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Attenuation correction in hybrid PET/MR scanners is still a challenging

task. This paper describes a methodology for synthesizing a pseudo-

CT volume from a single T1-weighted volume, thus allowing us to
create accurate attenuation correction maps. Methods: We propose

a fast pseudo-CT volume generation from a patient-specific MR T1-

weighted image using a groupwise patch-based approach and an
MRI–CT atlas dictionary. For every voxel in the input MR image, we

compute the similarity of the patch containing that voxel to the

patches of all MR images in the database that lie in a certain anatomic

neighborhood. The pseudo-CT volume is obtained as a local weighted
linear combination of the CT values of the corresponding patches. The

algorithm was implemented in a graphical processing unit (GPU).

Results: We evaluated our method both qualitatively and quantita-

tively for PET/MR correction. The approach performed successfully
in all cases considered. We compared the SUVs of the PET image

obtained after attenuation correction using the patient-specific CT

volume and using the corresponding computed pseudo-CT volume.

The patient-specific correlation between SUV obtained with both
methods was high (R2 5 0.9980, P , 0.0001), and the Bland–Altman

test showed that the average of the differences was low (0.0006 ±
0.0594). A region-of-interest analysis was also performed. The corre-
lation between SUVmean and SUVmax for every region was high (R2 5
0.9989, P , 0.0001, and R2 5 0.9904, P , 0.0001, respectively).

Conclusion: The results indicate that our method can accurately ap-

proximate the patient-specific CT volume and serves as a potential
solution for accurate attenuation correction in hybrid PET/MR sys-

tems. The quality of the corrected PET scan using our pseudo-CT

volume is comparable to having acquired a patient-specific CT scan,

thus improving the results obtained with the ultrashort-echo-time–
based attenuation correction maps currently used in the scanner.

The GPU implementation substantially decreases computational time,

making the approach suitable for real applications.
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PET performs functional imaging by detecting pairs of anni-
hilation g-rays emitted indirectly by a positron-emitting radionu-

clide (radiotracer), allowing measurement of its biodistribution. MRI

provides, among others, detailed morphologic imaging of organs or

soft tissue, with excellent spatial resolution. The evolution of both

modalities into complementary in vivo molecular imaging tech-

niques has generated increased interest in the development of hy-

brid MR/PET systems (1).
The construction of accurate attenuation correction (AC) maps

is essential for the clinical application of hybrid PET/MR systems.

Constructing PET AC maps for use in these hybrid systems is

challenging because no direct relation exists between PET attenu-

ation coefficients (m) and MR signal intensity (2), contrary to what

happens with AC maps and the intensity of CT images (3). Addi-

tionally, treating bone as soft tissue in MR-derived AC maps for

PET/MR AC leads to a substantial underestimation in the analysis

of PET tracer distribution (4). Creating a pseudo-CT volume from

MRI data could help to produce an accurate AC map comparable in

quality to one acquired from a real CT scan of the patient.
Previous approaches to MRI-based AC have been presented in the

literature (5). They differ mainly in the type of semantic representation

used to describe the image data, based on mathematic morphology

(6), deformable models (7), MRI Dixon (8) or ultrashort-echo-time

(TE) sequences (9,10), and multiatlas segmentation using label fu-

sion (11). However, most of these methods showed limited accuracy

when used to create AC maps (12). Hofmann et al. combined local

pattern recognition with image registration to generate pseudo-CT

images (13). Recently, Izquierdo-Garcia et al. proposed an approach

to pseudo-CT synthesis based on nonrigid registration to an atlas

using the standard SPM8 software with a CT template (14). Burgos

et al. described an improved method that uses nonrigid registration

to an atlas, followed by label fusion based on patch-similarity mea-

surements (15). Furthermore, clinical scanners currently rely on

acquisition of multiple MR sequences, but the results are not fully

reliable (16).
Patch-based methods have proven to be a versatile segmentation

technique (17). Patch-based segmentation was introduced as an alter-

native to label propagation that eliminates the requirement for non-

rigid registration. The technique is an adaptation of the nonlocal

framework developments for nonlocal denoising (18). Several ap-

proaches have been introduced depending on the patch fusion meth-

ods or rules (19,20). Ye et al. proposed a patch-based method for

generating a T2-weighted volume from a T1-weighted volume (21).
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In this work, we propose a simple and fast approach to pseudo-CT
synthesis from a single patient-specific MRT1-weighted image using
a groupwise patch-based approach and a limited MRI and CT atlas
dictionary. Our method is purely patch-based, eliminating the need
for a registration step and considerably reducing time. Also, because
the algorithm becomes parallelizable, a fast implementation using a
graphical processing unit (GPU) card is presented.
In the next section we describe the dataset used in this work and

the overall process of the pseudo-CT synthesis and AC maps. Then,
we present different experiments quantitatively comparing the use of
patient-specific CT and our pseudo-CT volumes for AC correction.
Finally we discuss the findings from the experimental results and the
possible implications for managing PET AC in hybrid PET/MR
systems, and we draw some conclusions.

MATERIALS AND METHODS

Patient Population

The institutional review board–approved retrospective study included

a dataset containing 19 healthy women (mean age, 34.96 6 5.23 y;
range, 27–46 y). All underwent both MR and CT imaging. For this type

of study, the need for written informed consent was waived.

Image Acquisition

MR images of the head were acquired on a Signa HDxt 3.0-T
MR scanner (GE Healthcare) using the body coil for excitation and an

8-channel quadrature brain coil for reception. Imaging was performed
using an isotropic 3-dimensional (3D) T1-weighted spoiled gradient

recalled sequence with a repetition time of 10.024 ms, TE of 4.56 ms,
inversion time of 600 ms, 1 excitation, acquisition matrix of 288 · 288,

resolution of 1 · 1 · 1 mm, and flip angle of 12�.
Low-dose CT images were acquired on a Somatom Sensation 16

CT scanner (Siemens) with a matrix of 512 · 512, resolution of 0.48 ·
0.48 mm, slice thickness of 0.75 mm, pitch of 0.7 mm, acquisition

angle of 0�, voltage of 120 kV, and radiation intensity of 200 mA.

Data Preprocessing

Images were preprocessed using 3D Slicer built-in modules (22).
This preprocessing included MRI bias correction (N4 bias correction

tool in the Insight Toolkit), rigid registration (general registration
BRAINS) to align each patient-specific MRI–CT pair, rigid registration

to prealign all the images in the same spatial origin—all the images are
set in the same orientation—and normalization of the grayscale values

(Insight Toolkit–based histogram matching).

Pseudo-CT Synthesis

Weights Estimation. Let I be an input image to be processed, and A
an anatomy atlas containing a set of MRI T1-weighted volumes IMR

and their corresponding ICT volumes: A5fðIiMR; I
i
CTÞi 5 1; . . . ; ng.

Let us consider wi as a weight reflecting nonlocal similarities between

voxels a 5 ðax; ay; azÞ in the input image I and voxels b5ðbx; by; bzÞ in
the image IiMR of the atlas A over the image domain V, and computed

using the following equation:

wiða; bÞ 5 f

0
B@
+a

02PI ðaÞ;b02P
Ii
MR

ðbÞ
�
Iða0Þ2IiMRðb0Þ

�2

2Sbŝ2

1
CA Eq. 1

where PIðaÞ is a 3D patch of the image I centered at voxel a, S is the

number of voxels in the 3D patch, b is a smoothing parameter, and ŝ is
the SD of the noise. The original denoising approach assumes that sim-

ilarities of a patch can be found over the entire image domain V.
However, in our context of modality propagation, the variations of the

anatomic structures in a population are bounded, and we can thus find

good matches in a specific neighborhood Nm · m · mðaÞ of a certain voxel
a. The weights are then estimated in this local area as w 5 fwða; bÞ;
"  a 2 V; b 2 Nm · m · mðaÞg, reflecting the local similarities between

I and fIiMRgi51;...;n.
The size of the patch has been set to 3 · 3 · 3 for all experiments.

The size of the considered neighborhood has been set to 11 · 11 · 11,
which is directly related to the anatomic variability of the head (21).

Groupwise Label Propagation. Once the weights have been com-
puted using Equation 1, they can be used to estimate the corresponding

voxel a of image Ipseudo-CT as a weighted linear groupwise combination
of the patches in IiCT as follows:

"  a 2 V; Ipseudo-CTðaÞ 5
+n

i51+b2Nm · m · mðaÞwða; bÞIiCT ðbÞ
+n

i51+b2Nm · m · mðaÞwða; bÞ
; Eq. 2

which takes all the images IiMR in the atlas A to produce a groupwise

combination of IiCT, thus obtaining an estimation of Ipseudo-CT.
Regularization. Contrary to registration-based approaches, if there is

no correspondence between the patch of the input image I and the patches
of the images IiMR in the atlas A, no value (NaN due to division by 0) is

assigned to the voxel a of Ipseudo-CT. This situation makes it necessary to

include a regularization step that deals with nonlabeled voxels. Because
these cases are usually isolated, in this work we have assigned to this

voxel the value of the median in its neighborhood. The size of this new
neighborhood has been set to 3 in this paper: N3 · 3 · 3ðaÞ.

"  a5NaN2V; Ipseudo-CTðaÞ5medianN3 · 3 · 3ðxÞ
�
Ipseudo-CTðaÞ

�
: Eq. 3

GPU Implementation

The patch-based algorithm is highly parallelizable. The calculation
of the resulting Ipseudo-CT for each voxel I in the 3D input volume is

completely independent from that for the other voxels. Configuring a
3D grid in a CUDA (Compute Unified Device Architecture) model

allows loops to be eliminated in order to iterate over the different voxels
in the volume. Our CUDA kernel contains the selection of atlas A and

the search in the neighborhood N; in this way, each label calculation is
performed in a separate thread.

PET Simulation

We obtained detailed tissue-segmented models from the T1-weighted

volumes using the pipeline described by Torrado-Carvajal et al. (23).
These models contained cerebellar white and gray matter, brain white

and gray matter, cerebrospinal fluid, skull, eyes, muscle, fat, and skin.
We assigned a standard 18F-FDG PET activity to each tissue according

to relative values (gray matter, 4.0; white matter and rest of soft tissue,
1.0; cerebrospinal fluid and bone, 0.0) (24,25), obtaining the ground-

truth PET maps. Then, these ground-truth maps were projected with the
3D ordered-subsets expectation maximization software (26), assuming

the geometry, parameters, and sinogram format of the Biograph mMR
scanner (27). The system response matrix used in this case assumed a

uniform gaussian point-spread function of 4 mm in full width at half
maximum in the whole field of view. Like Hofmann et al., we neglected

scatter and random coincidences to isolate the effect of the AC maps in
the final reconstructed PET images (13). The projection data generated

were our attenuation-free reference data.
The 511-keVAC maps derived from the CT (gold standard) and MR

(pseudo-CT) images and originated using the conversion described by
Nakamoto et al. (28) were forward-projected to generate the attenuation

data. The forward projection is based on the same code as that used to
project the PET distribution with the 4-mm point-spread function, as the

blurring effects involved in the PET emission, such as positron range
and noncolinearity, also affect attenuation of the g-rays. We then used

these 2 projection datasets (ProjmMR and ProjmCT) to generate our
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attenuation-corrected data (PETMR-AC) from the attenuation-free data

(PET) by following this equation:

PETMR-AC 5 PET  eðProjmMR-ProjmCTÞ: Eq. 4

Image Reconstruction

Both the attenuated projection data and the attenuation-free data
were reconstructed with 3D ordered-subsets expectation maximi-

zation software (26) adapted to the geometry and sinogram size of
the mMR scanner. We used 30 iterations and 3 subsets, and the

reconstructed images consisted of 201 · 201 · 129 voxels of 2 ·
2 · 2 mm each. As indicated by Burger et al., the difference be-

tween these 2 reconstructed images depends on the reconstruction

method used, but it is outside the scope of this work to analyze this
effect (3).

Experimental Setup

The available data were separated into an atlas A containing 10
MRI–CT pairs, A 5 fðIiMR; I

i
CTÞ  i 5 1; . . . ; 10g, and a test set T

containing the 9 remaining MRI–CT pairs, T 5 fðIjMR; I
j
CTÞ  j 5

1; . . . ; 9g.

RESULTS

Image Quality

Figure 1 shows a complete head MRI volume, the ground-truth
CT volume, and the synthesized pseudo-CT volume for 2 healthy
subjects. An expert radiologist visually inspected the images to con-
firm the accuracy of our method; our pipeline worked equally well in
all cases considered.
With the proposed method, the shape of the skull was estimated

generally well despite patient-specific anatomic variations. The
comparison between the patient-specific CTand pseudo-CT volumes
showed that our method accurately estimates the ground truth,
delimiting the skull contours and differentiating air from bone.
Visual inspection of the results showed the high quality of the
pseudo-CT estimation and the robustness of the method, which is able
to capture the details of the bone spikes in nonsmooth areas such as
the sinuses and the cervical vertebrae.
We also tested whether changing the size of the atlas affects the

quality of the synthesized images in subjects without skull deforma-
tions, using atlases of 5, 7, and 10 datasets (Fig. 2). We used the
normalized cross correlation (NCC) to quantitatively measure the qual-

ity of the synthesized pseudo-CT volumes
(I2) compared with the ground-truth CT
volume (I1), following Equation 5.

NCC 5
1

N
+
x;y

ðI1ðx; yÞ2m1ÞðI2ðx; yÞ2m2Þ
s1s2

:

Eq. 5

The experimental NCC was 0.9281 6
0.0066 for the atlas with 5 datasets,
0.9294 6 0.0051 for the atlas with 7
datasets, and 0.9324 6 0.0048 for the at-
las with 10 datasets.

FIGURE 2. Axial patient-specific CT and pseudo-CT images synthesized using atlases of dif-

ferent sizes.

FIGURE 1. Sagittal, coronal, and axial slices of patient-specific MR (first column), patient-specific CT (second column), and synthesized

pseudo-CT (third column) images of 2 subjects.
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Artifacts caused by dental restorations are a common problem
in MRI and CT scans of the head and neck. Dental implants impair
CT image quality by causing beam-hardening artifacts, MR image
quality by causing signal loss, and synthesized pseudo-CT image
quality by causing blurring (Fig. 3).

PET Correction Quality

Voxel-by-Voxel Analysis. Voxel-by-voxel analysis was performed
to determine differences in reconstructed SUVs for all test subjects.
There was an excellent match between the attenuation-free SUV
images (gold standard)—attenuated and corrected with the patient-
specific CT volume—and the pseudo-CT–based corrected SUV
images—attenuated with the patient-specific CT volume and cor-
rected with the synthesized pseudo-CT volume. Errors were lower
than 10% of the SUVs in most voxels. Some deviations could be
appreciated in subjects A and B, but the error was lower than 5% on
average (Fig. 4).
We also computed the voxel-by-voxel correlation between

pseudo-CT–based SUV and CT-based SUV for all 9 test subjects

over the whole head, as well as the Bland–
Altman plot of SUVs (Fig. 5). Voxels
dominated by noise (SUV , 0.01) were
not included in the analysis. The correla-
tion plot showed an excellent correlation
between SUVs obtained with both meth-
ods (R2 5 0.9980, P , 0.0001). The
Bland–Altman plot showed that the aver-
age of the differences was low (0.0006 6
0.0594); the difference between methods
tended to decrease as the average in-
creased, accumulating the error in voxels
with low SUVs.
Region-of-Interest (ROI) Analysis. ROI

analysis was performed to determine differ-
ences in assigned attenuation coefficients and reconstructed SUVs.
ROIs were defined as the original segmented tissues used to assign
PET activity in the simulation.
Table 1 summarizes pseudo-CT–based and CT-based attenua-

tion coefficients for each ROI. Paired-sample Wilcoxon signed
rank tests were performed to assess whether there were differ-
ences in the mean ranks of pseudo-CT–based and CT-based
attenuation coefficients. No significant difference was found in
the mean CT-based attenuation coefficients, as compared with
assigned pseudo-CT–based attenuation coefficients, in any ROI
except the skin.
We computed the correlation between pseudo-CT–based SUV

and CT-based SUV for each ROI, as well as the Bland–Altman
plot of SUVmean and SUVmax (Fig. 6). The correlation plot for
SUVmean showed an excellent correlation between SUVmean

obtained with both methods (R2 5 0.9989, P , 0.0001). The
Bland–Altman plot for SUVmean showed that the average of the
differences was low (0.0009 6 0.0338); the difference between
methods did not show an increasing or decreasing trend as the

FIGURE 4. Sagittal, coronal, and axial slices of attenuation-free SUV images (first column), pseudo-CT–based corrected SUV images (second

column), and error between both corrections (third column) for 2 subjects. Blue values in error maps denote decreased PET SUVs in pseudo-CT–

based correction, whereas red values denote increased PET SUVs.

FIGURE 3. Artifacts caused by dental restorations. MR image (left) is impaired by signal loss; CT image

(center) is impaired by beam hardening; pseudo-CT image (right) presents some blurring in those zones.
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average changed. The correlation plot for SUVmax showed a slight
overestimation in the SUVmax obtained with our method (R2 5
0.9904, P , 0.0001). The Bland–Altman plot for SUVmax showed
that the average of the differences was low (0.0312 6 0.2345); the
difference between methods confirmed a slight overestimation of
our method in regions with low SUVs.

Experiments on Clinical Data

To perform a validation on real data, we acquired MR, PET,
and CT volumes of a subject. The institutional review board
(Fundación HM Hospitales) approved this study, and the subject
gave written informed consent.
MR and PET images of the head were acquired on a Biograph

mMR scanner (Siemens) using the body coil for excitation and an
8-channel quadrature brain coil for reception. We acquired a 3D T1-
weighted magnetization-prepared rapid-acquisition gradient-echo
volume with a repetition time of 1,800 ms, TE of 2.65 ms, inversion
time of 900 ms, 1 excitation, acquisition matrix of 250 · 250 ·
250, resolution of 1 · 1 · 1 mm, and flip angle of 9�. Further-
more, to obtain the AC map, we acquired a double-ultrashort-TE
sequence with a repetition time of 11.94 ms, first TE of 0.07 ms,

second TE of 2.46 ms, 1 excitation, ac-
quisition matrix of 192 · 192 · 192, res-
olution of 1.56 · 1.56 · 1.56 mm, and flip
angle of 10�, as well as a Dixon sequence
with a repetition time of 3.6 ms, first TE
of 1.23 ms, second TE of 2.46 ms, acqui-
sition matrix of 192 · 126 · 128, resolu-
tion of 2.08 · 2.08 · 2.34 mm, and flip
angle of 10�.
Low-dose CT images were acquired on

an Aquilion Prime CT scanner (Toshiba)
with a matrix of 512 · 512, resolution of
0.43 · 0.43 mm, slice thickness of 1 mm,
pitch of 0.62 mm, acquisition angle of 0�,
voltage of 120 kV, and radiation intensity
of 200 mA.
The subject was administered 129.1

MBq of 18F-FDG. PET data were acquired
20 min after the injection at a single bed position for 15 min. The
images without AC were reconstructed using the iterative algo-
rithm provided by the manufacturer (ordinary Poisson ordered-
subsets expectation maximization) with 6 iterations and 21 subsets,
a reconstruction matrix of 344 · 344 · 127, and a resolution of
2.09 · 2.09 · 2.03 mm. The reconstruction included a point-spread
function model.
We synthesized the pseudo-CT volume using the atlas with 10

volume pairs and the same processing pipeline as in previous ex-
periments. The reconstructed image without AC was projected with
the same code as that used in the previous section. The resulting
sinograms were then corrected for attenuation using the 3
different AC maps (CT-based, ultrashort-TE MRI–based, and
pseudo-CT–based). The corrected sinograms were reconstructed with
the 3D ordered-subsets expectation maximization algorithm with 30
iterations and 1 subset, a reconstruction matrix of 127 · 127 · 127, and
resolution of 2 · 2 · 2 mm.
Figure 7 shows the MR, CT, ultrashort-TE MR, and pseudo-CT

images and the result of correcting the PET data with the different
volumes. The NCC was 0.5808 between the CTand the ultrashort-TE
MR images and 0.8919 between the CT and pseudo-CT images.

TABLE 1
Attenuation Coefficients Based on Pseudo-CT and CT for Each ROI

Attenuation coefficient

ROI Pseudo-CT–based CT-based Absolute difference P

Cerebellar white matter 0.094554 ± 0.000324 0.094557 ± 0.000556 0.000004 ± 0.000570 0.7969

Cerebellar gray matter 0.094910 ± 0.002787 0.094919 ± 0.003018 0.000009 ± 0.002358 0.6289

Brain white matter 0.094501 ± 0.000244 0.094468 ± 0.000512 0.000033 ± 0.000530 0.0938

Brain gray matter 0.094982 ± 0.004226 0.094942 ± 0.004577 0.000040 ± 0.003724 0.1211

Cerebrospinal fluid 0.094201 ± 0.006186 0.093993 ± 0.002647 0.000208 ± 0.005549 0.1406

Bone 0.171169 ± 0.039059 0.174073 ± 0.034212 0.002904 ± 0.028846 0.2383

Fat 0.096634 ± 0.013912 0.096558 ± 0.004161 0.000076 ± 0.012901 0.7969

Muscle 0.087851 ± 0.016329 0.087132 ± 0.004444 0.000719 ± 0.015747 0.1563

Skin 0.081767 ± 0.022670 0.087893 ± 0.009935 0.006126 ± 0.021313 0.0039

Data are mean ± SD pseudo-CT–based attenuation coefficient, CT-based attenuation coefficient, and absolute difference as obtained

from Wilcoxon signed-rank test.

FIGURE 5. (A) Voxel-by-voxel correlation between pseudo-CT– and CT-based SUV from all

subjects. (B) Bland–Altman plot of SUVs. Color bar shows density of voxels on histogram grid.
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Computational Time

For a 271 · 271 · 221 volume, the complete time to synthe-
size the pseudo-CT volume for different numbers of images in
the multiatlas case is shown in Table 2. In the worst-case scenario
(atlas of 10 volumes), computation of the pseudo-CT volume in
GPU took less than 9 min, 4,374 times less than with a Matlab

(The MathWorks) implementation, 27 times
less than with a C implementation, and 11
times less than with an OpenMP multi-
threaded C version using 32 threads.
All experiments were performed on a

3.1-Hz Xeon-E5 2687W (Intel), with 128
GB of random-access memory and Win-
dows (Microsoft) Server 2008 R2 powered
with a Tesla K20X GPU (Nvidia Corp.).

DISCUSSION

The generation of accurate AC maps is a
basic step for PET/MRI quantification.
However, ignoring bone is known to
cause a distorted and biased distribution of
the reconstructed SUV. Several approaches
have been proposed, based mainly on a
combination of MR sequences or using image
registration to take advantage of a priori
acquired CT data. Methods requiring the
acquisition of additional MR data show a
significant underestimation of activity concen-
tration. Approaches based on nonrigid image
registration are computationally intensive and
are normally unable to deal with local changes
in anatomy due to disease or implants.
We propose the use of a patch-based

method for synthesizing a pseudo-CT vol-
ume from a single T1-weighted MR vol-
ume. Compared with nonrigid registration
methods, the patch-based approach uses
information from only those volumes in
the atlas that actually match the patch,
preventing errors due to misregistration

and allowing accommodation for local morphologic changes in
the images.
Our results are in line with those recently described by Burgos

et al. (15). However, our method eliminates the need for image
registration, providing results with the same accuracy while allow-
ing use of a much faster algorithm.

We have evaluated our method both
qualitatively and quantitatively for PET/
MR correction. The visual (Fig. 1) and
quantitative (Fig. 4) analyses of image
quality showed that CT and pseudo-CT
images are very similar. The high NCC
values indicate that our method can accu-
rately approximate the patient-specific CT
volume. We also showed that in a subject
with a dental restoration, results were bet-
ter than with CT-based AC maps (Fig. 3).
No significant differences were found in
any ROI except the skin, for which the
deviation was 20.006126 6 0.004088
(P 5 0.0039) (Table 1); this result may be
due to the fact that the skin is the thinnest
ROI and that small errors in estimation of
the region can therefore have a large effect
on the result. Because the CT scan is not
for diagnostic purposes, the level of detail

FIGURE 6. (A and C) ROI correlation between mean pseudo-CT– and CT-based SUVs (A) and

between maximum pseudo-CT– and CT-based SUVs (C). (B and D) Bland–Altman plots of

SUVmean (B) and SUVmax (D). CSF 5 cerebrospinal fluid; GM 5 gray matter; WM 5 white

matter.

FIGURE 7. (A) Axial MR, CT, ultrashort-TE MR, and pseudo-CT images from clinical data. (B)

Corrected SUV images using different AC maps. UTE-μMAP 5 ultrashort-TE AC map.
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of the pseudo-CT scan does not need to match an actual acquired
CT scan.
The attenuation coefficients that we derived in both cases from

the Hounsfield values using the transformation proposed by
Nakamoto et al. (28) differed slightly from the values assigned
to these tissues in other publications. However, our results are
independent of the transformation used, as we were comparing
the pseudo-CT volume generated by our method to a gold standard
CT volume and the same transformation was used in both to
obtain the attenuation values.
Analysis of the absolute error maps (error 5 pseudo-CT–based –

CT-based) confirmed that there are small differences between the
two approaches, mainly in the air interface zones, where the PET
activity is low and usually not relevant for clinical applications (Fig. 4).
The ROI analysis showed a strong correlation between attenuation-
free SUV images and pseudo-CT–based corrected SUV images
(Fig. 6). In evaluating the impact of the method on a normal PET
brain scan, we considered only a standard 18F-FDG biodistribution
but expect similar small deviations with other radiotracers.
We have also tested our method on real clinical data. Using the

real CT volume of the subject as a gold standard, we compared the
pseudo-CT image obtained with our method and the ultrashort-TE
MR image currently used for AC in the mMR scanner. The
ultrashort-TE MR image is not able to differentiate air from bone
in certain regions, leading to errors in the final PET image (Fig. 7).
The NCC for the clinical data is lower than that for the test data,
possibly because of the different scanners and sequences used to
acquire the clinical data and the atlas volumes. As future research,
we will design similarity measures that are robust to such changes.
Our study neglected the impact of possible deviations in the

MR-derived AC map when scatter correction was considered. The
distribution of scatter in the sinogram is usually smooth, and
the effects of AC map deviations on scatter correction are averaged
over many sinogram bins. Therefore, small deviations in the AC
map will have a modest impact on scatter correction, especially as
the scaling factor used to fit the estimated scatter distribution to
the experimental data would remove any overall bias that might be
introduced. Our study also neglected the effect of possible errors
in modeling the attenuation of the MR coils (12). However, this
effect can be controlled in clinical practice with appropriate scan-
ner modeling, calibrations, and acquisition protocols.
The method is highly parallelizable, as each voxel is computed

independently. This has allowed implementation of a GPU version
that provides a complete pseudo-CT volume during a time similar
to that needed to acquire an actual CT scan. Because there is still
room for improvement in the GPU implementation, it may be
possible to speed up the algorithm further.

We have validated our approach using a set of 10 whole-head
volume pairs from healthy subjects, in contrast to the typical brain
studies that do not include the neck, which is difficult to synthesize
because of its anatomic complexity and variability.
Our technique could, in theory, be applied to other regions of the

body. Registration-based approaches are not so straightforward as our
approach in other regions, because of stronger intersubject anatomic
differences. In a real clinical application, the atlas should be designed
to include the necessary anatomic heterogeneity. The design of
specific databases that take into account skull lesions will be a future
line of research. However, our study suggests that SUVs measured on
PET/MR and those measured on PET/CT are close enough; this
finding makes our approach feasible for qualitative interpretation of
PET scans for diagnostic purposes. The method should be further
validated on images with distinct regions, such as tumors.

CONCLUSION

In this work, we showed how the use of patch-based techniques
to estimate pseudo-CT images from T1-weighted MR images
allows determination of accurate AC maps for use in hybrid
PET/MR systems. The proposed method estimates a pseudo-CT
volume with similar accuracy to a patient-specific CT volume,
without the need for a registration step. Atlas-based approaches
avoid the oversimplification of most of the previously proposed
segmented MR image–based methods, which assume that all vox-
els in the same tissue type should have the same attenuation
coefficients. The GPU implementation led to a substantial de-
crease in computational time, making the approach suitable for
real applications.
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TABLE 2
Time to Compute Pseudo-CT Volume Using Different Implementations and Atlas Sizes

Computational time

Volumes in atlas Matlab (d) C (min) C OpenMP (min) GPU (min)

5 11.44 119.91 ± 0.02 61.76 ± 0.09 4.43 ± 0.00

7 16.18 168.08 ± 0.04 74.34 ± 0.29 6.20 ± 0.00

10 26.89 240.11 ± 0.14 99.84 ± 0.13 8.86 ± 0.00

Data are mean ± SD (Matlab code was tested only once because of computational cost).
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