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Radionuclide therapy for prostate cancer started more than
70 y ago (1). Nuclear medicine has since evolved considerably
to provide a multitude of new imaging and therapy options. The
past decade witnessed an unprecedented expansion of radioligands
for prostate cancer. Milestones include the first a-emitter for treat-
ment of symptomatic bone metastases (2) and theranostic vectors
directed at the prostate-specific membrane antigen (PSMA) or
bombesin receptor (3–5). However, current radionuclide therapies
are applied at a late stage of the disease aiming at palliation.
Despite recent advances for treatment of metastatic prostate can-
cer, cure remains an unmet need of the 21st century. Cancer
spreads early and develops slowly as submillimeter occult lesions.
Lesions grow at distant sites and become detectable only when
significant morphologic or metabolic alterations have formed,
often years to decades after the initial spread (6). Effective ablation
of small metastases is critical for cure and presents a specific
challenge for b-emitting radionuclide therapy. Millimeter-range
b-particles deliver insufficient amounts of radiation to millimeter-
size tumor lesions, as energy deposition extends and dilutes beyond
lesion boundaries (Fig. 1). a-radiation, because of its micrometer
range, targets millimeter-size tumor volumes at higher relative
yield (Fig. 1). Further evidence points to a superior biologic
effectiveness for a-therapy based on high-linear-energy transfer
resulting in frequent double-strand DNA breaks (7). However,
are basic advantages of a-therapy associated with a clinical
benefit?

223Ra was the first a-emitter, approved for survival benefit in
patients with symptomatic bone metastatic castration-resistant
prostate cancer (mCRPC) (2). 223Ra therapy comes with a low
rate of serious adverse events (2) thought to be based on sparing
of healthy red marrow by the short-range a-particles. On the con-
trary, b-emitting bone-seeking 153Sm and 89Sr effectively reduce
bone pain, however, without evidence for survival benefit and at
higher rates for hematologic toxicity (8,9).

223Ra a-therapy has become an important option in the man-
agement of mCRPC. However, bone-targeting is of limited value
in patients with extraosseous disease (10). Effective targeting of
skeletal and extraskeletal disease is achieved by intravenous ad-
ministration of radiolabeled small ligands for the PSMA (11).
177Lu-labeled PSMA617 induced a prostate-specific antigen drop

of more than 50% in about half of mCRPC patients with bone,
lymph node, or soft-tissue metastases (12). Significant tumor

shrinkage occurred, and in a few patients even complete response

was achieved after PSMA-directed radioligand therapy (12–14).

However, disease inevitably recurs. Kratochwil et al. were able to

salvage 9 of 11 patients with 177Lu-PSMA617–recurrent mCRPC

by switching to 225Ac-PSMA617 a-therapy (15). A high response

rate was achieved by repeated application of 100 kBq of 225Ac-

PSMA617 per kilogram, an a-therapy protocol with acceptable

toxicity for salivary glands (15).
Preclinical and clinical evidence indicate higher efficacy for

a- than b-based therapy of prostate cancer. Thus, a-therapy should

be in the focus of research aimed at the cure of metastatic disease.

Several challenges need to be overcome for improved effective-

ness and broad clinical implementation. First, a reliable, high-

yield, pharmaceutical-grade supply of a-emitter must be established

to enable clinical trials and subsequent widespread distribution.

For 225Ac, the current annual global supply estimated at 1.2–1.7

Ci would treat fewer than 2,000 patients with 4 cycles of 225Ac-

PSMA617. Supply comes nowhere near meeting the estimated

demand of 50 Ci listed in the 2008 U.S. Department of Energy

report (16). Several alternative production methods were evalu-

ated, including low-energy proton irradiation of 226Ra (17) and

high-energy proton irradiation of 232Th (18) in a cyclotron. How-

ever, chemical processing and large-scale production methods

are still under development. Second, prospective, multicenter

clinical trials need to be conducted. Recently, NETTER-1 and

ALSYMPCA established new radionuclide therapies by reporting

improved progression-free and overall survival (2,19). Both stud-

ies may serve as a role model for future trial designs aimed at

approval and reimbursement of a-therapy. Third, given the favor-

able safety of 223Ra and 225Ac-PSMA617, a-therapy should be

performed at an earlier stage of the disease. The combination of

surgery, adjuvant radionuclide therapy, and hormonal therapy has

the potential to cure metastatic disease, a key lesson learned al-

most one century ago from the application of radioiodine in pa-

tients with differentiated thyroid cancer (20). Likewise, adjuvant

PSMA-directed a-therapy may cure, when performed early and in

conjunction with other systemic treatment. Finally, a-therapy

should be evaluated in combination with potentially synergistic

pharmacologic approaches. a-radiation induces replication stress,

characterized by the accumulation of double-strand DNA breaks

(21). Small-molecule inhibitors of double-strand DNA break re-

pair pathways demonstrated antitumor properties in preclinical

models and are being investigated in more than 50 active clinical

trials (22). The combination of PSMA-directed a-therapy with

inhibitors of double-strand DNA break repair may potentiate effi-

cacy at low toxicity. Furthermore, the combination with inhibitors
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of the androgen receptor may enhance radiation delivery by in-
creased PSMA expression on tumor cells (23–25).
In summary, a-therapy is effective in patients with metastatic

prostate cancer. Short-range a-emission targets small lesions more
effectively than b-radiation. Given this advantage, cure of meta-
static disease should be the ultimate goal of future a-therapy re-
search. In this intent, the evaluation of early treatment and
systemic PSMA-directed a-therapy in conjunction with synergis-
tic pharmacologic approaches are highly encouraged.
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FIGURE 1. Proportion of targeted tumor volume per total irradiated

volume for α- (225Ac) versus β- (177Lu) radioligand therapy of small pros-

tate cancer lesions. Maximum range in tissue is 0.1 mm for α- and 2 mm

for β-therapy. Radiation delivered to subcentimeter lesions drops sig-

nificantly for β-therapy, as energy deposition significantly extends

beyond lesion boundaries. The simplified model calculates irradiated

volumes assuming homogeneous intratumoral distribution of 225Ac

and 177Lu without taking into account any potential difference in biodis-

tribution, energy transfer, and relative biologic effectiveness.
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