and fellows listening to patients. My deepest thanks to the society.”

McDougall received his medical degree from the University of Glasgow (Scotland). He passed the membership examination of the Royal College of Physicians and Surgeons in Glasgow in 1971 and subsequently became a fellow of that body and of the Royal College of Physicians in London. He received 2 Carnegie Scholarships, one in 1964 to investigate DNA patterns of adrenal tumors at the Glasgow Royal Infirmary and a second in 1965 to investigate the lymphatic anatomy of adrenal glands at Howard University (Washington, DC). He was awarded a doctorate in 1972 for clinical and radiobiological studies of 125I in the treatment of thyrotoxicosis, with important work published in the *Lancet* and the *New England Journal of Medicine*.

In 1972 McDougall was awarded a Harkness Fellowship to conduct research at Stanford, where he remained for 36 years as a faculty member. In 1989, he took over directorship of the thyroid clinic. He held numerous clinical and administrative positions, including as president of the medical center—the first faculty member elected to that post. He was director of the Nuclear Medicine Residency Program for 25 years. Since retiring as director of the thyroid clinic in 2008, he has been an active emeritus professor. He published more than 160 peer-reviewed papers and 110 book chapters, reviews, and editorials. He authored or coauthored 3 textbooks on thyroid disease. He was appointed to the American Board of Nuclear Medicine and served as board chair for 2 years. He was vice chair of the Residency Review Committee in Nuclear Medicine, a governor of the American Board of Internal Medicine for 3 years, and president of the Western Regional chapter of SNMMI.

Multiple honors have been awarded to McDougall for his contributions to nuclear medicine. From the University of Glasgow, he received the Ure Prize and Cullen Medal for Pharmacology, the Captain Rankin V.C. Prize for Pathology, the Ure Prize and McFarlane Prize for the Integrated Year of Medicine and Surgery, and the William Hunter Medal in Clinical Surgery. From Stanford, he received the Robert Reid Newell Award, the Arthur Bloomfield Award, the Alwin C. Rambar Award, and the Albion Walter Hewlett Award. He received the Distinguished Scientist Award from the SNMMI Western Regional chapter in 2006.

“I was fortunate to train under Dr. McDougall while I was a resident at Stanford University in the mid-1990s,” said SNMMI President Hossein Jadvar, MD, PhD, MPH, MBA. “He is an exceptionally caring physician and a superb diagnostician. He exemplifies the true meaning of a gentleman and scholar.”

Each year, SNMMI presents the Georg Charles de Hevesy Nuclear Medicine Pioneer Award to an individual for outstanding contributions to the field of nuclear medicine. De Hevesy received the 1943 Nobel Prize in chemistry for his work in determining the absorption, distribution, metabolism, and elimination of radioactive compounds in the human body. His work led to the foundation of nuclear medicine as a tool for diagnosis and therapy. SNMMI has given the de Hevesy Award every year since 1960 to honor groundbreaking discoveries and inventions in the field of nuclear medicine.

Conti Recognized with Aebersold Award

Peter S. Conti, MD, PhD, professor of radiology, pharmaceutical sciences, and biomedical engineering and director of the Molecular Imaging Center at the Keck School of Medicine, University of Southern California, Los Angeles (USC), was presented with the Paul C. Aebersold Award on June 13 at the SNMMI Annual Meeting in San Diego, CA. The SNMMI Committee on Awards selects the recipients of this honor, which recognizes outstanding achievement in basic science applied to nuclear medicine. The award, first presented in 1973, is named for Paul C. Aebersold, PhD, a pioneer in the biologic and medical application of radioactive materials and the first director of the Atomic Energy Commission Division of Isotope Development. “It is an incredible honor to receive this recognition from the society and my peers,” said Conti. “Passion, hard work, and perseverance are critical factors in achieving success, but so too are having great mentors, collaborators, students, and, of course, a supportive family. I have been very fortunate to have so many talented and caring people in my life, and for that I am truly grateful.”

Conti received his medical degree from Cornell University Medical College (New York, NY) and his doctorate in biophysics from Cornell University Graduate School of Medical Sciences, Sloan–Kettering Division (New York, NY). He completed his residency in diagnostic radiology (Continued on page 20N)
NETest, the multigene algorithm–derived scale defines clinical disease status on a scale of 0 to 100%. The authors evaluated NETest in data from 72 patients with NETs treated with 177Lu-based PRRT. A predictive response index was developed for PRRT efficacy based on transcript analysis incorporating gene clusters that define growth factor signaling and metabolism. Disease control was evaluated against Response Evaluation Criteria in Solid Tumors. Over all, PRRT resulted in a 68% disease control rate in the study population, with median progression-free survival not achieved over the median follow-up of 16 mo. Although low grade (G1/G2) was the only baseline clinical characteristic correlated with outcome, grade alone was not predictive (73% of low-grade and 50% of high-grade tumors responded). The NETest assessment, however, correlated with 87% accuracy, predicting 95% of responders and 90% of nonresponders. The authors concluded that the test serves as a predictive multigene biomarker for PRRT efficacy. Further assessment adding a progression response index (combining genes involved in signaling and metabolism genes with grading) provided a 94% accurate predictive biomarker, with results significantly better than those achieved with somatostatin receptor imaging. They added that “NET multigene measurement in blood can be used to predict tumors that are responsive to PRRT and to assess efficacy on a real-time basis during therapy.”

“This research shows that the molecular information obtained from a simple blood draw can be easily integrated with radiological and molecular imaging to provide a more accurate assessment of tumor behavior and response to therapy,” said Lisa Bodei, MD, PhD, first author of the study.

(Continued from page 16N)

and fellowship in nuclear medicine at Johns Hopkins Medical Institutions (Baltimore, MD), with an internship in the Department of Surgery at St. Luke’s Hospital (New York, NY). Conti is board certified in both diagnostic radiology and nuclear medicine. He has served as director of the USC Molecular Imaging Center (previously the Positron Imaging Science Center and Clinic) since its launch in 1991.

Conti’s research focuses on development of novel diagnostically imaging agents for oncology applications. He was among the pioneers of the use of PET imaging in the understanding and characterization of cancer metabolism and gene expression, and he has focused on the discovery and clinical translation of novel PET imaging agents for in vivo cancer diagnosis, evaluation of metastatic disease potential, and assessment of response to therapy. He has published more than 300 peer-reviewed scientific articles and abstracts in the field of molecular imaging.

Conti is board certified in both diagnostic radiology and nuclear medicine. He is a fellow of the American College of Radiology and the American College of Nuclear Medicine Physicians. At this year’s SNMMI meeting he was among the first group to be named as SNMMI fellows. Conti is a past president of SNMMI and remains active in the society, including service on government and regulatory affairs committees supporting the development of molecular imaging technology and its applications in medicine.

“Dr. Conti’s innovative research has advanced the field of nuclear medicine and molecular imaging,” said Gary L. Dillehay, MD, chair of the SNMMI Committee on Awards and a past president of the society. “His research includes the development of specific PET radiopharmaceuticals for imaging cancers and other disease processes, as well as the development of radiotracers for gene therapy.”