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Attenuation correction is important for PET reconstruction. In PET/
MR, MR intensities are not directly related to attenuation coeffi-

cients that are needed in PET imaging. The attenuation coefficient

map can be derived from CT images. Therefore, prediction of CT

substitutes from MR images is desired for attenuation correction in
PET/MR. Methods: This study presents a patch-based method for

CT prediction from MR images, generating attenuation maps for

PET reconstruction. Because no global relation exists between MR

and CT intensities, we propose local diffeomorphic mapping (LDM)
for CT prediction. In LDM, we assume that MR and CT patches are

located on 2 nonlinear manifolds, and the mapping from the MR

manifold to the CT manifold approximates a diffeomorphism under
a local constraint. Locality is important in LDM and is constrained by

the following techniques. The first is local dictionary construction,

wherein, for each patch in the testing MR image, a local search win-

dow is used to extract patches from trainingMR/CT pairs to construct
MR and CT dictionaries. The k-nearest neighbors and an outlier de-

tection strategy are then used to constrain the locality in MR and CT

dictionaries. Second is local linear representation, wherein, local an-

chor embedding is used to solve MR dictionary coefficients when
representing the MR testing sample. Under these local constraints,

dictionary coefficients are linearly transferred from the MRmanifold to

the CT manifold and used to combine CT training samples to generate

CT predictions. Results: Our dataset contains 13 healthy subjects,
each with T1- and T2-weighted MR and CT brain images. This method

provides CT predictions with a mean absolute error of 110.1 Houns-

field units, Pearson linear correlation of 0.82, peak signal-to-noise ratio
of 24.81 dB, and Dice in bone regions of 0.84 as compared with real

CTs. CT substitute–based PET reconstruction has a regression

slope of 1.0084 and R2 of 0.9903 compared with real CT-based

PET. Conclusion: In this method, no image segmentation or accurate
registration is required. Our method demonstrates superior perfor-

mance in CT prediction and PET reconstruction compared with com-

peting methods.
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PET/MR systems have been used in a wide range of applica-
tions (1,2). MR intensities are not directly related to the attenua-

tion coefficients that are needed for attenuation correction in PET

imaging. Given that CT intensity is related to electron density, CT

images are usually used in PET attenuation correction (3). There-

fore, accurate prediction of CT images from MR images is highly

desired for clinical applications.
Recently, various novel methods for predicting CT substitutes

from MR data have been proposed. These methods are divided into

2 main categories: segmentation-based methods (4–7) and atlas-

based methods (3,8–11). Segmentation-based methods usually clas-

sify voxels in MR images into different tissues and assign linear

attenuation coefficients or CT values. Because standard MR images

show low signals for bone structures, ultrashort echo time imaging,

which enables imaging of bone structures with short T2 relaxation

times (12), is highly preferred by many segmentation-based meth-

ods (4–6). However, segmentation of bone structures using ultra-

short echo time images is still inaccurate in complicated regions

such as the sinuses (3). Atlas-based methods usually perform de-

formable registration of training MR/CT pairs to the testing MR

image, then use the deformed training CT images to help CT pre-

dictions (3,8,9). However, these methods usually involve the diffi-

culty in precisely aligning each training MR/CT pair to the testing

MR image. Of late, patch-based methods (12,13) have been pro-

posed with promising results, in which similar patches between MR

testing and training images are searched, and the corresponding CT

training patches are combined to obtain CT predictions.
A patch-based method for predicting CT substitutes from given

MR images is developed in this study. Considering that there is

no global relation between MR and CT intensities, we assume

MR and CT patches are located on 2 nonlinear manifolds and the

mapping from the MR manifold to the CT manifold approximates a

diffeomorphism under a local constraint. This study proposes local

diffeomorphic mapping (LDM) to predict CT substitutes. A single

intensity value cannot adequately represent the feature of 1 voxel in

an MR image. An image patch contains more context information

and has been proven effective in many studies (14,15). For a patch

in the testing MR image, its similar patches in training MR images

could be found in the nearby region. Therefore, we define a local

search window in training MR/CT pairs to extract image patches to

construct MR and CT dictionaries. In addition, k-nearest neighbors

(kNN) (16) is used to strengthen the locality of the MR dictionary.

To guarantee the locality in the CT dictionary, k-means clustering

(17) and kNN are combined to detect outliers in the CT dictionary.

Outlier corresponding samples in the MR dictionary are then deleted,
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generating a new MR dictionary to represent the testing MR patch.
Local anchor embedding (LAE) (18) is performed to solve dictio-
nary coefficients. Afterward, the dictionary coefficients are locally
and linearly transferred from the MR manifold to the CT manifold
and further used to combine samples in the CT dictionary to generate
CT predictions. In the proposed LDM, image segmentation and
accurate registration are not required. The proposed method is eval-
uated on brain data for 13 subjects in a leave-one-subject-out man-
ner. Results show that the proposed method can obtain competitive
CT predictions and PET reconstructions.

MATERIALS AND METHODS

Data Acquisition

Our dataset contains 13 healthy subjects, each with T1- and T2-
weighted MR and CT brain images. T1-weighted MR images (echo

time, 7.896 ms; repetition time, 2,884.7 ms; inversion time, 960 ms;
flip angle, 90�; voxel size, 0.47 · 0.47 · 2.50 mm3) and T2-weighted MR

images (echo time, 100.466 ms; repetition time, 5,000 ms; flip angle, 90�;
voxel size, 0.47 · 0.47 · 2.50 mm3) were acquired on a Signa HDxt

scanner (GE Healthcare). CT images (120 kVp; 240 mAs; voxel size,

0.47 · 0.47 · 2.52 mm3) were acquired on a LightSpeed Pro 16 scanner
(GE Healthcare). This study was approved by the ethics committee, and

a written informed consent form was obtained from each subject.

Data Processing

Necessary preprocessing was applied to all images. The N3 package

was used to remove bias field artifacts from MR images. Intensities in
each MR image were normalized to [0 100] based on a piecewise

histogram-matching method (19). In each CT image, the head was sepa-
rated from the bed using the thresholding technique as described in Burgos

et al. (3). Afterward, all images were affinely registered to a common
space in 2 steps. First, within each subject, we registered the subject’s T1

and T2 images to the CT image. Then, across individual subjects, we

randomly selected a CT image of 1 subject as the common space to which
all other subjects were further registered based on their CT images. Affine

registration was performed by FMRIB’s linear image registration tool
(FLIRT) (20) with mutual information as the similarity metric.

CT Prediction by LDM

Our goal can be described as follows: given a training dataset

T 5 fxMR
i ; xCTi gNi 5 1 containing N MR/CT patch pairs, how is the sub-

stitute CT patch xCT of a testing MR patch xMR calculated? LDM is

based on 2 assumptions.
Assumption 1. Image patches from different modalities are located on

different nonlinear manifolds, and a patch can be approximately
represented as a linear combination of several nearest neighbors from

its manifold.
In this paper, MR and CT manifolds are denoted as MMR and MCT ,

respectively. The column vector of patch xMR (i.e., xMR*) can be line-

arly represented by its nearest neighbors on MMR:

x
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N � is a dictionary containing training
MR patches. *w5 fw1;w2; . . . ;wNgT is the coefficient vector of DMR.
OKðx
*
MRÞ is a set of K-nearest neighbors of x

*
MR in DMR. *e denotes the

reconstruction error. t is a threshold that constrains *e under a small value.

Obviously, if the mapping f between MMR and MCT is explicitly

known, the substitute CT patch xCT of the testing MR patch xMR can be

calculated by xCT 5 f ðxMRÞ. Given that obtaining an explicit formula of f

is difficult, we suggest calculating xCT in an implicit way. According to

Equation 1, the column vector of patch xCT (i.e., x
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CT ) can be written as:
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If f is linear, Equation 2 can be rewritten as:
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where DCT 5 ½ x*CT
1 ; x
*

CT
2 ; . . . ; x

*
CT
N � contains vectorized training CT

patches. Given that w
*

can be determined by Equation 1 and DCT is

given, x
*
CT can be calculated according to Equation 3.

The linearity of f is crucial in the derivation of Equation 3; thus,
assumption 2 is introduced to support the above derivation.

Assumption 2. Under a local constraint, mapping from the MR

manifold to the CT manifold f : MMR/MCT approximates a diffeo-

morphism.
The mapping f : MMR/MCT is called a diffeomorphism if it is

differentiable and bijective, and its inverse f21 : MCT/MMR is also

differentiable. On the basis of assumption 2, a local region on MMR

can be linearly mapped onto a local region on MCT by f . Therefore,

Equation 3 can be derived. However, the mapping between MR and

CT patches is not a diffeomorphism. For example, several materials

have similar MR intensities but different CT values. Therefore,

whether the structures in small MR and CT patches have a 1-to-1

correspondence remains uncertain. To solve this problem, several ap-

proaches are presented. The first approach is local MR and CT dictio-

nary construction. For each testing MR patch, a local search window is

used to preselect patches from training MR/CT pairs to construct MR

and CT dictionaries. Furthermore, dictionary reselection and outlier

detection are performed in MR and CT dictionaries, respectively, to

further limit the dictionary elements in local regions. The second ap-

proach is local linear representation, wherein LAE is used to solve MR

dictionary coefficients when representing the MR testing sample.
The proposed method contains 3 parts: local dictionary construc-

tion, local linear representation, and prediction. Detailed procedures

are shown in Figure 1.

Local Dictionary Construction. I 5 fIst js 5 1; . . . ; S;t 5 T1;T2;CTg
is used to denote training images, where S and t are the number of

training subjects and the image modality, respectively. For a testing
subject Y , the T1 and T2 images are denoted as Ytðt 5 T1;T2Þ.

There are 3 steps in local dictionary construction. The first is
dictionary preselection. Here, Ytðt 5 T1;T2Þ is aligned to the space of

I using FLIRT (20). Then, patches xT1 and xT2 centered at point x in
YT1 and YT2 are extracted. We further vectorize xT1 and xT2 to

x
*
T1 2 Rm · 1 and x

*
T2 2 Rm · 1, respectively, where m denotes the

number of points in the image patch. x
*
T1 and x

*
T2 are combined to

denote the MR testing sample x
*
MR 5 ½x*T1; x*T2� 2 R2m · 1. For x

*
MR, a

training dataset T 5 fxMR
i ; xCTi gNi 5 1 is collected. The center of each

patch in T is constrained in a local search window centered at point x
(red and green boxes in Fig. 1A). Each training patch pair {xMR

i ; xCTi }

is arranged to vectors {x
*

MR
i ; x
*
CT
i }, generating MR dictionary

DMR 5 ½x*MR
1 ; x
*

MR
2 ; . . . ; x

*
MR
N � 2 R2m · N (red circles in Fig. 1B.1) and

CT dictionary DCT 5 ½x*CT
1 ; x
*

CT
2 ; . . . ; x

*
CT
N � 2 Rl · N (green circles in

Fig. 1B.1), where l denotes the number of points in the CT image

patch. The second step is dictionary reselection. This step aims to
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constrain the MR dictionary in a local space, where kNN (16) is used

to find k-nearest vectors of x
*

MR from DMR, thereby generating a new
dictionary DMR

k 5 ½x*MR
1 ; x

*
MR
2 ; . . . ; x

*
MR
k � 2 R2m · k (red yellow circles

Fig. 1B.2). On the basis of DMR
k , k CT correspondences can be

obtained in DCT through pairs {x
*

MR
i ; x

*
CT
i }, generating

DCT
k 5 ½x*CT

1 ; x
*

CT
2 ; . . . ; x

*
CT
k � 2 Rl · k . The third step is outlier detec-

tion. Outliers in CT dictionary are detected and deleted to constrain

CT training samples in a local space. Various outlier detection meth-
ods are available, including density-based techniques (kNN) (16),

local outlier factor (LOF) (21), one class support vector machines
(OC-SVM) (22), and cluster-based methods (17). In our study, k-

means clustering is combined with kNN to detect outliers in DCT
k .

The k-means is first used to obtain clustering centers in DCT
k , and then

kNN is used to find h-nearest samples of the clustering centers to

generate DCT
h 5 ½x*CT

1 ; x
*

CT
2 ; . . . ; x

*
CT
h � 2 Rl · h (green yellow circles

in Fig. 1B.3). Accordingly, DMR
k is updated by deleting samples

that correspond to the outliers in DCT
k , generating DMR

h 5
½x*MR

1 ; x
*

MR
2 ; . . . ; x

*
MR
h � 2 R2m · h (red yellow circles in Fig. 1B.3).

Local Linear Representation. This step aims to seek
*w5 fw1;w2; . . . ;whgT when representing testing sample xMR* based

on DMR
h , that is, x

*
MR)DMR

h
*w. Various techniques for solving the dictio-

nary coefficients are available. Sparse coding with least absolute shrinkage

and selection operator (LASSO) (23) uses several training samples with
nonzero coefficients to linearly represent the testing sample. Locality-

constrained linear coding (LLC) (24) focuses on locality by limiting linear
coding within a local space. In LAE (18), the reconstructed sample is

located in a convex region on a hyperplane spanned by its closest neighbors:

x
*

MR 5 DMR
h

*w1*e5 +
h

i 5 1

x
*

MR
i wi 1

*e Eq. 4

s:t: k*ek, t;

" x
*

MR
i ;OK

�
x
*

MR
�
;   wi 5 0

+
h

i 5 1

wi 5 1;   wi $ 0

where OKðx
*

MRÞ is a set of K-nearest neigh-

bors of x
*

MR in DMR
h . Given that locality is

important in this study, LAE is used to solve

the dictionary coefficients.
Prediction. The CT correspondence of x

*
MR

(i.e., x
*

CT 5 f ðx*MRÞ) can be generated on the
basis of Equations 2–4:
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Vector x
*

CT can be reshaped into a CT patch
xCT (green grid in Fig. 1D) centered at point

x. After predicting a CT patch for each point,

the weighted average of overlapped patches is
obtained to achieve the CT value at each

point. The weight of point u in patch xCT is
defined according to the distance from u to x:

vu
x 5 aDðu;xÞ;   0, a, 1  Eq. 6

where Dðu; xÞ is the Euclidean distance between u and x. As u gets

away from x, the weight at u decreases, indicating that the patch
contributes more in predicting central points than peripheral points.

Finally, the predicted CT value of point x is calculated via:

YCTðxÞ 5
+u2xCT v

x
uÎ

x

u

+u2xCT v
x
u

  Eq. 7

where u is a point in patch xCT , vx
u is the weight of x in patch uCT, and

Î
x

u is the intensity value of x in patch uCT . Given that the image patch
centered at u (i.e., uCT ) covers point x, we weight-averaged all over-

lapped CT patches at x (i.e., uCT ;"u 2 xCT ) to obtain YCTðxÞ (green
solid circle in Fig. 1D).

PET Reconstruction

After CT prediction, the predicted CT images are transformed to

attenuation coefficient maps (m-map) based on the following criteria
(12):

m 5

�
9:6 · 1025ðh1 1000Þ h# 47 HU
5:1 · 1025ðh1 1000Þ1 4:7 · 1022; h. 47 HU

Eq. 8

where h denotes the CT value in Hounsfield units (HUs).

Our dataset does not contain PET scans. To apply the proposed
method in PET attenuation correction, we followed Hofmann et al.

(11) to simulate a PET image for each subject. The template brain MR
and 18F-FDG PET images in statistical parametric mapping toolbox

(25) were used, and the MR template in the toolbox was registered to
each subject in our dataset using Advanced Normalization Tools (26).

The obtained deformations were further applied to the PET template,
generating a PET image for each subject. The attenuation correction

was performed the same way as in Hofmann et al. (11).

Evaluation

Validation Scheme. This method was evaluated in a leave-one-
subject-out manner, in which 12 subjects were used as the training

data and the remaining subject was regarded as the testing data. A set
of experiments was performed: accuracy of predicted CTs compared

FIGURE 1. Detailed procedures of LDM.
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with real CTs, effectiveness of considering locality, performance of

using multimodality MR images, comparison of relevant methods in
CT prediction and PET reconstruction. The Wilcoxon signed-rank test

was used to show the statistical result between each compared method
and the proposed method.

The predicted CT was compared with the real CT by 4 measures:
the mean absolute error (MAE) for voxels in the brain volume, Pearson

linear correlation coefficient, peak signal-to-noise ratio (PSNR), and
Dice similarity coefficient (DSC) of bone volume. The bone region was

obtained by setting a threshold at 100 HUs as in Burgos et al. (3).

Accuracy of PET reconstruction was measured by the coefficient of
determination R2 and the linear regression slope from scatterplots.

Parameter Selection. A 2-fold cross-validation strategy was used to
choose parameters. Specifically, the dataset was randomly divided into

2 groups consisting of 6 and 7 subjects, respectively. To determine the
parameters in 1 group, we performed leave-one-out cross-validation

on the other group. The parameter combination that resulted in the
lowest average MAE was chosen. Finally, we set the MR patch size to

15 · 15 · 3 (first group) and 13 · 13 · 3 (second group), local search
window to 17 · 17 · 5 (both groups), number of nearest neighbors in

LAE (i.e., K in Eq. 4) to 30 (first group) and 40 (second group), and
parameter a in Equation 6 to 0.9. In outlier detection, 1 clustering center

in k-means was chosen, and 70% of samples in the CT dictionary were
retained via kNN. Note that 3 parameters were set empirically and were

not included in the cross-validation: 1.0 and 1.2 for the weights of T1
and T2, respectively (i.e., xMR*5 ½1:0 � xT1*; 1:2 � xT2*�); 100 for the

number of nearest neighbors in kNN in dictionary reselection; and

3 · 3 · 1 for the size of the predicted CT patch (i.e., xCT).

RESULTS

Accuracy of CT Prediction

The mean6 SD of MAE, correlation, PSNR, and bone DSC for
all subjects comparing CT substitutes with real CTs were 110.1 6
15.3 HUs, 0.82 6 0.11, 24.81 6 2.18 dB, and 0.84 6 0.03, re-
spectively. Figure 2 shows CT prediction results of 3 slices from
different subjects. Columns 1–5 correspond to T1, T2, real CT,
predicted CT, and difference images between real and predicted
CTs, respectively. The upper scale bar shows the intensity distri-
bution of real and substitute CTs, whereas the lower scale bar
shows the values in difference images. In difference images, red
indicates a higher intensity in the real CT and blue indicates a
higher intensity in the CT substitute. Large differences between
real and substitute CTs are present at tissue interfaces and in
bone regions.

Effectiveness of Considering Locality

k-means 1 kNN in Outlier Detection. In this section, OC-SVM
(22), LOF (21), and k-means combined with kNN (i.e., k-means 1
kNN) are compared. Figure 3A shows the mean 6 SEM of MAEs
for 13 subjects obtained by OC-SVM, LOF, and k-means 1 kNN in
outlier detection. Compared with OC-SVM and LOF, k-means 1
kNN obtains 3.5 and 2.4 HU lower mean MAEs than OC-SVM
(P 5 0.0061) and LOF (P 5 0.0415). To evaluate the effectiveness
of the outlier detection step, results of the method without outlier
detection are also shown in Figure 3A. Compared with the method
without outlier detection, the mean MAE of 13 subjects obtained
by k-means 1 kNN was reduced from 117.9 to 110.1 HUs (P 5
0.0002).
LAE in Local Linear Representation. Three coding methods (i.e.,

LASSO, LLC, and LAE) were compared for selection to solve
dictionary coefficients. Figure 3B shows mean6 SEM of MAEs for
13 subjects obtained by different coding techniques. Compared with
LASSO, the mean MAE across all subjects using LAE was reduced
from 112.9 to 110.1 HUs (P 5 0.0256). Compared with LLC, LAE
obtained a 1.8 HU lower mean MAE (P 5 0.0112).

Performance of Using Multimodality MR Images

To show the impact of using different modalities, performance
was evaluated using only T1 or T2 or combined T1 and T2. Figure 4
shows the results of 2 slices obtained using T1, T2, and T1 1 T2.
The mean 6 SD MAEs obtained using T1, T2, and T1 1 T2 were
119.8 6 15.9, 118.9 6 16.7, and 110.1 6 15.3 HUs, respectively.
Using both T1 and T2 produces better results than a single T1
(P 5 0.0002) or T2 (P 5 0.0034). When a single-modality MR
image (T1 or T2) was used, there was no statistically significant
difference between the results (P 5 0.6956).

Comparison of CT Prediction

LDM is compared with 3 relevant methods (i.e., Burgos et al.
(3), Ta et al. (27), and Andreasen et al. (13)). Burgos et al. (3)
considered local information and used the local image similarity
measure to match each MR/CT pair to a given MR image to pre-
dict CT substitutes. Ta et al. (27) combined patch-matching (28)
with label fusion (14) in the segmentation task. This method (27)
found k similar patches of the testing patch from the training
dataset and weight combined the training labels by calculating
the sum of the squared difference between testing and training
patches. Ta et al.’s method can be applied in CT prediction by

FIGURE 2. CT prediction results by the proposed method. MAEs of 3

slices are 140, 85, and 53 HUs; PSNRs are 21.6, 22.5, and 24.7 dB;

correlations are 0.83, 0.84, and 0.83; and bone DSCs are 0.88, 0.86,

and 0.88 from row 1 to 3.

FIGURE 3. Effectiveness of considering locality: mean ± SEM of MAE

for 13 subjects obtained using OC-SVM, LOF, and k-means 1 kNN in

outlier detection, as well as method without outlier detection (A) and

mean ± SEM of MAE obtained using LASSO, LLC, and LAE to solve

dictionary coefficients (B).
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replacing label fusion with CT intensity fusion. Andreasen et al.
(13) proposed a patch-based method, where k-nearest patches be-
tween MR testing and training images were searched and the cor-
responding CT training patches were combined to obtain the CT
prediction. Because the input testing MR image is a single image in
Burgos et al. (3), these methods are compared using T1 or T2 as the
testing MR image. Results measured in MAE, correlation, PSNR,
and bone DSC by 4 methods are shown in Table 1. Our method
achieves better results than each of the compared methods. The
P values of the Wilcoxon signed-rank test are also shown in Table 1.
In our study, a server with 32 cores at 2.13 GHz and 128-G

memory was used. Because each patch can be processed in-
dependently, we used parallel processing to speed up our algorithm.
For CT prediction of 1 subject, our algorithm took 2.8 h on average.
Burgos et al. (3), Andreasen et al. (13), and Ta et al. (27) took
approximately 2.5 h, 2.3 h, and 45.1 min, respectively.

Comparison of PET Reconstruction

Figure 5 shows the results of 1 slice obtained by 4 methods
using T1 (rows 1–3) and T2 (rows 4–6). Visually, LDM produces
the closest m-maps to the real CT m-map; however, PET recon-
structions from all methods look similar. Scatterplots are used for
this slice to compare intensities of PET images reconstructed from
predicted and real CTs (Supplemental Fig. 1; supplemental mate-
rials are available at http://jnm.snmjournals.org). The dashed red
lines indicate a linear fit for all points. The slope of dashed lines
should ideally be 1. As can be seen from Supplemental Figure 1,
all 4 methods produce satisfactory results, and the slope of LDM is
closest to 1 when using T1 or T2.
The accuracy for PET reconstruction from different m-maps

measured in regression slope and R2 from scatterplots for all sub-
jects are shown in Table 2. LDM generates the best results for
slopes and R2 on T1 or T2 images. When using both T1 and T2,
LDM obtained a mean 6 SD slope of 1.0084 6 0.0182 and R2 of
0.9903 6 0.0051 from scatterplots.

DISCUSSION

There are 2 assumptions in the current study. Assumption 1 has
been successfully applied in classification studies (15,29,30), in
which the samples from different classes are located on different
nonlinear submanifolds and a sample can be approximately rep-
resented as a linear combination of several nearest neighbors from
its corresponding submanifold. Considering that samples from
MR and CT belong to different classes and should be located on
different nonlinear manifolds, we applied this assumption to the
current study. Assumption 2 is crucial and is used to derive Equa-
tion 3. However, the mapping between MR and CT samples is not
a diffeomorphism without any constraint. To solve this problem,
we emphasized the locality using local dictionary construction and
local linear representation. Under these local constraints, the se-
lected MR and CT training samples are expected to have a 1-to-1
correspondence, which supports assumption 2.
In our experiments, we showed the results using different outlier

detection techniques (i.e., OC-SVM, LOF, and k-means 1 kNN).
Both kNN and LOF belong to density-based techniques and produced
lower prediction errors than OC-SVM, indicating that density-
based techniques are more suitable for our dataset. In LOF, be-
cause no definite rule exists to determine whether a sample is

FIGURE 4. Results of 2 slices (A and B) generated using T1, T2, and

T11 T2 images. MAEs for the 2 slices obtained using T1/T2/T11 T2 are

131/132/124 HUs (A) and 89/81/77 HUs (B), PSNRs are 21.1/21.0/21.7 dB

(A) and 21.8/22.2/22.8 dB (B), correlations are 0.82/0.81/0.84 (A) and

0.74/0.68/0.75 (B), and bone DSCs are 0.80/0.81/0.82 (A) and 0.76/

0.74/0.82 (B).

TABLE 1
Mean ± SD of MAE, Correlation, PSNR, and Bone DSC for 13 Patients Generated by Burgos et al. (3), Ta et al. (27), and

Andreasen et al. (13) and LDM Using T1 or T2 Image

Image Measures (mean ± SD) Burgos et al. (3) Ta et al. (27) Andreasen et al. (13) LDM

T1 MAE 146.5 ± 25.6 (0.0002) 132.8 ± 15.5 (0.0002) 128.6 ± 14.5 (0.0002) 119.8 ± 15.9

Correlation 0.75 ± 0.12 (0.0007) 0.76 ± 0.12 (0.0009) 0.78 ± 0.10 (0.0015) 0.80 ± 0.10

PSNR 20.48 ± 2.53 (0.0002) 22.35 ± 2.25 (0.0002) 23.49 ± 1.99 (0.0002) 24.40 ± 2.13

Bone DSC 0.73 ± 0.07 (0.0005) 0.76 ± 0.05 (0.0088) 0.77 ± 0.03 (0.0068) 0.79 ± 0.04

T2 MAE 140.2 ± 26.0 (0.0017) 131.2 ± 17.7 (0.0002) 125.9 ± 16.5 (0.0002) 118.9 ± 16.7

Correlation 0.76 ± 0.13 (0.0479) 0.77 ± 0.12 (0.0009) 0.78 ± 0.11 (0.0002) 0.81 ± 0.10

PSNR 20.97 ± 2.89 (0.0017) 22.44 ± 2.41 (0.0002) 23.73 ± 2.26 (0.009) 24.56 ± 2.25

Bone DSC 0.74 ± 0.06 (0.0005) 0.78 ± 0.04 (0.0002) 0.80 ± 0.03 (0.0181) 0.81 ± 0.03

Data in parentheses are P values.
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an outlier, this may lead to incorrect detections in our dataset.
k-means 1 kNN produced the best results and was chosen in
the current study. In addition, we showed the performance of
different coding techniques. LAE and LLC emphasize the locality
of the representation and generate lower prediction errors than
LASSO, reaffirming the importance of considering locality in this
study. Compared with LLC, LAE ensures the reconstructed sam-
ple is a convex combination of its K-nearest neighbors and is more
suitable in this study.

In our experiments, we compared techniques with Burgos et al.
(3), Ta et al. (27), and Andreasen et al. (13). For Burgos et al. (3),
we used their online implementation on the Translational Imaging
Group website. The results of Burgos et al. (3) in our experiments
are worse than what they reported, possibly the result of the differ-
ence in data used in our respective studies. Parameters in Ta et al.
(27) and Andreasen et al. (13) were optimized in the same way as
the proposed method. Compared with our previous study (31), in
this paper, parameters were further optimized, the accuracy of CT
prediction was further validated, and the application in PET atten-
uation correction was added.
In our method, we did not apply deformable registration but

used only affine registration (i.e., FLIRT) to align images. Because
our dataset contains only brain images, we assumed that there are
only small deformations between T1, T2, and CT images for the
same patient. For deformations between different subjects, we used
a large search window to select training samples, and only similar
samples were retained after dictionary reselection and outlier
detection. This process is supposed to solve the problem caused by
inaccurate alignment between different subjects. However, when
studying body images, we need to replace FLIRT by deformable
registration methods, because large deformations may exist between
T1, T2, and CT images of the same patient due to respiration.
Errors at tissue interfaces are possibly caused by the low intensities

in conventional MRI sequences (i.e., T1 and T2 images) in both bones
and air. In bone regions, 2 MR patches with similar low intensities
may correspond to 2 CT patches with vastly different CT values and
this may be one of the causes for high prediction errors in bone
regions. More image information in bone structures may improve the
prediction accuracy at tissue interfaces and in bone regions.
The proposed method does not require image segmentation or

accurate registration. Compared with existing patch-based meth-
ods, we proposed to emphasize the locality in both MR and CT
dictionaries. Outliers were detected in the CT dictionary, and LAE
was used to solve dictionary coefficients. Results indicate that
emphasis on locality can significantly improve the accuracy of CT
predictions.
Although the proposed method has several advantages, it still

has a few limitations: because of the limited information provided
by conventional MR images, errors at tissue interfaces and in bone
regions still exist; as with all atlas-based methods, the proposed
method requires a dataset containing MR/CT pairs; and compu-
tation time needs to be improved.
Future work includes adding other MRI sequences, which may

provide a better estimate on bone density. Because all subjects are

FIGURE 5. Results generated by Burgos et al. (3), Ta et al. (27), and

Andreasen et al. (13), and LDM based on T1 (1–3 rows) or T2 (4–6 rows)

image. First and fourth rows show μ-maps. Second and fifth rows show

reconstructed PET images from different μ-maps. Third and sixth rows

show absolute difference images between PET images reconstructed

by predicted CTs and real CTs. Values in difference images are 5 times

as original differences.

TABLE 2
Mean ± SD of Regression Slope and R2 from Scatterplots for 13 Patients Obtained by Comparing Intensities of PET Images

Reconstructed from Predicted and Real CTs

Measures

(mean ± SD) Burgos et al. (3) Ta et al. (27) Andreasen et al. (13) LDM

T1 Slope 1.0131 ± 0.0229 (0.0002) 1.0123 ± 0.0198 (0.0007) 1.0111 ± 0.0191 (0.0168) 1.0097 ± 0.0186

R2 0.9816 ± 0.0072 (0.0017) 0.9839 ± 0.0054 (0.0479) 0.9856 ± 0.0056 (0.3757) 0.9873 ± 0.0053

T2 Slope 1.0135 ± 0.0221 (0.0002) 1.0120 ± 0.0201 (0.0081) 1.0112 ± 0.0187 (0.0034) 1.0093 ± 0.0191

R2 0.9807 ± 0.0067 (0.0007) 0.9848 ± 0.0061 (0.0007) 0.9874 ± 0.0047 (0.0327) 0.9892 ± 0.0043

Data in parentheses are P values.
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healthy volunteers, we can also add subjects with abnormal anatomies
to further evaluate this method in pathologic states. Finally, speeding
up the proposed algorithm is a part of our future work.

CONCLUSION

This paper presents a patch-based method for CT prediction
from MR images, which can be applied to brain PET attenuation
correction. In LDM, we assume MR patches and CT patches are
located on different nonlinear manifolds, and the mapping from
MR to CT manifold approximates a diffeomorphism under a local
constraint. Several techniques are performed to construct local
dictionaries (i.e., local search window, kNN in MR dictionary, and
outlier detection in CT dictionary) whereas LAE is used in local
linear representation. Under these local constraints, the MR dic-
tionary coefficients are linearly transferred to the CT manifold to
generate CT predictions. No image segmentation or accurate reg-
istration is required. The proposed method is evaluated for brain
images on a dataset of 13 MR/CT pairs and demonstrates superior
performance compared with competing methods.
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