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Citius, Altius, Fortius: An Olympian Dream for Theranostics
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We have recently witnessed the heroic efforts of athletes
from around the world striving to achieve the Olympic motto—
Faster, Higher, Stronger. This could equally be the catch-cry of ra-
diochemists who seek to make tracers with faster synthesis times,
higher yields, and stronger binding affinity to the target of choice.
Rapid synthesis is particularly important for short-lived radionu-
clides such as 68Ga, and high yields are necessary to make tracers
commercially viable. However, especially for agents that might
become the diagnostic pair for a therapeutic agent, stronger bind-
ing to cellular targets is the ultimate goal. Radiochemistry is gen-
erally a team sport, with many important players. Most successful
teams in the development of novel tracers have included a multi-
disciplinary team of biologists, pathologists, preclinical imaging
scientists, chemists, and clinicians. Jean-Claude Reubi, Helmut
Mäcke, and colleagues represent one of the eminent teams in
receptor-based molecular imaging. In this edition of The Journal
of Nuclear Medicine, this team describes the potential extension of
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peptide receptor radionuclide therapy (PRRT) targeting the so-
matostatin receptor (SSTR) beyond neuroendocrine tumor (NET)
into a range of other malignancies (1).
The therapeutic use of radiolabeled somatostatin analogs is now

well established in many parts of the world (2). This represents the
culmination of an approach pioneered a quarter of a century ago
by another extremely important team in this field, the Erasmus
Medical Center in The Netherlands (3). As a result of recent
Food and Drug Administration approval of 68Ga-DOTA-octreotate
(NETSpot), which has a diagnostic capability superior to conven-
tional imaging modalities (4) and significant impact on patient
treatment planning (5), and the recent presentation of encouraging
results of the NETTER-1 trial using 177Lu-DOTA-octreotate (Lutathera)
(6), the theranostic approach in NET will also likely become
more widely available in the United States.
The key prerequisite for the selection of patients for PRRT, or

indeed any radionuclide therapy, is the presence of sufficient uptake

at all active sites of disease to deliver adequate radiation to achieve
therapeutic goals of symptom or disease control (7). For patients
with NET, this decision is currently based on imaging with agents
that have high affinity for the subtype 2 of the SSTR (sst2). sst2 is
usually highly expressed in well and moderately differentiated NET
of the lung, pancreas, and intestinal tract (8). There is also increasing
evidence supporting the utility of such agents in staging metastatic
pheochromocytoma and paraganglioma, especially those related to

mutations in the succinate dehydrogenase subunit B gene (9).
Although several malignancies, including breast and prostate

cancer and Hodgkin lymphoma, have long been known to also

express sst2 (8,10), in clinical practice the intensity of uptake of

available SSTR ligands is often too low to consider PRRT. Nev-

ertheless, motivated by the success of the theranostic paradigm in

NET, the nuclear medicine community has been actively seeking

means to facilitate radionuclide therapy for such tumors.
One approach has been an attempt to increase the affinity of the

peptide for the sst2. Receptor binding affinity and autoradiographic

studies have emphasized the impact of both the radionuclide and the

chelating agent (11) on tumor uptake of the peptide. Indeed, altering

a chelating agent can fundamentally change a peptide from being an

agonist to an antagonist (12). Although it is somewhat counterintu-

itive, it appears that antagonists of receptors, which are generally

poorly internalized (13), typically provide much higher tumor–

to–normal-tissue uptake ratios than agonists (14,15). This is evi-

dently because they bind a higher proportion of available receptors

(16). Preclinical studies have supported the theranostic potential of

SSTR antagonists (17), and preliminary clinical trials have also

demonstrated the feasibility of using antagonists for imaging and

PRRT (18,19).
The current paper by Reubi et al. (1) provides further impetus for

the evaluation of SSTR antagonists in diseases other than NET. When

in vitro receptor autoradiography of 125I agonists versus antagonists

was used, 12 of 13 breast cancers, all 12 renal cell carcinomas, and

5 of 5 medullary thyroid cancers demonstrated high binding of the

antagonist, whereas only low binding of the agonist was apparent in

most cases. Other cancers, including prostate and colon cancers,

seemed less promising prospects for imaging or therapy with sst2
antagonists.
Because cancers can express a range of receptors, development of

additional antagonists may further expand theranostic options. Antag-

onists have been described for imaging other cellular targets including

glucagonlike peptide-1 (20,21), neurotensin (22), and gastrin-releasing

peptide (23,24). As yet these agents remain primarily the focus of

preclinical studies, but some are entering early clinical trials.
For clinicians, faster diagnosis, higher accuracy, and stronger

evidence of therapeutic effectiveness are the goal. Citius, Altius,

Fortius! We are indebted to the pioneers of theranostics for showing

us the way to truly targeted therapies. The vision of Saul Hertz, Sam
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Seidlin, Robley Evans, and others to bring radioiodine therapy into
the clinic 75 y ago (25–27) serves as an inspiration to those facing
the Olympian challenges of cancer. Teams such as those of Reubi
continue to carry a torch that shows us the way.
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