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Heart failure (HF) is characterized by activation of the sympathetic

cardiac nerves. The condition of cardiac sympathetic nerves can be

evaluated by 123I-metaiodobenzylguanidine (123I-MIBG) imaging.
Most cardiac 123I-MIBG studies have relied on measurements from

anterior planar images of the chest. However, it has become pro-

gressively more common to include SPECT imaging in clinical and
research protocols. This review examines recent trends in 123I-MIBG

SPECT imaging and evidence that provides the basis for the in-

creased use of the procedure in the clinical management of patients

with HF. 123I-MIBG SPECT has been shown to be complementary to
planar imaging in patients with HF in studies of coronary artery dis-

ease after an acute myocardial infarction. Moreover, 123I-MIBG

SPECT has been used in numerous studies to document regional

denervation for arrhythmic event risk assessment. For better quan-
tification of the size and severity of innervation abnormalities in 123I-

MIBG SPECT, programs and protocols specifically for 123I have been

developed. Also, the introduction of new solid-state cameras has

created the potential for more rapid SPECT acquisitions or a reduc-
tion in radiopharmaceutical activity. Although PET imaging has

superior quantitative capabilities, 123I-MIBG SPECT is, for the fore-

seeable future, the only widely available nuclear imaging method for
assessing regional myocardial sympathetic innervation.
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Heart failure (HF) is characterized by activation of the sym-
pathetic cardiac nerves. The condition of cardiac sympathetic
nerves can be evaluated with 123I-metaiodobenzylguanidine (123I-
MIBG), which is a norepinephrine analog and therefore a tracer
for sympathetic neuron integrity and function (1). Most of the liter-
ature on the use of 123I-MIBG imaging for evaluating patients with
HF is based on measurements from anterior planar images of the chest,
with cardiac uptake quantified in terms of the heart-to-mediastinum
ratio (HMR) and the washout rate between early and late images (2,3).
However, given the conversion from planar to SPECT techniques in
clinical nuclear myocardial perfusion imaging (MPI) beginning in the
1980s, it is not surprising that 123I-MIBG SPECT was also performed
by some early adopters of the radiopharmaceutical (4,5). Despite the

challenges associated with performing 123I-MIBG SPECT and
interpreting the images in patients with severely reduced cardiac
123I-MIBG uptake, it has become progressively more common
for 123I-MIBG SPECT imaging to be included in clinical and
research protocols; in such settings, it is usually performed as
part of one or more imaging sessions in which planar images are
acquired (2).
Both qualitative and quantitative image reviews of 123I-MIBG

SPECT studies may be performed to identify focal areas of re-
duced uptake (similar to protocols used for the interpretation of
MPI SPECT studies). Unfortunately, only small amounts of data
from 123I-MIBG SPECT images of patients without heart disease
are available; most often, segmental count density expressed as
a percentage of total myocardial count density is used to compare
affected areas with least affected areas in patients (6–8). Changes
in relative uptake and absolute uptake between early and late
SPECT images can be used to calculate parameters comparable
to the planar washout rate (9). In general, SPECT results have
been used in the same way as planar data—namely, to investigate
the relationship between the quantitative value of 123I-MIBG uptake
and a specific outcome event, such as worsening of chronic HF, the
occurrence of an arrhythmic event or cardiac death, or another
quantitative parameter, such as a change in the left ventricular ejec-
tion fraction or the MPI defect score. Consistent with findings
on planar imaging, patients with larger or more severe regional
123I-MIBG SPECT defects usually have poorer outcomes (10).
This review examines recent trends in 123I-MIBG SPECT im-

aging and evidence that provides the basis for the increased use of
the procedure in the clinical management of patients with HF. The
focus of the article is primarily on work that has been done in the
past 10–15 y, considering specifically how the technique can comple-
ment the established value of planar 123I-MIBG imaging and provide
unique insight into the risk of arrhythmia and the need for advanced
therapies. Recent advances in imaging technology and quantitation
methods are also briefly reviewed, as these represent the future for
the clinical use of cardiac 123I-MIBG SPECT.

123I-MIBG SPECT COMPLEMENTS PLANAR IMAGING

Several studies have examined the use of 123I-MIBG imaging as
a diagnostic and prognostic tool in patients with HF (3,11). Al-
though most of these studies relied primarily on planar imaging
determinations of HMR and washout rate, some also included
measurements from SPECT examinations because of the realiza-
tion that SPECT may overcome the difficulties of planar imaging,
including superposition of noncardiac structures and lack of seg-
mental analysis (Fig. 1). Many such 123I-MIBG SPECT studies
were performed by Kasama et al., who investigated the effects of
a variety of HF medications on 123I-MIBG cardiac uptake and
clinical outcomes, usually performing imaging before the initiation
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of a new medication and again after 6 mo (12–19). Early and late
123I-MIBG SPECT images (acquired at 15 min and at 4 h) were
scored visually with 20- and 17-segment regional polar or bull’s-eye
maps. Additionally, segmental count data were used to calculate re-
gional washout rates in some studies. The various randomized studies
demonstrated statistically significant reductions in late 123I-MIBG
total defect scores after treatment with an angiotensin-converting
enzyme inhibitor (perindopril), angiotensin receptor blockers (valsar-
tan and candesartan), a loop diuretic (torasemide), and an aldosterone
inhibitor (spironolactone). Similar results were obtained by other
investigators, such as Somsen et al. (20) (for enalapril) and Lotze
et al. (21) and de Milliano et al. (22) (for various b blockers).

123I-MIBG SPECT has been shown to be complementary to
planar imaging in studies of coronary artery disease after an acute
myocardial infarction (MI) (23,24). Viable but denervated myo-
cardium has been shown to be supersensitive to the effects of
infused catecholamines (25), which may provide a substrate for
the genesis of ventricular arrhythmias. For this reason, the results
of 123I-MIBG SPECT and MPI SPECT are often compared by
identifying segments with adrenergic/perfusion mismatches. As
in MPI SPECT studies, the myocardium is usually subdivided
into several segments (ranging from 5 to 20), and each location is
scored for severity (on scales from 0 to 3 or 0 to 4).
Three categories of 123I-MIBG SPECT and MPI SPECT findings

are commonly reported: both normal; both equivalently abnormal
(matched defects); or 123I-MIBG SPECT defect more severe than
MPI SPECT defect (mismatched defects) (Fig. 2). A defect less
severe on 123I-MIBG SPECT than on MPI SPECT is rarely, if ever,
observed. Mismatched defects may be subcategorized in terms of
whether the area in question demonstrates ischemia on stress MPI
or remains unchanged.
Most studies of 123I-MIBG imaging in patients after MI have

compared defects on 123I-MIBG SPECT with results on rest and
stress MPI to assess the relationship between areas of infarction and
denervation. Three small studies (26–28) in which 58 patients were
examined within 3 mo after MI arrived at the joint conclusion that
the 123I-MIBG defects were generally larger than those on MPI,
whether determined from quantitative count–based assessments or

from semiquantitative scoring of SPECT
myocardial segments. Given that sympa-
thetic nerve fibers in the heart travel in the
subepicardium parallel to the vascular struc-
tures and penetrate the underlying myocar-
dium, it is conceivable that this difference in
defect size, among others, is caused by the
fact that neural tissue has a greater sensitivity
to hypoxia than myocardial fibers and has
a longer recovery time (29,30). More recent
studies, such as those by Simões et al. (31),
Marini et al. (32), and Hayashi et al. (33),
confirmed the presence of denervated areas
extending beyond the infarct borders and
proposed associations with depolarization
abnormalities, unappreciated myocardial
necrosis, and long-term variability in in-
duced ventricular tachyarrhythmias.
Interest has been shown in the potential for

the global quantitation of 123I-MIBG SPECT
images to replace the planar HMR for diag-
nostic and prognostic purposes. An analysis
of the 123I-MIBG SPECT studies from the

AdreView Myocardial Imaging for Risk Evaluation in Heart Failure
(ADMIRE-HF) trial, which is a prospective trial evaluating 123I-MIBG
imaging for identifying patients who have HF and are most likely to
experience cardiac events, demonstrated that the SPECT HMR was
equivalent to the planar HMR for discriminating between patients with
HF and control subjects (6,34). Additionally, the ability of 123I-MIBG
SPECT to provide regional information not available on planar images
remains a driver for efforts to incorporate this procedure into assess-
ments of patients with HF for arrhythmic event risk (35).

123I-MIBG SPECT FOR ARRHYTHMIC EVENT

RISK ASSESSMENT

Better arrhythmic event risk assessment is necessary given that
in the MADIT II trial, only 23.5% of the 720 patients with HF and
a prophylactic implantable cardioverter defibrillator (ICD) received
antiarrhythmia device therapy for ventricular tachyarrhythmia (36).
Early research on experimentally denervated myocardium suggested
that such regions were much more sensitive to norepinephrine infusion
than normally innervated regions, a situation considered potentially
proarrhythmic (37). Over the subsequent decades, 123I-MIBG SPECT
was used in numerous studies to document such regional denervation
and its association with naturally occurring or inducible ventricular
arrhythmic events. The dominant observation was that the larger the
extent of the 123I-MIBG SPECT abnormality, the higher the likelihood
of ventricular tachyarrhythmia (38–41).
Most investigators performing 123I-MIBG SPECT studies had

expected to find that arrhythmic event risk would increase with the
size of the denervated area as well as the amount of innervation–
perfusion mismatch, as reflected by paired 123I-MIBG and MPI
SPECT studies. Another expectation was that there would be a di-
viding point in 123I-MIBG defect size between patients with “low
risk” and patients with “high risk” for arrhythmic events. In the
small study by Arora et al. (38), both mean 123I-MIBG defect
scores and the number of late mismatches were higher in the 10
patients who had experienced appropriate ICD discharges than in
the 7 who had not. Patients who had ischemic heart disease and
inducible ventricular tachycardia on electrophysiology testing had

FIGURE 1. 123I-MIBG SPECT complements planar imaging on segmental analysis. Planar

images and SPECT images in short axis (SA), horizontal axis (HLA), vertical long axis (VLA),

and bull’s-eye of 123I-MIBG were obtained for 60-y-old patient. Reduced late HMR was 1.45.
123I-MIBG SPECT demonstrated fixed apical defect. ANT 5 anterior; INF 5 inferior; LAT 5
lateral; SEP 5 septal; WR 5 washout rate.
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higher total 123I-MIBG SPECT defect scores than patients who did
not have inducible ventricular tachycardia, with a late total defect
score threshold of 37, yielding a 77% sensitivity and a 75% specificity
(39). In the prospective study by Boogers et al. (40), patients with an
ICD and a late total defect score of greater than 26 were 10 times
more likely to receive appropriate ICD therapy (cumulative 3-y event
rate: 52% vs. 5%; P, 0.01). Interestingly, in the latter 2 studies, 123I-
MIBG SPECT defect size was a significant predictor of arrhythmic
events but not mismatch scores. In contrast, Marshall et al. (42) found
differences in both the total 123I-MIBG SPECT defect score (37.0 6
9.4 [mean6 SD] vs. 25.56 7.7; P5 0.001) and the mismatch score
(18.5 6 8.5 vs. 8.4 6 5.0; P , 0.01) between patients with ICD
firing and those without ICD firing. As in the study of Bax et al. (39),
a total 123I-MIBG SPECT defect score of greater than or equal to 31
had a sensitivity of 78% and a specificity of 77%.
Recent evidence suggests that quantitative characterization of

myocardial transition zones (between normal and infarcted or
denervated myocardium) may supplement the more simple definition
of innervation–perfusion mismatch. In a quantitative reanalysis of the
SPECT images that were interpreted visually in the study of Bax et al.
(39), MPI scar extent, border zone extent, and 123I-MIBG uptake in
the border zone were analyzed; the best prediction accuracy for ven-
tricular tachycardia inducibility was achieved with the last (area under
the receiver operating characteristic curve, 0.78) (43). In a prospective
study of 15 patients referred for ischemic ventricular tachycardia
ablation, 3-dimensional innervation models were derived from 123I-
MIBG SPECT examinations and registered to high-density voltage
maps (44). 123I-MIBG innervation defects were approximately 2.5-
fold larger than bipolar voltage–defined scars, all ventricular tachy-
cardia ablation sites were within areas of abnormal innervation,
but 36% of successful ablation sites demonstrated normal voltages
(.1.5 mV). These studies strongly suggested that innovations in
quantitative analysis techniques represent the future of 123I-MIBG
SPECT for identifying arrhythmic event risk and guiding therapy.
Studies have also raised questions about the relationship

between 123I-MIBG defect severity and arrhythmic event risk. Pla-
nar HMR data showed that the highest occurrence of arrhythmic
events was seen in patients with HF and an intermediate reduction
in uptake rather than the lowest values. In 2014, Verberne et al.
presented the results of an informed reinterpretation of 123I-MIBG
and MPI SPECT studies from the ADMIRE-HF trial; the results
showed that patients with HF and an intermediate severity of total
defect scores (14–28 of a possible maximum of 68) had higher
arrhythmic event rates than those with more severe defects (45).
As part of the same study, visual scoring of regions (anterior, in-
ferior, septal, lateral, and apical) on 123I-MIBG and MPI SPECT

studies as normal, matched, or mismatched
resulted in similar findings; patients with HF
and 1 or 2 mismatched regions had the high-
est arrhythmic event rates (46). In both of
those analyses, the largest absolute number
of arrhythmic events was seen in patients with
the most severe defects, but the highest pro-
portion was seen in patients with intermediate-
severity defects.
The aforementioned results attest to the

mechanistic complexity of arrhythmia gen-
eration and support the conclusion that no
single test can identify all at-risk patients
with HF. Nevertheless, there is growing
evidence that 123I-MIBG SPECT imaging

should be considered for the assessment of patients with HF for
appropriate therapeutic interventions.

ADVANCES IN 123I-MIBG SPECT QUANTITATION

123I-MIBG is internalized by neuroendocrine cells through the
rapid energy-dependent uptake mechanism (47), reaching a relative
plateau within a few minutes after injection. It is stored, unmetab-
olized, in the neurosecretory granules, resulting in a specific con-
centration, unlike in cells of other tissues. Because of flow-limited
uptake of the 123I-MIBG tracer, retention measures are insensitive to
low to moderate levels of regional denervation and decline only
when nerve losses become fairly severe (48).
Since the earliest investigations of 123I-MIBG SPECT in cardi-

ology, quantitation of the size and the severity of innervation abnor-
malities has been performed (49). Initially, semiquantitative scoring
from a visual analysis, analogous to that used in MPI, was performed,
as noted earlier for studies of patients after MI (27,28). When quan-
titative bull’s-eye mapping for MPI SPECT became readily available,
it was also applied to 123I-MIBG SPECT analysis (23,50–52). How-
ever, because the quantitative programs were usually adapted from
those developed for MPI SPECT, they did not take into account the
unique physical properties of MIBG iodinated with 123I, which affects
image quality. These include the presence of a significant number of
high-energy photons (1.1% yield of 529-keV g rays) (53); accumula-
tion in the liver that overlaps the inferior wall (Fig. 3); and scattering
from the lung field to the lateral left ventricular wall (54), as a result of
which the normal cardiac 123I-MIBG distribution includes relatively
low uptake in the inferior wall (55), which is more pronounced in the
elderly. Therefore, in contrast to what is observed in PETexaminations
with 11C-hydroxyephedrine and 18F-fluorodopamine, the regional 123I-
MIBG uptake in the left ventricle is heterogeneous in healthy subjects,
as observed by Morozumi et al. (56) and Yoshinaga et al. (57).
More recently, programs and protocols have been developed

specifically for 123I-labeled compounds such as 123I-MIBG. These
have included the introduction of iterative reconstruction techniques
with compensation for scatter and septal penetration (53,58,59) and
the use of volumetric analysis techniques (60). The development of
123I-MIBG databases for healthy subjects has also provided a more
reliable means for quantifying the significance of reduced uptake in
HF and other cardiology patients (6).
The potential of improved 123I-MIBG quantitation techniques

has been explored in recent reevaluations of the large 123I-MIBG
SPECT imaging database from the ADMIRE-HF trial. Through the
use of a variable reference threshold for pixel-based abnormalities
based on the planar HMR, quantitative differences between 123I-MIBG

FIGURE 2. Innervation–perfusion mismatch between 123I-MIBG SPECT and rest MPI with
99mTc-tetrofosmin. Rest MPI demonstrated large inferoposterolateral expanding apical defect

in 63-y-old patient with ischemic cardiomyopathy. 123I-MIBG SPECT demonstrated more extended

inferolateral defect. HLA 5 horizontal axis; SA 5 short axis; VLA 5 vertical long axis.
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SPECT patterns in patients
with ischemic HF and patients
with nonischemic HF could be
reliably demonstrated with
satisfactory reproducibility by
both voxel- and region-based
methods (7,61). In a separate
analysis, global denervation
($9 abnormal 123I-MIBG seg-
ments from the standard 17-
segment map) was associated
with the highest cardiac mor-
tality rates in both patients
with ischemic HF and patients
with nonischemic HF, but fur-
ther distinction was possible
on the basis of MPI SPECT
findings. In patients with ische-
mic HF, mortality risk was
highest among those with 3–7
rest MPI segmental defects,
whereas in patients with non-
ischemic HF, the highest risk
was associated with nearly
normal rest MPI studies (0–3
segmental defects) (62).
Pellegrino et al. demon-

strated excellent observer re-
producibility of a visual eval-
uation of 123I-MIBG SPECT
studies with a low-dose 123I-

MIBG protocol (63). Nevertheless, it can be challenging to eval-
uate 123I-MIBG SPECT studies visually, especially in patients
with HF and a global reduction in uptake (35). Automated quan-
titation of 123I-MIBG SPECT studies offers the potential to over-
come some of the limitations of visual image interpretation and
improves the clinical utility of such studies for diagnosis and
prognosis.

123I-MIBG SPECT WITH SOLID-STATE CAMERAS

The recent introduction of new solid-state cardiac nuclear cameras
that provide 180� of imaging without the need for gantry rotation,
improved collimator design, and optimized acquisition geometry with
increased photon sensitivity and contrast resolution has created the
potential for more rapid SPECT acquisitions or a reduction in radio-
pharmaceutical activity and thus a lower dose for patients (64–66).
This technology also offers advantages for 123I-MIBG SPECT

imaging, including better energy discrimination and temporal res-
olution (67). List-mode acquisition analogous to that used in PET
presents an opportunity to obtain true dynamic SPECT data, which
could provide new physiologic insights to enhance the information
content of the examination.
Initial experiences with 123I-MIBG SPECT imaging and solid-

state cadmium–zinc–telluride cameras have been promising. Patients
with left ventricular dysfunction were shown to have higher 123I-
MIBG summed defect scores than those with normal function (68).
Similar results were obtained when mechanical dyssynchrony on MPI
SPECT was compared with 123I-MIBG SPECT findings (69).
Data on the in vivo myocardial kinetics of 123I-MIBG are rare.

Dynamic 123I-MIBG SPECT has the potential for defining new quan-

titative parameters, as shown in early human experiments. Tinti et al.
demonstrated the feasibility of dynamic 3-dimensional 123I-MIBG
kinetic analysis for providing additional information on cardiac
innervation, particularly through the analysis of time–activity
curves for 123I-MIBG (70). Also, in an experimental pig model,
myocardial peak uptake was observed earlier than had been
previously described (71).
Although the possibilities of dynamic 123I-MIBG SPECT were

initially explored with conventional rotating g cameras (72), the clin-
ical potential of this technique with cadmium–zinc–telluride cameras
likely will be established as the new solid-state camera technology
matures and more users gain experience with it.

COMPARISON OF SPECT AND PET TECHNIQUES

The superior quantitative capabilities of PET imaging make
PET an attractive alternative to SPECT. However, unlike com-
pounds such as 123I-MIBG, which can be centrally manufactured and
widely distributed commercially, most PET agents are labeled with
short–half-life isotopes such as 11C and therefore are available only
in facilities with an on-site cyclotron. Nevertheless, as a research
tool, PET remains extremely valuable. The PET agent most analo-
gous to 123I-MIBG is metahydroxyephedrine (mHED), as the uptake
of both by sympathetic neurons is mediated by the norepinephrine
transporter. However, in only a few studies has the cardiac uptake of
123I-MIBG been directly compared with that of mHED.
In a study of rabbits injected with both 123I-MIBG and mHED,

similar reductions in uptake in denervated myocardium were
observed (73). However, pretreatment with the norepinephrine-
depleting compound reserpine had a greater effect on mHED
uptake than on 123I-MIBG uptake, suggesting that the former
might be more specific for intravesicular uptake than the latter. Luisi
et al. showed that the relative retention of mHED was significantly
greater than that of 123I-MIBG in pigs, reflecting improved specificity
as a result of less nonspecific uptake of the former tracer (74). Risch-
pler et al. (75) reported that the 131I-MIBG uptake defect in rats
matched the area of an earlier MI, whereas the mHED uptake defect
was larger. However, in a direct comparison of 123I-MIBG SPECT
and mHED PET in 21 patients with left ventricular dysfunction,
Matsunari et al. (76) reported a high correlation between defect sizes
in the 2 methods; however, late 123I-MIBG SPECT overestimated
defect sizes in the inferior and septal regions, presumably because
of image quality issues caused by adjacent liver activity.
Although the early development of an 18F-labeled compound

for PET imaging of sympathetic neurons is continuing (77), for the
foreseeable future 123I-MIBG SPECT will remain the only widely
available nuclear imaging method for assessing regional myocardial
sympathetic innervation.

CONCLUSION

The shift from planar to SPECT techniques in 123I-MIBG im-
aging has been slow in comparison with what occurred in clinical MPI
25–30 y ago. Nevertheless, the accumulation of evidence regarding the
value of 123I-MIBG SPECT results, along with improvements in im-
aging equipment and image processing techniques, should result in
acceleration of the growth and clinical use of the technique in the
coming years.
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FIGURE 3. 123I-MIBG SPECT

images in short axis (SA), horizontal

axis (HLA), vertical long axis (VLA),

and bull’s-eye demonstrate that ac-

cumulation of 123I-MIBG in liver and

bowel overlaps inferior wall and

affects image quality.
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