture

different kinetics of the time–activity curve. However, because of
non-uniform frame durations and different activity concentration
levels they are also affected by varying levels of noise. Thus, while
clustering the simulated time–activity curves, we compared the effi-
cacy of 2 different frame-weighting schemes: INV and LS. Whereas
the former scheme intuitively favors frames with a higher signal-to-
noise ratio, the latter one exploits the intrinsic structure of the high
dimensional dynamic PET data. In the analysis of preclinical sim-
ulations, the INV-weighted SC performed marginally better than
the LS-weighted SC; the opposite was true in the case of clinical
simulations.
Some of the results presented in this article may slightly vary

with a different choice of frame-sampling schedule. For example,
longer early frames might increase the robustness of kinetic parameter
estimates at the expense of faster early kinetics. Likewise, the re-
binning will also influence the misclassification errors of different
clustering schemes. Because this can be an independent study on its
own, we did not optimize the simulations for the best framing

FIGURE 4. (A) CD31-stained histology of a representative tumor; the 4 insets (scale in μm) illustrate

high vessel density areas. (B) Segmentation of the tumor into 3 clusters by applying SC on the dynamic
18F-FDG PET data. The matched clusters are marked as a, b, c, and d in A and B respectively.
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schedule. Similar considerations apply to different tracer infusion
protocols. Furthermore, to be consistent with Sugwara et al. (15), the
2-tissue-compartmental model was implemented with k4 and Fb (frac-
tional blood volume) equal to 0. Although the tissue types identified in
colon cancer were different from the simulated tissue classes (except
for the viable), the synthetic time–activity curves enabled a thorough
objective evaluation of the proposed technique. Moreover, because SC
tumor segmentation is based on the intrinsic structure of the underly-
ing data, it can be easily applied to other cancer types as well.
The number of clusters in the example in Figure 4 was determined

on the basis of the visual inspection of the data and solution affinity
matrices for different number of clusters. Significant off-diagonal
similarity between the red and blue clusters was evident from the
similar average time–activity curves of the respective regions (Sup-
plemental Fig. 5C). While the blue cluster corresponds well to re-
gions with high vessel density, the red cluster appears to the periphery
of the blue regions, resulting in similar uptake patterns. The histol-
ogy was rigidly registered with the imaging, and we did not perform
any nonrigid registration between the two. Although the tumor was
carefully partitioned into 2 parts parallel to the transversal field of
view, imaging to histology registration remains nontrivial because of
the substantial differences in resolution (mm vs. mm). Additionally,
during the dehydration process the tissue sections undergo a series of
nondeterministic affine deformations, which cannot be corrected

using rigid transformations. However, by
sectioning the tumor along the reference
(imaging) plane and keeping a track of its
orientation, the errors in the manual registra-
tion can be minimized (25).
Unlike k-means, SC does not make any

assumptions about the shape of the clusters.
The efficacy of SC mainly lies in the change
of representation (from abstract data points
to points in the feature space), which en-
hances the segregation tendency of the input
data. The optimal SC solution depends on
the number of chosen eigenvectors from
the normalized graph Laplacian. In ideal sce-
narios, the top k eigenvectors corresponding
to the k largest eigenvalues of the normalized
Laplacian matrix (where k 5 number of bi-
ologic classes) contain the class discrimina-
tive information (20). However, because of
the complex microenvironment, resolution
limit, and large statistical noise, compart-
ments in oncologic dynamic PET studies of-
ten display similar tracer uptake patterns. To
a certain extent, these perturbing effects can
be dealt with by choosing a larger number of
eigenvectors than the potential number of
clusters. Throughout our study, we used 6
eigenvectors to segment the dynamic PET
data (simulated and measured) into relevant
biologic compartments. It has been shown
that a prior eigenvector selection can further
enhance the clustering stability (26), but we
did not explore any such possibility. Addi-
tionally, the choice of graph Laplacian can
also affect the outcome of SC. As suggested
in the literature (20), we used the normalized
graph Laplacian rather than the unnormal-

ized one. Also, we did not notice any difference in the performance
of two previously established normalized graph Laplacians.
A clear limitation of this study is the lack of clinical experimental

data; however, accurate alignment of histology to imaging in a
clinical setting is difficult to achieve, making validation of intra-
tumoral tissue classes challenging. In preclinical studies, this
alignment can be more easily performed. Yet, Figure 4 presents
only a qualitative comparison of the segmented tumor compart-
ments with the histology. Future preclinical studies will include
an automated nonrigid imaging to histology coregistration to pro-
vide reliable quantification of intratumoral heterogeneity. Because
PET scanners have a finite spatial resolution, tissue inhomogeneities
occurring at the cellular level cannot be observed and analyses are
limited to large-scale heterogeneity. Information about variations at
this scale has clear potential, for example, in radiotherapy for dose
painting and as a basis in image-guided biopsy procedures.
To the best of our knowledge, this is the first study investigating

the feasibility of SC for the assessment of the tumor microenviron-
ment incorporating exhaustive dynamic PET simulations and aug-
mented by real datawith histologic validation. SC exploits the temporal
characteristics of dynamic studies and uses high dimensional embed-
ding (27) to effectively segment the tumor into distinct biologic com-
partments. This could play an instrumental role in in vivo cancer
studies, because the tumor microenvironment stems from complex

FIGURE 5. (A) Left to right: K1, k2, and k3 maps of the tumor shown in Figure 4. (B) Left to right:

Ki map calculated using the parametric maps in A and 18F-FDG uptake in the tumor in the last 20 min

of the scan.
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genetic alterations and phenotypic interactions, which might not be
readily discernible using the existing methods for analyzing dynamic
PET measurements.

CONCLUSION

We have shown the feasibility of SC for the segmentation of
4-dimensional dynamic PET tumor images. The proposed technique
showed a performance superior to that of the SUV- and parametric
map–based segmentation of tumor tissue variability. Overall, SC
can be used as a potential tool for the voxel-level characterization
of the tumor microenvironment.
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