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Heart failure is often complicated by arrhythmias that can adversely

affect the quality of life and increase the risk for sudden cardiac
death. Current risk stratification strategies for sudden cardiac death in

the heart failure patient are not ideal, with much potential for further

refinement. Overactivation of the sympathetic nervous system has

been shown to be associated with worsening heart failure as well as
arrhythmic events. Recent advances in our understanding of the

autonomic nervous system and new methods for quantification of the

pathologic activation of the sympathetic nerves have triggered

increasing interest in this field. This viewpoint focuses on the need
for and challenges of risk stratification of sudden death in the heart

failure patient and discusses the potential value of measuring sympa-

thetic nervous system activity to better stratify risk and to select patients

with heart failure for implantable cardioverter defibrillator therapy.
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Sudden cardiac death (SCD) is still the leading cause of death in
the developed world, claiming up to 450,000 lives per year in the
United States alone (1,2). Despite huge efforts to improve the out-
comes, including public education in resuscitation and the wide-
spread use of automatic external defibrillators, survival rates for
out-of-hospital cardiac arrest are still dismal (3,4). Up to 80% of
patients who have SCD have some degree of underlying coronary
artery disease, but only around 20% will have actual pathologic
evidence of acute myocardial necrosis (5), and only about one third
of sudden cardiac arrest survivors will develop enzymatic evidence
of myocardial infarction (6). Many of these patients may have
triggers other than acute myocardial ischemia for their cardiac ar-
rest, and between 10% and 20% of victims of SCD have dilated
cardiomyopathy as the only underlying structural heart disease (7).
However, high-risk patients with significant structural heart disease
constitute a small minority of the total number of patients who

experience malignant arrhythmias every year (8). Approximately
50%–60% of SCDs occur in the general population who have no
significant heart disease; and even for those who have SCD and
underlying structural heart disease, in up to 50% of the cases,
sudden death is the first manifestation of disease (9,10).
Heart failure is a common disease that imposes a significant

reduction in the quality of life and life expectancy for the individual
patient and an increasing financial burden on the health care system
(11). It is well known that patients with heart failure are at increased
risk of SCD and ventricular arrhythmias, and a large body of evi-
dence has indicated that patients with reduced left ventricular systolic
ejection fraction (#35%) are at greatest risk (12–15). In the Fra-
mingham heart study, patients with heart failure were 6–9 times more
likely to have SCD than the general population (16). Interestingly,
the mode of death correlates with the symptom class of heart failure:
patients with mild to moderate symptoms are more likely to experi-
ence SCD, whereas patients with severe symptoms are more likely to
die from pump failure (17). Hence, in the group of patients with
severe heart failure (i.e., New York Heart Association class IV), the
overall prognosis is poor, and the use of an implantable cardioverter
defibrillator (ICD) is less likely to significantly prolong life; but in
the group with moderate heart failure (New York Heart Association
II and III), the risk of SCD is substantially higher and an ICD is more
likely to be beneficial. Despite this crude, subjective classification of
heart failure, there remains a paucity of risk stratification strategies
that may help ferret out the patient with a reduced left ventricular
ejection fraction (LVEF) who may benefit from an ICD.

RISK STRATIFICATION

The Need

One of the most important tasks for risk stratification in this
context is the appropriate selection of patients who are at such a high
risk of ventricular arrhythmias that they will benefit significantly
from an ICD. It is well established that ICDs can successfully treat
most ventricular arrhythmia episodes, thereby preventing a cardiac
arrest from transforming into an SCD, but the treatment is costly
from a health economics perspective (18), and it comes with a sig-
nificant risk of potentially serious complications (19,20). Further-
more, on examination of the Multicenter Automatic Defibrillator
Implantation Trial (MADIT II) (18) study data during the first
3 y after implantation, about 70% of the ICD-treated patients in
a heart failure population with primary prophylactic ICDs will
never need their device, 20% will die from heart failure anyway,
and only 10% will be saved by their ICD. Even in the group of
patients with adequate ICD therapy, not all arrhythmic events
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would have resulted in SCD if left untreated by the ICD. The
occurrence of self-limiting episodes of ventricular tachycardia
detected by the device may falsely indicate that the benefit regard-
ing prevention of SCD is higher than it actually may seem. Indeed,
with more conservative programming and delayed therapy up to
60 s after the initiation of ventricular tachycardia, such as in the
MADIT-RIT (Reduction in Inappropriate Therapy) trial, the number
of patients who were in need of appropriate ICD therapy during
a 1.4-y follow-up was only 8%, indicating that most patients in
fact did not have sustained malignant arrhythmias (21).
The only consistently reproducible selection criterion for primary

prophylactic ICD treatment in the heart failure population so far has
been reduced ejection fraction (,30%–35%), but it is widely
acknowledged that this selection method is far from perfect
(13,15,22–24). For instance, the Multicenter Unsustained Tachy-
cardia Trial (MUSTT) showed that patients whose only risk factor
was an ejection fraction of 30% or less had a 2-y arrhythmic risk of
less than 5% (25). On the other hand, SCD still does occur in some
patients with heart failure who may currently not qualify for ICD
therapy (i.e., LVEF . 35%); clearly, a more refined selection tool
would fill a clinical need in this area. A reflection of the uncertainty
regarding the selection criteria can also be derived from the fact that
22% of all ICDs in the United States are implanted on the basis of
indications that do not meet guideline-based criteria (26). Hence,
although clinical electrophysiologists believe that ICDs are some-
times underused for those patients who really need them, the gen-
eral perception may be that the health care system allows too many
ICDs in patients who never actually need them. This then reinforces
the need for a risk stratification strategy to solve the two key prob-
lems plaguing the field—namely, identification of low-risk patient
subsets within the existing group of ICD-treated patients and iden-
tification of high-risk patient subsets outside the currently accepted
criteria for ICD treatment. If imaging of the autonomic nervous
system could enhance the risk stratification for high- or low-risk
patients, that information could be incorporated into our current risk
stratification schemes; and the combined information should then be
used and tested in prospective randomized clinical trials comparing
ICD intervention with optimal medical therapy.

The Challenges

Risk stratification of arrhythmias has always been challenging,
especially because life-threatening rhythm disorders are dynamic
events involving several variables. Looking at this simplistically,
the minimum requirements for an arrhythmia to manifest typically
include a trigger, a willing cardiac substrate, and a modulator such
as the autonomic tone. The substrate is reflective of the underlying
structural heart disease, such as scar or fibrosis in ischemic or dilated
cardiomyopathy, or an inherent ion-channel disorder (e.g., long QT
syndrome or Brugada syndrome). Arrhythmia triggers are acute
events (e.g., electrolyte disturbances, myocardial ischemia, stress, or
alcohol) that work in conjunction with the modulator (e.g., altered
neurohormonal balance or pathologic activation of the autonomic
nervous system in heart failure) that serves to perpetuate the
arrhythmia once it is set in motion.
It is well known that increased sympathetic activity can be

associated with arrhythmias and SCD and that increased para-
sympathetic activity can act protectively (27–29). Therefore, altered
autonomic balance is increasingly recognized as an important factor
in arrhythmogenesis; and in fact, the status of the cardiac autonomic
nervous system can be implicated in all 3 major pathways that are
believed to contribute to the initiation and perpetuation of lethal

arrhythmias (Fig. 1). Cardiac denervation or innervation perfusion
mismatch within a particular cardiac region can provide the auto-
nomic substrate for a reentrant arrhythmia (30). An increased sym-
pathetic activation and pathologic neurohormonal activation of the
renin–angiotensin–aldosterone system (as seen in heart failure) can
then provide the environment that is needed for the continuation of
arrhythmias; and, finally, an altered sympathetic and parasympa-
thetic nervous system balance promotes the occurrence of early
afterdepolarizations and premature ventricular beats that can act
as the crucial arrhythmia trigger. Thus, knowing the patient’s auto-
nomic profile, in addition to other clinical variables, can be key to
understanding an individual’s risk of SCD.
Several risk stratifiers for SCD have been evaluated over the years

(Table 1). In addition to traditional risk factors for coronary heart
disease and significant comorbidity such as renal failure and diabe-
tes, these stratifiers include, first, ventricular function (measured by
LVEF evaluation by echocardiography, multigated acquisitions, or
cardiovascular MR imaging); second, arrhythmias (Holter-electro-
cardiography [ECG] or implantable loop-recorders); third, electrical
markers of substrates for arrhythmias (signal-averaged ECG and
electrophysiology study); fourth, surface ECG variables such as
T-wave alternans and QT dispersion; fifth, autonomic function
(heart rate variability, heart rate turbulence, baroreflex sensitivity,
and so forth); sixth, other more rarely used modalities for autonomic
function such as blood sampling of norepinephrine spillover, micro-
neurography, and vascular reactivity; and seventh, recently, the
quantification of autonomic cardiac innervation (sympathetic nerve
terminals) by a 123I-metaiodobenzylguanidine (MIBG) or PET scan.
Additionally, several risk score algorithms and risk stratification
strategies have been published that try to pinpoint which patients
in the population identified by guidelines actually benefit from ICD
therapy (31–33). In addition to lacking the appropriate sensitivity
and specificity for life-threatening arrhythmias, no risk scoring sys-
tem has been prospectively evaluated as a selection strategy for
device therapy.
Among the available risk stratifications, depressed left ventricular

systolic function is a well-established risk factor for SCD in larger

FIGURE 1. Mechanism of arrhythmia: importance of the autonomic

profile.
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cohorts, but it is hampered by a low predictive accuracy for the
individual patient, as discussed previously. Data on myocardial

scarring (evaluated by CMR) have the ability to predict the occurrence

of ventricular arrhythmias (34), but a major limitation of CMR until

now has been that it is expensive, requires considerable expertise, and

is contraindicated for patients with ICDs. In retrospective studies, the

technique seems promising, and total scar burden has been shown to

correlate with arrhythmias in ICD-treated patients, but prospective ran-

domized trials are lacking thus far (35,36). Microvolt T-wave alternans

is derived noninvasively from a Holter monitor or high-fidelity elec-

trocardiographic recordings during exercise and has been prospec-

tively evaluated as a risk predictor in patients receiving ICDs, with

variable results (37–41). Heart rate variability (HRV) evaluated using

a Holter monitor is also noninvasive and readily accessible in most

centers. It describes the variation in heart rate from beat to beat and can

be represented in several ways, including a time domain and a fre-

quency domain. The results can give information on the sympathovagal

balance; a reduced HRV corresponds to impaired autonomic balance.

HRV has been shown to provide prognostic information in addition

to clinical data in an unselected population of patients with heart

failure (42), and a reduced HRV is associated with a higher risk of

SCD (43). All these investigative tools, although contributing to

better understanding of either the substrate or the modulator, have

lacked a sufficient positive predictive value to become mainstream

selection strategies. Additionally, recent publications have highlighted

the need for standardized testing in a setting that is likely to yield the

best predictive value for the outcome of the test—for example, dif-

ferent types of autonomic response to stress testing or other tests that

are easily obtained and can be readily interpreted (44).

SYMPATHETIC IMAGING: IS THERE A ROLE?

Because the autonomic nervous system can set off the trigger,
influence the substrate, and perpetuate the arrhythmia, an in-
vestigative modality to better image and understand sympathetic
nervous system activity seems quite fitting. Although approved for
several years in European countries, the adoption of imaging of the
sympathetic nervous system activity in heart failure has been limited
in the United States. The 2013 approval of radioactive 123I-MIBG
for imaging in heart failure by the Food and Drug Administration
has brought radionuclide imaging of sympathetic innervation of the
heart to the forefront again (45). The commonly used radiotracers
are 123I-MIBG for planar and SPECT imaging and 11C-hydroxye-
phedrine for PET imaging. The most accepted measure of heart-
to-mediastinal (H/M) ratio can be calculated using either planar
imaging (area-based region of interest) or SPECT imaging (volume-
based region of interest), as shown in Figure 2 (46,47).
Several insightful measures can be obtained from 123I-MIBG

SPECT imaging. An assessment of the patient’s segmental 123I-
MIBG tracer uptake can be made using the 17 left ventricular seg-
ments (48), and each myocardial segment is scored on a 5-point
tracer uptake scale from 0, normal tracer uptake, to 4, no tracer
uptake. A 123I-MIBG SPECT defect score is then obtained and de-
fined as the summation of all the segmental tracer uptake scores. This
score can then be combined with a perfusion technetium SPECT
score obtained at the same investigation. By subtracting the perfusion
defect score from the 123I-MIBG defect score, a size of mismatch is
calculated—that is, myocardium with abnormal 123I-MIBG uptake
but normal perfusion uptake. The reason for the mismatch is most
likely that sympathetic nerve fibers are more vulnerable to ischemia

TABLE 1
Risk Stratification Strategies for Prediction of Sudden Cardiac Death in Patients with Heart Failure

Category Details

Traditional risk factors for coronary heart disease Diabetes, age, sex, blood pressure, blood lipid levels, presence

of diabetes mellitus, cigarette smoking, and so forth

Clinical comorbidities in patients already treated with

an implantable defibrillator

Atrial fibrillation, widened QRS duration, age, renal insufficiency,

diabetes, and so forth

Family history of sudden cardiac death

Ventricular function Reduced ejection fraction (echocardiography)

Fibrosis/infarction (cardiac MR imaging)

Arrhythmias Nonsustained VT/sustained VT (long-term ECG recordings)

Electrical markers of substrates for arrhythmias Late potentials (signal-averaged ECG)

Inducible arrhythmia (programmed electrical stimulation)

Surface ECG-derived markers for electrical instability T-wave alternans

QT dispersion/QT interval

Left bundle branch block

Autonomic function Norepinephrine spillover

Heart rate variability

Heart rate turbulence

Baroreflex sensitivity

Cardiac autonomic imaging 123I-MIBG SPECT scan

11C-HED PET scan

VT 5 ventricular tachycardia; 11C-HED 5 11C-meta-hydroxyephedrine.
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than cardiomyocytes are; thus, the periinfarct region can be partial-
ly denervated, but the myocytes are fully viable. This region may
then be particularly susceptible to triggering of ventricular arrhyth-
mias and development of reentrant circuits due to innervation
supersensitivity in combination with the damaged nerve fibers (49).
Similar measures can be obtained using PET, and abnormal patterns
of 11C-hydroxyephedrine retention have been identified in several
groups of patients with ventricular tachycardias, including right ven-
tricular arrhythmias (50,51), Brugada syndrome (52), and congenital
long QT syndrome (53).
As mentioned previously, the best-studied modality in heart

failure patients is 123I-MIBG planar imaging. Recently, a systematic
review of 18 studies with a total of 1,755 patients evaluated the
prognostic impact of 123I-MIBG imaging findings in patients with
heart failure and found that the H/M ratio was indeed useful for
predicting clinical outcome (54). Favorable left ventricular remod-
eling in heart failure patients has also been shown to correlate with
improvement in sympathetic innervation by 123I-MIBG imaging;
and data support that the changes in innervation are evident before
remodeling, which is confirmed by other imaging modalities (55–
57). There is also increasing evidence that a reduced H/M ratio
correlates with an increased risk of arrhythmias and that it can pro-
vide incremental or better value than other risk stratification tools. In
a study by Tamaki et al. (58) of patients with heart failure and an
LVEF of 40% or less, the 123I-MIBG washout rate was a better
predictor of SCD than other measures of autonomic function (QT
dispersion or HRV). Other studies have also shown an independent
correlation between SCD, spontaneous or induced malignant arrhyth-
mias, and an abnormal H/M ratio (59–62). Other studies that have
sought to investigate the physiology of the relationship have been
unable to clearly demonstrate a correlation between the inducibility
of ventricular arrhythmia during an electrophysiology study and the
standard indices of 123I-MIBG imaging (61,63).

In the AdreView Myocardial Imaging for Risk Evaluation in
Heart Failure (ADMIRE-HF) study (64), the largest prospective
study, 961 heart failure patients had an initial 123I-MIBG scan per-
formed and were then followed for cardiac events during a median
of 17 mo. The results showed that an H/M ratio of less than 1.6 was
highly predictive of major cardiac adverse events (New York Heart
Association functional class progression, potentially life-threatening
arrhythmic event, or cardiac death) and ventricular arrhythmia
events in a population with symptomatic heart failure and an LVEF
of 35% or less (Fig. 3) (64). Notably, the relationship for H/M ratio
and mortality was linear, and mortality ranged from 0% in the group
with an H/M ratio of 1.80 to 20% or more in the group with an H/M
ratio of less than 1.10. In fact, there may be a role for the prediction
of ventricular arrhythmias or SCD in patients who qualify for pri-
mary prophylactic ICD treatment (65), because the patients in-
cluded in the study comprised those meeting criteria for primary
prophylactic ICD treatment but without an ICD at the time of in-
clusion into the study. The investigators found that the independent
predictors of arrhythmic events were lower systolic blood pressure
(hazard ratio, 1.19 for each 10-point decrease), LVEF less than
25% (hazard ratio, 1.97), and 123I-MIBG–derived H/M ratio less than
1.6 (hazard ratio, 3.48). These findings, when incorporated into a risk
score, were useful in risk-stratifying patients for serious life-threatening
arrhythmias (46). It is evident that imaging the sympathetic ner-
vous system may provide additional insight into the myocardial
substrate and its vulnerability to arrhythmias.
Ideally, data from imaging the autonomic nervous system should

be used to complement existing risk-stratification models for SCD
and ventricular arrhythmias. By appropriately quantifying the degree
of autonomic dysfunction, these data could be incorporated into
summative risk scores. This strategy has the potential to fill gaps of
knowledge, especially for patients at increased risk of ventricular
arrhythmias who currently fall outside guideline recommendations,
such as those with moderately reduced ejection fraction. Another
challenging category is patients with low ejection fraction but without
any other indicators of increased risk.
However, many gaps remain in our understanding of the autonomic

tone within an individual and the implications this may have on the
occurrence of life-threatening arrhythmias. Although sympathetic
nerve imaging may have the potential to better select patients for

FIGURE 2. H/M ratio in normal heart (left) and heart with reduced

cardiac autonomic innervation (right) imaged by planar 123I-MIBG scan-

ning (A) and volume-based SPECT 123I-MIBG scanning (B). WO 5
washout. (Reprinted with permission of (47,66).)

FIGURE 3. Risk of arrhythmic event stratified for H/M ratio in ADMIRE-HF

study. (Reprinted with permission of (64).)
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device therapy, it is probably the interaction between the extent and
distribution of myocardial sympathetic denervation with the central
autonomic tone that incites the arrhythmic event. The major
challenges in the arena of risk stratification for sudden death
include the accurate identification of patients with a low ejection
fraction who are at a low risk for arrhythmias and who may not need
an ICD, while simultaneously providing recognition of high-risk
patients with an LVEF of 35% or greater who may benefit from an
ICD. Understanding the sympathetic nervous system seems like
a good next step in stratifying patient risk, but prospective randomized
trials will be required before risk stratification can become a main-
stream strategy.
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