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Lung cancer remains responsible for more deaths worldwide than

any other cancer, but recently there has been a significant shift in

the clinical paradigm regarding the initial management of subjects at
high risk for this disease. Low-dose CT has demonstrated signifi-

cant improvements over planar x-ray screening for patient progno-

ses and is now performed in the United States. Specificity of this

modality, however, is poor, and the additional information from PET
has the potential to improve its accuracy. Routine screening

requires consideration of the effective dose delivered to the patient,

and this work investigates image quality of PET for low-dose

conditions, in the context of lung lesion detectability. Reduced
radiotracer doses were simulated by randomly discarding counts

from clinical lung cancer scans acquired in list-mode. Bias and

reproducibility of lesion activity values were relatively stable even at
low total counts of around 5 million trues. Additionally, numeric

observer models were developed and trained with the results of 2

physicians and 3 postdoctoral researchers with PET experience in a

detection task; detection sensitivity of the observers was well
correlated with lesion signal-to-noise ratio. The models were used

prospectively to survey detectability of lung cancer lesions, and the

findings suggested a lower limit around 10 million true counts for

maximizing performance. Under the acquisition parameters used
in this study, this translates to an effective patient dose of less than

0.4 mSv, potentially allowing a complete low-dose PET/CT lung

screening scan to be obtained under 1 mSv.
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Lung cancer is still the cancer with one of the worst prognoses
and is a major source of mortality and morbidity. There were
about 1.8 million new cases (12.9% of all cancers) and 1.5 million
deaths from lung cancer worldwide in 2012 (1). Approximately
158,040 Americans died from the disease in 2015, accounting for
27% of all cancer deaths in the United States (2). Data from the

Surveillance, Epidemiology and End Results program of the
National Cancer Institute show that about 80% of patients are
diagnosed with regional or distant disease, which is strongly as-
sociated with a poor overall survival rate (3).
CT lung cancer screening has been shown to improve survival over

chest radiography. The National Lung Screening Trial recruited
53,454 current or former heavy smokers aged 55–74 in multiple
centers over a 21-mo period (4). The study showed a relative reduc-
tion in mortality from lung cancer with low-dose CT screening of
20% relative to chest x-ray screening (5). After a systemic review,
including this and several smaller studies (6), the U.S. Preventive
Services Task Force now recommends screening with helical CT in-
stead of chest x-ray radiography. The Centers for Medicare and
Medicaid Services now provides coverage for this procedure
annually, making this the first time that lung cancer screening
has been covered.
Despite the recognized benefits of CT screening, there are

important considerations. The diagnostic advantage of CT over
chest x-ray is attributed to its high sensitivity for detecting small
cancerous lesions, but this can potentially lead to misclassification
of nonmalignant nodules and patient overdiagnosis. The National
Lung Screening Trial researchers reported that CT screening
yielded a false-positive rate around 96% (5). The addition of meta-
bolic information from PET has been shown to improve accuracy
for detecting lung cancer compared with CT alone (7). Hence,
recent work has focused on potential screening applications of
the combined modality PET/CT in high-risk groups (8). Currently,
PET/CT is used clinically for staging (9,10), monitoring treatment
response (11–13), and long-surveillance (14,15). The application
of this hybrid modality as a screening tool, whereby subjects are
scanned annually, would need low-dose alternatives to current
scanning protocols (16–19). For PET/CT, the CT component is
typically responsible for a larger effective radiation dose delivered
to the patient, relative to its PET counterpart, but although signif-
icant work has focused on developing appropriate low-dose CT
protocols, far less attention has been paid to reducing the PET
tracer dose. This would require efforts to understand these effects
on image quality, in the medical setting.
PET is an intrinsically noisy modality, and the quality of the

reconstructed images depends greatly on the number of acquired
coincident counts. Many previous works have focused on the
behavior of statistical PET reconstructions in low-count conditions
(18,20–25) and typically characterized image quality in terms of
noise and bias. However, more work is needed to translate the
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implications of these findings for specific clinical tasks. A plat-
form has been presented to evaluate the noise effects of reducing
the amount of PET data on the performance in the specific task of
detecting small isolated lung nodules. The analysis tools were
developed for patients with infectious lung lesions, scanned with
simultaneous PET/MR (26).
The present work applied these analysis methods to a cohort of

patients with malignant lung nodules scanned with PET/CT. It
aimed to investigate the lowest practical limits for accurate image
quantification while maximizing sensitivity for detecting small,
isolated lung lesions.

MATERIALS AND METHODS

Twenty patients (weight range, 37.2–91 kg) were enrolled in this In-

stitutional Review Board–approved study after written informed consent
was obtained. Inclusion criteria were patients with biopsy-proven primary

lung cancer or patients with suggestive radiologic abnormalities planned
for definitive lung surgery. All scans were obtained on the Biograph

mCT (Siemens Healthcare Molecular Imaging) after an uptake period
of 60 min, after injection of 218.3 6 5.18 MBq of 18F-FDG. PET data

were acquired in list-mode, and the true scan counts were found by
subtracting the smoothed delayed counts from the total prompts (through-

out this article, true counts refer to prompts minus randoms, which are
actually the true and scattered events). All subjects were scanned with 2

bed positions covering the lungs at 10 min each, resulting in 120 6 25
million mean true coincident counts per bed position.

Reduced effective doses were simulated by randomly discarding
events in the PET list-mode according to 9 predefined true count

levels, defined as prompts minus delayed: 0.25 · 106, 0.5 · 106, 1 ·
106, 2 · 106, 5 · 106, 7.5 · 106, 10 · 106, 15 · 106, and 20 · 106. For

each patient–true count combination, the highest possible number of
independent realizations was generated and reconstructed, up to a

maximum of 50. The reconstruction algorithm was ordinary Poisson
ordered-subset expectation maximization (OSEM) (27,28), incorpo-

rating time-of-flight information and system resolution modeling, with
2 iterations, 21 subsets, and 3-mm smoothing, producing 400 · 400

image matrices with a voxel size of 2.04 · 2.04 · 2.03 mm. The CT
images were 512 · 512 with a voxel size of 1.52 · 1.52 · 5 mm. All

PET reconstructions included attenuation and scatter corrections.
This work focused on PET image quality in the context of lung

lesion detection. The images reconstructed from the original full
statistical set, that is, all acquired events, were used to identify isolated

lung lesions of various sizes and contrasts, consistent with those

expected of early-stage, subclinical lung cancer. Cubic volumes of

interest (VOIs), with dimensions of 32.6 · 32.6 · 32.5 mm, centered

on each selected lesion, were delineated and stored. Additionally, for
each patient, 1 cubic VOI including only healthy lung tissue was also

stored, generating a population of matched, lesion-absent test samples.
Hence, each patient contained 1 background and at least 1 signal

subvolume. The bias and stability of the lesion activity measurements
were evaluated across all simulated dose levels, and detectability was

determined by various human-trained, numeric observer models.
At each simulated dose, the selected lesions were classified by

6 parameters: metabolic PET lesion volume, 18F-FDG signal-to-
background contrast, mean lesion activity concentration, lesion

VOI SD, lesion-to-background signal-to-noise (SNR), and channelized
Hotelling observer (CHO) SNR (29). Masks delineating lesion VOIs

were generated in the full-count images by selecting all voxels within
the cubic volume with values equal to or greater than 40% of the

maximum value. The VOI segmentations are illustrated in Figure 1,
which shows coronal slices containing lesion and background regions.

The metabolic PET volume is the first parameter and was defined as
the number of voxels included in the lesion VOI multiplied by the

individual voxel volume, in this case 8.45 mm3. The mean activity

concentrations in the lesion and background VOIs were used to cal-
culate the second parameter, lesion contrast Cles, given by

Cles 5
mles 2 mback

mback

;

where mles and mback are the means of the lesion and background
regions of interest in the full-count images. These first 2 parameters

were measured only in the full-count images, providing stable repre-
sentations of size and contrast for each lesion.

The mean activity concentration in the lesion VOI was measured for
all the independent realizations at each simulated dose; the mean of these

realization measurements was recorded as the third parameter, lesion
activity mean, and the SD in these measurements was the fourth param-

eter, lesion VOI SD, providing a way to assess the reproducibility of the
lesion. The fifth parameter was lesion SNR and was defined as the mean

lesion activity divided by the mean of the noise (i.e., the SD in the
background VOI, averaged across realizations). The last parameter used

to characterize the lesions was included to reflect observer detectability.
A CHO was implemented to provide a surrogate estimate of performance

in a lesion-detection task. For every lesion, at each dose, the target and
background subvolumes extracted from the independent noise realiza-

tions were used to train the model and test the observer SNR (30,31).
As an example, we demonstrate in Figure 2 the analyses for a sample

lesion (the same lesion shown in Fig. 1).
Defining each lesion by the 6-dimensional

point comprising its parameter values provided

a simplified and convenient way to represent
all lesion samples in a space spanning their

morphologic, physiologic, and distinguishable
characteristics.

A lesion-detection task to survey perfor-
mance for distinguishing lesions from healthy

lung tissue was previously administered to 2
radiologists, board certified in nuclear medicine,

and 3 postdoctoral researchers experienced with
PET (26). Five hundred fifty images of patients

(weight range, 45–79 kg) containing hypermet-
abolic lung lesions were randomly presented

to the observers, with 3 orthogonal slices inter-
secting an outlined VOI. The observers were

instructed to report if there was a lesion at the
center of the VOI or not. Each observer then

rated the confidence of the decision on a scale

FIGURE 1. Coronal slices containing signal and background regions. Isolated nodule is seen in

CT volume (yellow arrow). PET analyses of each lesion consists of 2 segmented signal regions

and 1 background region. Lesion VOI (red) was used to calculate volume and other metrics, and

target cubic subvolume (blue) was used in CHO. Background segmentation required only cubic

subvolume (green) to calculate contrast and noise metrics and for input into CHO.
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from 1 to 5, with 5 meaning 100% confidence of a lesion, 1 meaning

100% confidence of no lesion, and 3 meaning an equivocal interpretation.
A lesion with a score of 4 or higher was assumed to be detectable by the

observer. For each count category, sensitivity was calculated as

Sensitivity 5
Number   of   detected   lesions

Total  number   of   lesion  test  samples
;

where each sample point was classified as detected or not detected,

according to a human-trained linear observer model.
The human observer decision data were used to classify the

retrospective lesion data into 2 classes, detectable or not detectable;
these were the training data for the linear observer models. The task of

the numeric observer was to determine to which class a given sample
belonged. The discriminant function wobs was calculated by

wobs 5
m1 2 m2

K
:

Here mi is the mean of the ith class, and K is the covariance derived from
the combination of the individual class covariances according to

K 5
N1covðC1Þ1N2covðC2Þ

N1 1N2
;

where Ni is the number of samples belonging

to the ith class Ci. This approach, namely,
linear discriminant analysis for discrete sam-

ples, ensured that SNR for class discrimina-
tion was maximized.

By representing the retrospective lesion
data (and defining the corresponding linear

discriminants) in the same vector space
as the prospective lesions—that is, compris-

ing combinations of the 6 measurement
parameters—the observer models could be

directly applied to the new lesion data. By
choosing the binary decision threshold that

resulted in overall accuracy most closely
matching that of the original observer, the

numeric model could thus allow trained pre-
dictions for classifying the new lesions as

detectable or not detectable. The scatterplots in Figure 3 show this
approach. The lesion samples are represented as points comprising

their respective parameters, along with the corresponding linear dis-
criminant function.

RESULTS

In all 20 prospective patients, only isolated and relatively small
lesions were chosen to simulate a typical screening situation;
12 lesions were selected as having suitable morphologic and
physiologic characteristics for inclusion in the analyses. The mean
lesion volume was 1.25 6 1.21 cm3 (range, 0.18–3.80 cm3), as
measured by PET, and the mean lesion activity concentration was
13.9 6 11.4 kBq/mL (range, 3.3–37.5 kBq/mL) (SUV 6.2 6 5.5;
range, 1.31–18.63). The mean volume was 2.61 6 2.86 cm3

(range, 0.15–7.15 cm3), as measured by CT, using the same
thresholding approach used to delineate the lesions in the PET
volumes. The lesion characteristics are described in Table 1.
For all comparative analyses reported here, the images generated

from the full-count data were used to draw VOIs and taken to be the

gold standard for evaluating the quantification

accuracy of the reconstructions at reduced

counts.
The lesion metrics (aside from volume and

contrast, which were constant across count
levels) are shown as a function of true count
level in Figure 4. Lesion SUV was relatively
stable until the count level approached 1
million, and only when the counts were de-
creased to 5 million did the average SD be-
come greater than 10%. Lesion SNR and
CHO SNR exhibited continuous increase with
count level.
Noisy data led to bias in statistical recon-

structions, and this effect on lesion SUV

was investigated. The SUVmean and SUVmax

measurements were relatively stable at all

count levels, and as seen in Figure 5, it was

only when the true counts approached 1 mil-

lion that measurement bias was observed. As

expected, in low-count conditions, SUVmax

FIGURE 2. Typical example of SUV reproducibility (A) and SNR analyses (B) for 1 lesion over

all count levels. Plot A shows SUVmean as a function of true counts in scan for 50 independent

noise realizations, represented by individual colored bars. Plot B shows calculated lesion SNR

at each point. For higher count levels, when 50 independent realizations were not possible,

actual number of realizations at each point were 26, 17, 13, 8, and 6 for 5, 7.5, 10, 15, and 20

million true counts, respectively. Last point with only 1 realization corresponds to full dataset.

FIGURE 3. Training of numeric observer model by human detection responses is shown here

(for illustration purposes, 6-dimensional lesion data are represented in 3-dimensional space de-

fined by principal eigenvectors). Linear discriminant function was defined by maximizing classi-

fication SNR within projected lesion sample points. Discrimination threshold point on linear func-

tion was set so as to best match overall accuracy between model and original observer (gray

arrow). This point defined orthogonal discrimination hyperplane, and trained model was then

used to classify different set of lesion data.
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showed positive bias because increases in the variability within a VOI
yield maximum voxel values further from the mean. Negative bias
was observed for SUVmean under these extreme conditions because of
2 phenomena, the backprojection of the sparse data within the OSEM
framework (24) and, to a greater extent, the failure of the scatter
simulation, namely the scaling part (32), which greatly overestimates
the scatter at extremely low counts. Both of these phenomena are
shown in Figure 6 for the same patient dataset used in Figure 2.
Validations of the best numeric models to accurately predict the

respective human observers’ decisions were first performed using
the retrospective data from the detection task. Once the linear dis-
criminant was defined (and corresponding accuracy-matched deci-
sion threshold calculated) in each case, the model was used to
classify the lesion data as detectable or not detectable. Once the
predictive utility of the linear discriminators was established, the
observer models were applied to the new lesions from the prospec-
tive lung cancer patients. The models predicted different perfor-
mance for each observer, but for all 5 human observers, as seen
in Figure 7, performance was optimized near 10 million true counts.

DISCUSSION

This work was primarily motivated by the need for improve-
ments to current lung cancer screening protocols. The poor
specificity of CT lung screening, with a false-positive rate around
96%, leads to potential overdiagnoses and, in some cases,
unnecessary invasive procedures that are not without risk. The
addition of complementary or confirmatory information needs to
be incorporated into the screening process so that the referring
physician can make an informed decision. Hybrid PET/CT has
consistently proved superior to CT alone because PET can provide
information that improves the poor specificity of current screening
methods. This has the potential to considerably improve the
clinical management of high-risk patients by increasing overall
diagnostic accuracy. If PET is to become a routine screening tool

for patients at risk, however, the dose should be kept as low as
practically possible. Investigative efforts must focus on defining
the lowest reliable limits of PET. Here, we present a task-based
evaluation, specific to detection of small focal lesions in lung cancer
patients. This work combines objective and subjective analyses to
provide a comprehensive understanding of the behavior of clinical
PET and lesion detectability in noisy conditions.

TABLE 1
Characteristics of 12 Lesions

Lesion Subject Age (y) Histology TNM stage

Lesion size

(cm3 on PET)

Lesion size

(cm3 on CT) SUVmean* SUVmax*

1 3 52 Adenocarcinoma Intravenous 0.52 1.15 3.25 4.33

2 8 80 Adenocarcinoma Intravenous 0.94 0.43 1.31 1.79

3 10 68 SCC Intravenous 2.72 4.31 8.01 11.17

4 13 74 Adenocarcinoma Intravenous 0.18 0.73 6.37 8.29

5 0.24 0.15 1.95 2.53

6 14 71 Adenocarcinoma Intravenous 1.80 7.15 12.33 16.93

7 2.73 6.60 11.14 15.69

8 17 64 Presumed NSCLC† I 0.53 2.70 6.43 8.63

9 19 58 SCC IIIB 3.80 7.00 18.63 26.44

10 20 68 Adenocarcinoma Intravenous 0.24 0.18 1.81 2.41

11 0.52 0.62 1.72 2.35

12 0.79 0.34 1.42 1.95

*SUVmean and SUVmax as measured in full-count images.
†Serial CT images showed spiculated solitary pulmonary nodule increasing in size; patient declined biopsy or surgery.

Multiple lesions within same subject are grouped in consecutive rows of same color.

FIGURE 4. Lesion metrics averaged across realizations, as function of

count level: lesion SUV (A), SD in lesion SUV (B), lesion SNR (C), and

CHO SNR (D). Error bars show SD over all lesion measurements.
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All experimental findings presented here are based on reduced
PET tracer doses, emulated by randomly discarding count events
from larger sets of PET list-mode data. This approach is predicated
on the assumption that the ratio between the prompt and delayed
events is constant throughout a given dataset, regardless of the
randomly emulated counting rates. However, although the prompts
and singles rates scale linearly with the in-field activity, the randoms
rates scale by the square of the singles. Hence, in this work, we
essentially create a worst-case situation, in which we emulate low-
count levels but with the higher randoms rates of the original data,
which was 38.8% (range, 34.8%–44.4%) in this study. With actual
lower injected activities, the randoms fraction and deadtime would
be lower, and so image quality would be improved.
Generating smaller datasets from a larger one has the advantage

that several random realizations of the same activity distribution
can be realized, permitting the characterization of the noise

associated with the reconstruction process. For this work, only
independent realizations were created to eliminate possible
correlations between test images. Of course, for any set of data,
one is limited to the number of fully independent subsets that can
be realized. For the current work, we felt that there was an
appropriate balance between count level and maximum realization
number. High-count levels yielded fewer realizations but the
reconstructions were supported by high statistics and low vari-
ability, and lower count groups produced greater numbers of
realizations to compensate instability of the increasing noise
levels. This was not an issue for the lowest count levels (#2
million), as 50 independent realizations could be extracted.
Analyses of bias and reproducibility in the lesion activity values

showed that the measurements were stable until the count levels
approached extreme conditions; in fact, bias in the lesion VOI
mean and SUVmax appeared relatively negligible until the true

count level was decreased to 1 million.
Variance on the reproducibility of lesion
values showed a more dramatic trend, but
the SD was still around 10% at 5 million
counts. It could easily be argued that this
level is acceptable because PET is gener-
ally associated with a test–retest error on
this order (33,34).
As seen in Figure 6, instability in the

reconstruction at extremely low counts is
caused by 2 phenomena, estimation of the
scatter fraction and handling of the sparse
projection data within the OSEM frame-
work. At extremely low counts, the scatter
simulation, and in particular the associated
tail-fitted scaling, fails because of noisy
data in the sinogram tails. This results in
an overestimation of the scatter: we veri-
fied that below 1 million true counts, the
scatter fraction increases to unrealistic high
values, and it is the main reason for the

FIGURE 5. SUV measurements at various count levels, relative to true SUVs as measured in full-count images: from left to right, 20 · 106, 10 · 106,

5 · 106, 1 · 106, and 0.25 · 106 net true counts. Lesion SUV was relatively stable until count level approached 1 million, in which case SUVmax (A)

demonstrated positive bias and SUVmean (B) demonstrated slightly negative bias. Unity line is shown in each plot.

FIGURE 6. Two phenomena cause instability in PET reconstruction at true count levels around 1 million.

First, scatter fraction estimates based on simulationmodels are overestimated in noisy conditions (A), which

causes negative image bias from oversubtraction. Second, ordered-subset framework can cause negative

bias in limited statistics. This bias is reduced when using pure maximum likelihood expectation maximiza-

tion (MLEM), that is, using all projections for each update (B); OSEM reconstruction used 2 iterations and 21

subsets and MLEM used 40 iterations. Error bars denote SD across measurements made in 10 indepen-

dent realizations at each true count level, except for 15 and 20 million, which used 8 and 6, respectively.
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strong negative bias in SUVat the lower limits of our statistical range.
In addition, ordering the subsets in iterative PET reconstruction, which
is designed to accelerate reconstruction convergence using a limited
number of projections for each image update, increases the probability
of back-projecting zeros into the image at low statistics. This, along
with the multiplicative nature of the updates in the expectation max-
imization framework, can essentially trap image voxels at zero, result-
ing in negative bias. This problem is somewhat reduced using pure
maximum likelihood expectation maximization, that is, using all pro-
jections for each update, but this would not be clinically practical.
Although, the objective analyses of lesion metrics suggested

that image quality may be acceptable at low-count levels, the
results of the subjective observer study were more conservative
and likely better represent the actual limits to which clinical
protocols should adhere. Translational research, applying techni-
cal analyses in the context of the medical setting, is often
challenging and requires the involvement of a multidisciplinary
team. In this case, the input of experienced physicians was essential
to the development of the numeric observer model used to predict
lesion detectability. The performance of this model was rigorously
evaluated within the lesion population, using various combinations
of the lesion parameters, to find the characteristics that best allowed
it to accurately predict the human observers’ decisions. From these
experiments, we found that observer detection was indeed well
correlated with lesion SNR, because this metric yielded the smallest
residual differences between the human and model observers in
the sensitivity curves. Models using only the volume, contrast, and
measurement variance of the lesions yielded relatively poorer
agreement. The human-trained numeric models showed good
predictive utility and may also provide a convenient surrogate
for realistic interpretation in future lesion-detection studies.

Many works investigating lesion-detection performance use the
SNR of a numeric observer, for example, the CHO, as the figure of
merit because it has been shown to be a good predictor of human
performance in certain tasks. However, in this work, we chose a
discrimination model using a more comprehensive set of lesion
parameters, intended to characterize each lesion objectively and
subjectively. Channelized observer models use spatial frequencies
to reduce dimensionality while extracting the important features of
each class, but here we reduce the dimensionality, while retaining
important discriminatory characteristics, through 6 lesion param-
eters. Hence, instead of depicting each lesion by only spatial
frequency responses, we thought that the combination of many
different properties (including CHO SNR) would better charac-
terize the lesion population and improve discrimination. Although
we found the model using lesion SNR to provide the discrimina-
tion performance most closely matching that of the original
observers, the use of CHO SNR alone provided a close second
best. This might not be unexpected because both metrics use
similar lesion properties, that is, lesion mean, contrast, and noise
(though the CHO uses channelized versions of these).
The findings of the observer studies pointed to a practical lower

limit around 10 million true counts, which is certainly supported
by the results of the bias and reproducibility analyses. It was at
this level that the sensitivity for detecting lesions matched that in
the full-count images. Of course the detection limits are set by the
smallest lesions, which is clear from Figure 7 where the sensitivity
is poor for the small lesions in the low-count levels but is opti-
mized at the same point, in both populations. It is not the intent of
this work to propose changes to current clinical protocols, only to
investigate the limits of clinical utility, in a highly constrained
lesion-detection task, under low-count conditions. In this regard,
for this system, acquisition, reconstruction, patient population
(62.4 6 13.7 kg), and in this specific task, the 10 million true
count level was the lowest limit for accurate image quantification
and reliable detection performance; this would be equivalent to a
patient injected with 18.5 MBq and scanned with 2 bed positions
for 10 min each. With this dose and scan time, the effective patient
dose from PET would be less than 0.4 mSv.
Ultra-low-dose CT protocols combined with iterative recon-

struction techniques, which can further reduce the patient
radiation dose by 80% (35,36), have produced promising results
for the detection of pulmonary nodules (37,38). Hence, this could
potentially allow a complete PET/CT lung screening scan to be
obtained at a total dose under 1 mSv, which is roughly equivalent
to 30% of 1 y of average natural background. Notwithstanding
this, it is likely that the best dose for routine PET screening would
be higher than the lower limits presented here, because the poten-
tial health risks associated with these levels of radiation are neg-
ligible compared with the factors that already designated the pop-
ulation as high risk for lung cancer (e.g., smoking). In other words,
the benefit of improved accuracy from PET would far outweigh
the small risk associated with the radiation.

CONCLUSION

Image quality was investigated in the context of lesion de-
tectability using objective image metrics and subjective observer
models. The analyses in this study suggested that accurate image
quantification may be preserved at levels around 2–5 million trues,
but detection sensitivity, which is more important for a screening
task, was acceptable at trues levels around 10 million. This would

FIGURE 7. Predicted detection sensitivity of prospective data in all 12

lesions (A) and in just 8 lesions smaller than 1 cm3 on PET (B). Predicted

performance varied across 5 human observers, but was maximized for

all observers around 10 million counts.
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mean an effective PET patient dose of less than 0.4 mSv with the
acquisition parameters used in this work. Detection sensitivity of
the observers was found to be well correlated with lesion SNR.
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