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Early detection of tumor response to therapy is crucial to the timely

identification of the most efficacious treatments. We recently de-
veloped a novel apoptosis imaging tracer, 18F-C-SNAT (C-SNAT is

caspase-sensitive nanoaggregation tracer), that undergoes an intramo-

lecular cyclization reaction after cleavage by caspase-3/7, a biomarker

of apoptosis. This caspase-3/7–dependent reaction leads to an en-
hanced accumulation and retention of 18F activity in apoptotic tumors.

This study aimed to fully examine in vivo pharmacokinetics of the tracer

through PET imaging and kinetic modeling in a preclinical mousemodel

of tumor response to systemic anticancer chemotherapy. Methods:
Tumor-bearing nude mice were treated 3 times with intravenous injec-

tions of doxorubicin before undergoing a 120-min dynamic 18F-C-SNAT

PET/CT scan. Time–activity curves were extracted from the tumor and

selected organs. A 2-tissue-compartment model was fitted to the time–
activity curves from tumor and muscle, using the left ventricle of the

heart as input function, and the pharmacokinetic rate constants were

calculated. Results: Both tumor uptake (percentage injected dose per
gram) and the tumor-to-muscle activity ratio were significantly higher in

the treated mice than untreated mice. Pharmacokinetic rate constants

calculated by the 2-tissue-compartment model showed a significant

increase in delivery and accumulation of the tracer after the systemic
chemotherapeutic treatment. Delivery of 18F-C-SNAT to the tumor tis-

sue, quantified as K1, increased from 0.31 g⋅(mL⋅min)−1 in untreated

mice to 1.03 g⋅(mL⋅min)−1 in treated mice, a measurement closely re-

lated to changes in blood flow. Accumulation of 18F-C-SNAT, quanti-
fied as k3, increased from 0.03 to 0.12 min−1, proving a higher retention

of 18F-C-SNAT in treated tumors independent from changes in blood

flow. An increase in delivery was also found in the muscular tissue of
treated mice without increasing accumulation. Conclusion: 18F-C-

SNAT has significantly increased tumor uptake and significantly in-

creased tumor-to-muscle ratio in a preclinical mouse model of tumor

therapy. Furthermore, our kinetic modeling of 18F-C-SNAT shows that
chemotherapeutic treatment increased accumulation (k3) in the treated

tumors, independent of increased delivery (K1).
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Early detection of tumor response to therapy is crucial to
shorten the period of uncertainty after starting treatment and to

quickly identify the most effective treatment of individual cancer

patients. Tumors are highly heterogeneous and can respond differ-

ently to the same treatments (1); a successful treatment therefore

requires a more personalized medicine approach tailored to indi-

vidual tumor biology. To realize this vision, oncologists need a tool

to quickly assess tumor response to the selected treatment (2).
Current clinical methods to assess treatment response are

based on size measurements of tumors using CT or MR imaging

under the guidelines of the Response Evaluation Criteria in Solid

Tumors (3). In addition, PET imaging of 18F-FDG metabolism in

tumors (4,5) can provide a functional measurement as described

by the PET Response Criteria in Solid Tumors (6). Response

Evaluation Criteria in Solid Tumors–based size measurement

lacks sensitivity for early assessment of response, as it can take

many weeks from treatment initiation to actual size changes that

can be detected. Furthermore, tumor size shrinkage may not

occur in the case of cytostatic and molecularly targeted therapy

even when the treatment is effective (7). PET Response Criteria

in Solid Tumors is based on a decrease in the 18F-FDG meta-

bolism in response to fewer living tumor cells; however, a decrease

in signal is unfavorable and limits detection in tumors, which are

less metabolically active. Furthermore, 18F-FDG uptake is not

limited to tumor cells and may be biased by higher metabolism

in nearby inflammatory (8) or hypoxic tissues (9–11) that are

also affected by the treatment, especially radiotherapy. It has

been advised that radiologists wait a minimum of 10 d after ther-

apy before performing 18F-FDG PET to bypass these flare effects (6).

Many anticancer treatments such as chemotherapy and radio-
therapy induce tumor cell death by initiating biologic pathways,

such as apoptosis (12). Apoptosis is characterized by the activa-

tion of a series of proteases, starting with the release of cyto-

chrome c. This release leads to self-assembly of the apoptotic

protease-activating factor 1 and caspase-9 into the apoptosome,

which in turn activates caspase-3/7 and ultimately initiates cell

death by increasing DNA cleavage (12). Simultaneously, blebbing

of the cell wall in the dying cells exposes phosphatidylserine or

phosphatidylethanolamine to the cell surface (12). PET tracers

targeting biomarkers in the apoptotic pathway could offer a means

to monitor the degree of cell death after anticancer treatments and,

in addition, to image other apoptosis-related physiologic processes

or diseases such as ischemia or dementia (13,14).
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Several PET tracers targeting apoptosis biomarkers have been
reported. 18F-annexin-V (15) and 18F-FPDyramycin (16) bind suc-
cessfully to the extruded phosphatidylserine and phosphatidyleth-
anolamine after membrane blebbing in vitro but showed a limited
uptake in mouse models of tumor treatment response with a max-
imum approximately 1–2 percentage injected dose per gram (%ID/g)
in treated tumors and a tumor-to-muscle ratio of approximately 1–3,
depending on the tumor type. Another class of PET tracers is based
on caspase-3 inhibitors, one of which, 18F-(S)-1-((1-(2-fluoroethyl)-
1H-[1,2,3]-triazol-4-yl)methyl)-5-(2(2,4-difluorophenoxymethyl)-
pyrrolidine-1-sulfonyl)isatin (17), has undergone evaluation in
healthy humans (18); however, the tumor uptake in chemotherapeutic-
treated mice is also limited, with approximately 1 %ID/g maximum
and significant treatment response reported only from a small subset of
the tumor region (19). To generate better retention of the product in
apoptotic cells, a novel class of tracers takes advantage of the cleav-
age activity of the effector enzyme caspase-3/7, including 18F-CP-18
(20) and 18F-C-SNAT (C-SNAT is caspase-sensitive nanoaggrega-
tion tracer) developed by us (21).
Caspase-3/7 cleaves a specific protein sequence DEVD-X (Asp-

Glu-Val-Asp-X, X being any amino acid) to activate caspase-6. We
have developed a novel method for imaging protease activity (Fig. 1),
in which cleavage of the peptide substrate initializes an intra-
molecular cyclization reaction (22). The higher lipophilicity of the
cyclic product leads to the formation of nanoaggregates and thus
enhanced retention. This approach has been demonstrated for the
detection of apoptosis of tumor xenografts treated with anticancer
chemotherapeutics in a nude mouse with fluorescence imaging (23)

and MR imaging (24). A proof-of-principle study of the PET im-
aging of apoptosis of tumor cells that locally received chemothera-
peutics (21) has recently been described with 18F-C-SNAT. In the
current work, we presented a quantitative in vivo kinetic analysis
and evaluation of 18F-C-SNAT for PET imaging of tumor apoptosis
in a more clinically relevant chemotherapy cancer model.
All PET studies attempting to assess the tumor response to therapy

have to examine the effect of increased blood flow after both
chemotherapy (25,26) and radiotherapy (27). We have hitherto com-
pared our active apoptosis PET tracer 18F-C-SNAT with inactive
control probe to account for this effect (21), but this is both time
consuming and costly, especially for a human study. In this paper, we
take a different approach to using full in vivo pharmacokinetic quan-
tification of the tracer to account for the changes in blood flow. The
effects of systemic chemotherapeutic treatment on blood flow and
tumor retention of the tracer are assessed in mice, and an improved
radiochemistry is presented. Our results show that 18F-C-SNAT has
a significantly increased tumor uptake and significantly increased
tumor-to-muscle ratio in a preclinical mouse model of tumor therapy.
Furthermore, our 2-compartment kinetic modeling of 18F-C-SNAT
shows that chemotherapeutic treatment increased accumulation
(k3) in the treated tumors, independent of increased delivery (K1).

MATERIALS AND METHODS

General

Tris(2-benzimidazolylmethyl)amines (BimC4A)3, dimethylforma-
mide, copper (II) sulfate (CuSO4), and sodium ascorbate (NaASc)

FIGURE 1. Design of 18F-C-SNAT and proposed mechanism for imag-

ing apoptosis. 18F-C-SNAT is processed by caspase-3 cleavage of pep-

tide DEVD-X (green) sequence and by glutathione reduction of disulfide

bond (blue) to generate free cysteine and 2-cyano-6-hydroxyquinoline

that undergo fast intramolecular cyclization forming cyclic-18F-C-SNAT.

Increased lipophilicity of cyclized product leads to formation of

cyclic-18F-C-SNAT lipophilic aggregates.

FIGURE 2. Representative coregistered 18F-C-SNAT PET/CT images

from 2 mice with xenographed HeLa tumors. (A) Untreated mouse. (B)

Treated mouse. Summed images from 45 to 60 min and reconstructed

using 3-dimensional ordered-subset expectation maximization. White

circles mark tumors.

1416 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 56 • No. 9 • September 2015



were all of pharmaceutical grade from commercial vendors. 18F-C-
SNAT precursor (Supplemental Fig. 1; supplemental materials are

available at http://jnm.snmjournals.org) was produced in-house as
previously described (21). Mice (female nu/nu) were purchased from

Charles River Laboratories, and all animal experiments were approved
by the Stanford Administrative Panel on Laboratory Animal Care in

compliance with all federal and state regulations governing the humane
care and use of laboratory animals.

Radiochemistry
18F-C-SNATwas synthesized according to our previously reported

procedure (21) with a different catalyst (Supplemental Fig. 1) (28).

Briefly, 18F-azide was synthesized via a fully automated 18F/tosylate
exchange in a TRACERlab FX-FN module (GE Healthcare) and

purified by semipreparative high-performance liquid chromatogra-

phy. The purified 18F-azide was conjugated to the peptide precursor
by a copper-catalyzed azide–alkyne cycloaddition (CuAAC) using

(BimC4A)3 as an accelerating ligand to improve the reaction yield
(Supplemental Fig. 2) (28). After final purification by semiprepara-

tive high-performance liquid chromatography, 18F-C-SNAT was for-
mulated in a solution of 1:10 ethanol/saline (0.9% NaCl in H2O).

The specific activity for each batch of 18F-C-SNATwas calculated on
the basis of 19F-C-SNAT calibration curve under ultraviolet light

(254 nm). The calibration curve was generated with 5 different con-
centrations of 19F-C-SNAT.

Animal Model

Mice were housed with free access to food and water and allowed

ample time to acclimatize before the experiments. HeLa cells (1–2 mil-
lion in 0.2 mL of phosphate-buffered saline per mouse) were injected

subcutaneously into the shoulder of 6- to 7-wk-old nude mice under

anesthesia (2% isoflurane in oxygen at a flow rate of 2 L/min). The tumor
xenografts were allowed to grow to a minimum size of 5 · 5 mm (usually

10–14 d) before treatment was initiated. Mice with tumors larger than
17.5 mm in 1 direction were euthanized, as was any animal showing

apparent signs of distress. Treated mice (n 5 5) received 3 intravenous
injections of doxorubicin (8 mg/kg) in saline suspension on days 0, 4, and

8, followed by PET scanning on day 10. Control mice (n 5 6) received
intravenous saline injections. The weight of the mice and growth of

tumors was monitored every other day during the course of treatment.

PET

On the day of the experiment, the mice were transported to the
imaging facility at least 1 h before the experiment. Mice were

anesthetized 1 at a time using isoflurane inhalation (2% isoflurane
in oxygen at a flow rate of 2 L/min), and a catheter was placed in

the tail vein of the mouse. A bolus of 100 mL of heparinized saline
(100 IU/mL heparin) was injected to maintain patency of the cath-

eter and vein, followed by regular small injections to keep patency
and hydrate the mouse during the procedure. Eye lubricant was

added to the mouse’s eyes. The catheterized mouse was placed in
1 of the beds in a custom-made 4 · 4 mouse bed (29) that can be

inserted into an Inveon microPET/CT scanner (Siemens). The mice
were kept warm using an infrared warming pad (Kent Scientific)

under isoflurane anesthesia. A 15-min CT scan was obtained, fol-
lowed by intravenous bolus injection of 18F-C-SNAT (8.63 6 1.02

MBq, n 5 11) and simultaneous 120-min dynamic PET. The mice
were euthanized immediately at the end of imaging acquisition.

The PET data were histogrammed into 21 frames, and each
frame was reconstructed using 2-dimensional ordered-subset expec-

tation maximization with arc and scatter
correction. One frame (15 min from 45 to

60 min) was reconstructed using 3-dimensional
ordered-subset expectation maximization

with arc and scatter correction (Fig. 2).
The PET and CT images were imported in-

to Inveon Research Workspace 4.0 (Sie-

mens) and coregistered using the automatic
affine registration. Two-dimensional images

were used to calculate uptake over time,
whereas 3-dimensional images were used to

generate a 3-dimensional maximum-intensity
projection.

Image Analysis

Tracer activity over time was measured

for regions of interest in the PET image
(mean activity/cm3 in the region) using the

CT image as an anatomic guide. The left

FIGURE 3. Uptake and biodistribution of 18F-C-SNAT in untreated

(n 5 6) and treated (n 5 5) mice. (A) Time–activity curves derived from

tumor and muscle. (B) Image-derived biodistribution in various regions

of mice at 60 min after injection. (C) Tumor-to-muscle ratios in both

treated and control mice at 60 min after injection.

FIGURE 4. Two-tissue compartment model. (A) Compartments and kinetic rate constants. (B)

Differential equations describing compartments.
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ventricle of the heart was hand-drawn on the combined PET/CT image

of the first 15 s. The region of the tumor was hand-drawn on the
combined PET/CT image at 40 min. The kidney, gallbladder, liver,

and brain regions were hand-drawn using the combined PET/CT image
at 120 min. The bone and muscle regions were hand-drawn on the left

or right upper thigh using the CT image and segregated from each other
using a threshold algorithm.

Tumor uptake was calculated as %ID/g and normalized using a
normalization factor (NFX) calculated as the relation between the indi-

vidual mouse’s ventricular activity (area under the curve [AUC] in the
left heart ventricle of mouse X over the first 40 min 5 AUCX) to the

average activity in the left heart ventricle of all mice (AUCmean) (ID ·
NFX 5 ID · AUCx/AUCmean) (Supplemental Fig. 3). The summed

images from 45 to 60 min were used to generate a complete image-
derived biodistribution and tumor-to-muscle ratio (Fig. 3).

Compartmental Modeling

Tracer pharmacokinetics and the kinetic constants K1, k2, k3, and k4
were calculated by fitting a reversible 2-tissue-compartment model

(30,31) to the time–activity curves derived from the tumor and muscle
regions (Fig. 3A). The time–activity curve from the left heart ventricle

was used as an image-derived input function (further details and evalu-
ation of the image-derived input function are in the supplemental data).

The calculations were done using Inveon Research Workspace 4.0.

Statistics

All values are given as value 6 SE of the mean, for the untreated
group (n 5 6) and for the treated group (n 5 5). Significant differences

are calculated using an unpaired 1-sided t test unless otherwise noted,
P values less than 0.05 are considered statistically significant, and sig-

nificance levels in graphs are marked as follows: *P , 0.05, **P ,
0.01, and ***P , 0.005.

RESULTS

Radiochemistry

We have improved the radiochemistry of the synthesis of 18F-
C-SNAT using (BimC4A)3 as the ligand for the copper-catalyzed
azide–alkyne cycloaddition (CuAAC) reaction. There was a pos-
itive correlation between the amount of (BimC4A)3 and the

reaction yield: 2 equivalents of (BimC4A)3 with a reaction
time of 5 min resulted in a maximum yield of 80% (Supple-
mental Fig. 2A). In addition to a higher yield and faster re-
action kinetics, the reaction produced less side products, which
greatly facilitated the high-performance liquid chromatogra-
phy purification of the final labeled 18F-C-SNAT (Supplemen-
tal Fig. 2B).

18F-C-SNAT was obtained within 3 h using the new radiosyn-
thesis procedure, with an overall radiochemical yield of 14.4%6
0.4% and specific radioactivity of 101.8 6 31.7 MBq/nmol (decay-
corrected to the end of bombardment, based on the ultraviolet light
[254 nm] absorbance of 19F-C-SNAT standard calibration curve).
Radiochemical purity was greater than 99%, and chemical purity
was greater than 95%. The final product was formulated in a 1:10
ethanol/saline (0.9% NaCl in H2O) mixture with an activity con-
centration of 86.7 6 25.2 MBq/mL.

PET

The PET/CT scans were obtained for all 11 mice. Two repre-
sentative PET images of mice with xenografted HeLa tumors
receiving 18F-C-SNAT are shown in Figure 2. The time-resolved
uptake (time–activity curve) of 18F-C-SNAT in the tumor and
muscle is presented in Figure 3A and corresponding uptake in
the liver, kidney, and gallbladder in Supplemental Figure 4. The
image-derived biodistribution also includes brain, bone, and
bladder at 60 min after injection (Fig. 3B).
We observed an initial 2- to 3-fold increase in the 18F activity

in the muscle and liver regions within the first 4 min after in-
jection, combined with an overall faster clearance in treated mice
than untreated mice (Fig. 3A; Supplemental Fig. 4). The domi-
nant excretion route was renal clearance, with increased kidney,
gallbladder, and bladder uptake over time with a smaller portion
of gastrointestinal excretion. The treated tumors had an initial
uptake (at 4 min after injection) of 3.7 6 0.4 %ID/g whereas the
untreated tumors had only 1.5 6 0.2 %ID/g, and 2.5 6 0.6 %ID/g
in treated versus 1.6 6 0.1 %ID/g in untreated tumors at 60 min
after injection (Fig. 3A). The uptake in treated tumors was higher
than that in untreated tumors throughout the whole scan.
Using the left or right thigh muscles as a reference region, we

calculated the ratio of tumor-to-muscle activity at 60 min after
injection of 18F-C-SNAT (Fig. 3C). There was a significantly
higher tumor-to-muscle ratio of 3.9 6 0.9 (2.5 6 0.6 %ID/g in
tumor/0.6 6 0.4 %ID/g in muscle, P 5 0.025) in treated mice than
in untreated mice (2.2 6 1.9; 1.6 6 0.2 %ID/g in tumor/0.7 6
0.1 %ID/g in muscle).

Pharmacokinetic Analysis

The pharmacokinetics of 18F-C-SNAT in tumor and muscular
tissue were successfully modeled using the reversible 2-tissue-
compartment model (30,31) with an image-derived input func-
tion (Figs. 4 and 5). The model describes the flow of tracer from
the blood to the tissue (K1) and in reverse (k2) from the tissue
into the blood, as well as tracer accumulation in tissue (k3) and
dissipation of the accumulated tracer (k4) (Fig. 6B; Table 1).
The ratio of K1 over k2 indicates the net delivery of tracer in
the tissue, whereas the ratio of k3 over k4 indicates whether the
tracer is preferentially retained in the tissue (Fig. 6B; Table 1).
The delivery of 18F-C-SNAT from blood into tumor tissue (K1

tumor) was significantly (3.2 times) higher in response to treat-
ment; a simultaneous increase was found in muscular tissue,
with flow rates (K1 muscle) after treatment similar to those in

FIGURE 5. Two-tissue-compartment model fitting results, residuals,

and original activity data from left heart ventricle and tumor of untreated

mouse (A) and treated mouse (B).
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the tumor (Table 1). We also observed an increased flow back
into the blood from the tumor tissue (k2 tumor) and back into
the blood from muscle tissue (k2 muscle). As a result of
increases in both K1 and k2, the net delivery of 18F-C-SNAT
(K1/k2 tumor) to the treated tumor was actually lower than to
the untreated tumor (Table 1). Accumulation of 18F-C-SNAT
(k3 tumor) was significantly increased (3.7 times) in treated
tumors, and a smaller increase (not significant) in dissipation
(k4 tumor) was also observed, leading to an increase of 1.9
times in the retained amount of 18F-C-SNAT in the treated
tumor (expressed as k3/k4 tumor), compared with the untreated
tumor. The estimated accumulation (k3 muscle) and dissipation
(k4 muscle) rates of 18F-C-SNAT in muscular tissue were
approaching zero (,0.01), suggesting that 18F-C-SNAT was
not retained in the region.

DISCUSSION

The current gold standard in measuring treatment response
with PET is 18F-FDG metabolism. However, 18F-FDG measure-

ments have been shown to be potentially biased by changes in
blood flow after antitumor treatment (25–27) and increased up-

take in inflammatory tissue (8,32) and in hypoxic areas of tumors
(27,33), leading to false-negatives. Tracer pharmacokinetic mod-

eling has been developed to correct these biases, for example, the
delivery rate K1 or influx KI (KI 5 [K1 · k3]/[k2 1 k3]) of 18F-

FDG has been shown to correlate better with tumor response to
treatment than the standardized uptake value measurement com-
monly calculated from static PET images (27,34,35). And the

kinetics of the SPECT tracer 99mTc-duramycin were used to
examine heart ischemia. However, none of the previous reports

on apoptosis PET tracers has undertaken a complete pharmaco-
kinetic analysis to account for increased delivery after systemic

chemotherapeutic treatment.
In this study, we applied a full pharmacokinetic evaluation of

18F-C-SNAT to quantify the tracer in vivo kinetics after the

clinically relevant systemic chemotherapeutic treatment with
doxorubicin. Our pharmacokinetic analysis has shown that the

delivery of 18F-C-SNAT (K1), which is dependent on the blood
flow, increased in all regions after chemotherapeutic treatment;
this result is similar to what has been reported with 18F-FDG

(25–27) and suggests an ancillary response to treatment. A fu-
ture direct analysis of blood flow changes using 15O-H2O PET or

laser Doppler flowmetry may help to explain this observation
and further validate this result. The pharmacokinetic analysis

has also shown increased accumulation (k3) of 18F-C-SNAT in
treated tumors, independent of the increased blood flow. In ad-

dition, our analysis gave a small dissipation (k4) rate of the
tracer in the tumor tissue, which may be attributed, in part, to
the degradation of apoptotic cells and following release of ac-

cumulated tracer and to an additional step in the probe mecha-
nism that may not be represented by the 2-tissue-compartment

model. Increased delivery (K1) and small dissipation rate (k4)
contribute to an increased rate of tracer going back into the

blood (k2).
Our analysis of the muscular tissue indicates little tracer

accumulation and dissipation (k3 and k4 in muscle approach

zero), suggesting that muscular tissue could be an acceptable
reference region and that tumor-to-muscle ratios might be a valid

mean of measurement in systemically treated animals, but more
experiments will help further validate this postulation.
In our previous proof-of-principle intratumoral treatment model,

we observed around 1 %ID/g in treated tumor and a tumor-to-
muscle ratio of 6 after treatment (15). In this study, the mice
received a systemic administration of the drug doxorubicin,

and there was an increase of approximately 2–3 %ID/g in tumor
and a tumor-to-muscle ratio of 3.9. As our pharmacokinetics

analysis indicated, the higher tumor signal may be due to a sys-
temic increase in blood flow, and thus tracer delivery, after sys-

temic chemotherapeutic treatment. Other PET studies of tumor
response to treatment often fail to take into consideration the blood

flow change. The lower tumor-to-muscle ratio was expected be-
cause the systemic treatment is believed to be less effective than
intratumoral treatments; however, one should be cautious to con-

clude anything from the tumor-to-muscle ratio because muscular
tissue has not been thoroughly tested as a valid reference region in

the response to treatment paradigm. It is highly possible that

FIGURE 6. Pharmacokinetics of 18F-C-SNAT in untreated (n5 6) and

treated (n 5 5) mice. (A) Tracer flow in (K1/g · [mL · min]−1) and out

(k2/min−1) of tumor tissue. (B) Accumulation (k3/min−1) and dissipation

(k4/min−1) of tracer in tumor tissue. ***Statistical significance (P ,
0.005).
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systemic effects of treatment could affect the tracer dynamics in the
tumor and muscular tissue differently. In comparison with static
and ratiometric measurements, preclinical pharmacokinetic anal-
ysis of 18F-C-SNAT delivers a higher sensitivity and significance
in the treatment response measurement. Thus, measuring the ac-
cumulation rate (k3) may give a better outcome estimate, which
is free from blood flow bias, than the total signal (%ID/g) or the
tumor-to-muscle ratio.
Because of the small size of mice as experimental animals in this

study, ex vivo input functions through blood sampling is technically
challenging (the amount of unmetabolized tracer at a given time
point in plasma). Therefore, an image-derived input function was
used after a thorough evaluation against a population-based ex vivo
metabolite-corrected input function (details on the image-derived
input function are in the supplemental data). Although the 2-tissue-
compartment model effectively extracted the bias created by the
blood flow changes after treatment without overcomplicating the
interpretations of the model outcomes, it might be relatively
simplified and not fully represent the dynamics of 18F-C-SNAT.
The model can be further refined with adding more compartments
to account for the 2 sequential activation events of 18F-C-SNAT—
the cyclization and aggregation. A full pharmacokinetic study with
this refined model in a larger species in the future may further help
translate this new PET tracer to the clinic.

CONCLUSION

The results of this study have further demonstrated that 18F-C-
SNAT is a promising new apoptosis-specific PET tracer for
imaging tumor response to chemotherapy. 18F-C-SNAT has a sig-
nificantly increased tumor signal and a significantly increased
tumor-to-muscle ratio in a preclinical mouse model of tumor
therapy. Furthermore, we showed that 18F-C-SNAT has a signif-
icantly increased accumulation rate (k3) independent from the
systemic increase in delivery (K1) caused by the chemotherapeu-
tic treatment. Future studies will extend the use of our tracer to
other tumor response models and imaging modalities.
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