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In routine whole-body PET/MR hybrid imaging, attenuation

correction (AC) is usually performed by segmentation methods

based on a Dixon MR sequence providing up to 4 different tissue
classes. Because of the lack of bone information with the Dixon-

based MR sequence, bone is currently considered as soft tissue.

Thus, the aim of this study was to evaluate a novel model-based
AC method that considers bone in whole-body PET/MR imaging.

Methods: The new method (“Model”) is based on a regular

4-compartment segmentation from a Dixon sequence (“Dixon”).

Bone information is added using a model-based bone segmen-
tation algorithm, which includes a set of prealigned MR image

and bone mask pairs for each major body bone individually.

Model was quantitatively evaluated on 20 patients who under-

went whole-body PET/MR imaging. As a standard of reference,
CT-based m-maps were generated for each patient individually

by nonrigid registration to the MR images based on PET/CT

data. This step allowed for a quantitative comparison of all m-maps

based on a single PET emission raw dataset of the PET/MR
system. Volumes of interest were drawn on normal tissue, soft-

tissue lesions, and bone lesions; standardized uptake values

were quantitatively compared. Results: In soft-tissue regions
with background uptake, the average bias of SUVs in back-

ground volumes of interest was 2.4% ± 2.5% and 2.7% ± 2.7%

for Dixon and Model, respectively, compared with CT-based AC.

For bony tissue, the −25.5% ± 7.9% underestimation observed
with Dixon was reduced to −4.9% ± 6.7% with Model. In bone

lesions, the average underestimation was −7.4% ± 5.3% and

−2.9% ± 5.8% for Dixon and Model, respectively. For soft-tissue

lesions, the biases were 5.1% ± 5.1% for Dixon and 5.2% ± 5.2%
for Model. Conclusion: The novel MR-based AC method for

whole-body PET/MR imaging, combining Dixon-based soft-tissue

segmentation and model-based bone estimation, improves PET
quantification in whole-body hybrid PET/MR imaging, especially in

bony tissue and nearby soft tissue.
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Attenuation correction (AC) of PET is an essential step in
obtaining accurate and quantitative PET images. With the success-

ful introduction of whole-body hybrid imaging systems combining

PET with CT (1) or MR imaging (2), it has become possible to

perform AC using methods other than rod-source transmission

scans. In PET/CT systems, CT images can be directly transformed

to linear attenuation coefficients (LACs) at 511 keV, the PET

photon energy, using a bilinear conversion (3). In PET/MR sys-

tems, PET AC is a technical challenge (4,5) because MR images,

providing mainly proton densities, cannot be directly converted to

attenuation coefficient maps (m-maps) at 511 keV.
In routine PET/MR imaging, segmentation methods based on

a fast 3-dimensional MR Dixon sequence are used to generate

m-maps. These methods provide up to 4 tissue classes, including

air, fat, lung, and soft tissue (6,7). This method is in wide use for

clinical PET/MR studies because of its short acquisition time and

easy implementation (8–10), but it has certain limitations com-

pared with CT-based AC. The limited MR imaging field of view,

for example, truncates the MR-based m-map (11,12), and the lack

of signal in common MR acquisition techniques results in an

ambiguity between bone and air on the generated image. Four-

compartment segmentation sets the LAC of bone to that of soft

tissue, leading to a systematic underestimation in PET standard-

ized uptake values (SUVs) because of the cutoff at 0.1 cm21.
For whole-body PET/MR imaging, several groups have quan-

titatively evaluated the effect of replacing the LACs of bones with

an LAC of soft tissue in PETAC. All studies are based on PET/CT

datasets, and the CT images have been modified by thresholding to

simulate a segmentation-based MR m-map before being trans-

formed to LACs at 511 keV. Martinez-Möller et al. (6) calculated
a bias of 28% in bone lesions with a segmentation-based m-map,
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Schulz et al. (7) evaluated an underestimation of 26.5%, and
Samarin et al. (13) reported a bias of 211.2% in osseous lesions.
Hofmann et al. (14) evaluated a bias of 214.1% in normal tissue
and 27.5% in lesions.
For head imaging, several approaches have been proposed to

include cortical bone as an attenuation class using either a combination
of atlas registration and pattern recognition (15) or pseudo CTs
generated with an ultrashort echo time MR sequence (16). Because
of the limited field of view and rather long acquisition time of the
ultrashort echo time sequence, this method has not yet been as-
signed to whole-body PET/MR imaging (16). The atlas- and pattern-
recognition–based method was introduced for whole-body imaging
(15) but was tested only on PET/CT data in combination with
an MR-only acquisition that had been transferred to the PET/CT
dataset. With this method, the bias was reduced to 28% and 26%
for normal tissue and lesions, respectively.
Thus, the aim of this study was to evaluate a prototype model-

based AC method in hybrid PET/MR imaging that considers major
bones in addition to the head on whole-body PET/MR to improve
PET/MR AC and specifically the PET quantification in bone
lesions and lesions close to bone. The method was tested on 20
patients and compared with routine Dixon-based AC and a CT-
based AC generated for each patient individually. All patient data
were reconstructed only from the raw PET data of the PET/MR

system, using identical scanner hardware and identical recon-
struction settings. Thus, unlike previously published quantitative
comparisons of PET/MR and PET/CT data, all influences other
than the m-maps were eliminated.

MATERIALS AND METHODS

Patient Population

Within this study, 20 patients (mean age 6 SD, 54.8 6 16.8 y;

range, 25–85 y; 19 women and 1 man) underwent a clinically indi-
cated PET/CT examination and a subsequent whole-body PET/MR

acquisition. The patients provided written informed consent, and the
approval of the institutional review and ethical board was obtained. No

additional radiotracer was injected for the PET/MR acquisition. Rel-
evant patient information is listed in Table 1.

Imaging Protocol

All patients underwent PET/CT (Biograph mCT; Siemens AG
Healthcare) according to the standard clinical protocol. The average

injected activity was 541.7 6 18.4 MBq. Because all PET reconstruc-
tions within this study were based on PET/MR datasets, the PET unit

is not further described, but CT images of those datasets were used
within this study. The PET/CT system comprises a 40-slice CT de-

tector, and CTwas performed using a setting of 100–140 kVp, a pixel size
of 1.52 · 1.52 mm or 1.37 · 1.37 mm, and a slice thickness of 5.0 mm.

TABLE 1
Patient Characteristics

Patient no. Age (y) Weight (kg)

Injected activity

(MBq)

Active lesions that

have been evaluated

1 66 63 562 —

2 68 50 524 Subcarinal LN, spinous process bone metastasis, R hilar LN, R T4

transverse process bone metastasis, left lung mass

3 75 60 558 R femoral head bone metastasis

4 51 56 542 L peritoneum, gastrohepatic LN, L diaphragm after implantation

5 69 101 528 —

6 41 70 554 —

7 28 57 554 T spine, upper T spine vertebral body, R L5 bone, L iliac bone
metastasis, R iliac bone metastasis

8 49 63 562 R lung base, L mid lung, L upper lung

9 54 104 534 L axillary LN

10 46 54 548 R hilar LN

11 52 63 535 —

12 50 68 557 Liver metastasis

13 32 61 544 R breast mass, R axillary LN metastasis

14 83 43 502 Subcarinal LN, Right hilar LN, L hilar LN

15 25 56 505 L breast mass

16 60 66 560 —

17 48 82 554 Peritoneal implant

18 85 75 521 —

19 47 54 534 —

20 66 63 557 L spine vertebral body, L spine vertebral body,

T spine vertebral body

LN 5 lymph node; T 5 thoracic.
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PET/MR was performed on a 3-T whole-body system (Biograph

mMR; Siemens Healthcare) that comprises a fully integrated PET detector
in its isocenter with a field of view of 25.8 cm in the z direction.

The average time between injection and PET/MR acquisition was
200.3 6 48.8 min. Fourteen patients were examined using 5 bed

positions. Six patients were examined using 3 bed positions, in which
the head was not included in the PET/MR protocol, but the datasets

were still relevant for the whole-body study.

PET/MR m-maps

The PET data acquired with the PET/MR
system were reconstructed using 3 different

m-maps for each subject: standard PET/MR
Dixon-based AC (“Dixon”), the new model-

based AC (“Model”), and a CT-based AC that
was generated for each patient individually and

used as the standard of reference. Because all
PET data were based on a single emission data

file, using identical parameters such as scanner
hardware and reconstruction settings, all influ-

ences other than the m-map were eliminated.
Dixon. Dixon was performed with 2-point,

3-dimensional volume-interpolated breath-
hold examination (VIBE). The soft-tissue

segmentation algorithm provides 4 different
tissue classes: air (LAC, 0.0 cm21), fat (LAC,

0.0854 cm21), lung (LAC, 0.0224 cm21), and
soft tissue (LAC, 0.1 cm21). The sequence

parameters per bed position were as follows:

voxel dimensions, 192 · 126 with 128 slices
in the coronal orientation; voxel size, 2.60 ·
2.60 mm with a slice thickness of 3.12 mm;
repetition time, 3.6 ms; echo time, 2.46 ms;

flip angle, 10�; and acquisition time, 19 s.
Model. The new Model approach is illus-

trated in Figure 1. The method generates a
m-map based on standard Dixon AC. Bone in-

formation is added to this m-map using a
model-based prototype bone segmentation algo-

rithm (Siemens AG Healthcare) that applies con-
tinuous LACs for bone. The offline-constructed

model includes a set of prealigned MR image and bone mask pairs for each
major body bone, including left and right upper femur, left and right hip,

spine (including sacrum), and skull. Bone masks contain bone densities as

LACs in cm21 at the PET energy level of 511 keV. At run-time, the MR

image of the model is registered to theMR image of the subject at eachmajor

body bone individually. The bone is segmented by registering a given image

to the MR model with known bone mask and transferring the bone model.
The registration algorithm consists of 2 stages, landmark-based

similarity registration and intensity-based deformable registration.

In the landmark-based similarity registration, a learning-based approach is

applied to detect a set of landmarks surrounding each bone (17). These

landmarks are used in 2 ways. First, they are used to crop specific bones

from the subject image as shown in Figure 2. Second, for each bone,

a least-square solver is applied to derive the similarity transformation

between the subject and the model based on the locations of these land-

marks. After the similarity registration, a more sophisticated deformable

registration (18) is performed to bring the model to the subject space more

precisely. In essence, this method maximizes the cross-correlation be-

tween the subject images and the model images. Different Dixon se-

quence information is used at different stages of the registration frame-

work. Although the out-of-phase and fat images are used in the first stage,

in-phase and fat images are used in the second stage. The prealigned bone

masks are then brought to the subject space following the same trans-

formations. The bone density information is added to the original Dixon-

based m-map at all voxels higher in density than soft tissue after the

segmentation process. LACs for bone were in the range of 0.1 and

0.2485 cm21 depending on the bone mask pair. The average running time

of the algorithm was between 2 and 3 min per whole-body dataset.

The bone model was generated offline from a pool of more than 200
Dixon-VIBE MR images and bone mask pairs. Bone masks were

chosen from the pool on the basis of the shape and density best

FIGURE 1. Schematic drawing of model-based algorithm for considering bone in whole-body

PET/MR AC. The model consists of set of MR image and bone mask pairs that are registered to

subject’s Dixon-VIBE images for each body bone individually. Transformation is applied to bone

segmentation for each body bone and added to 4-compartment segmentation-based m-map at

all voxels of densities higher than soft tissue.

FIGURE 2. Schematic of crop of local bone masks that contain bone

densities as LACs in cm−1 at 511 keV in subject MR image. Dashed

boxes indicate specific bones being cropped from image.
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representing the average of the pool. All patients underwent clinically
indicated PET/CT and, with no further radiotracer injection, follow-up

PET/MR imaging.
CT. To minimize physiologic and intersystem quantification biases,

the standard-of-reference baseline was computed from the PET/MR
emission data, where MR-based AC was replaced by standard CT-

based AC. Therefore, CT images based on the PET/CT data of the
same subject were nonrigidly registered to the anatomic Dixon-VIBE

images and visually compared to ensure optimal anatomic alignment
using a registration framework similar to that of Model. It consists of

2 stages, a landmark-based rigid registration (17) and a deformable
registration (18). To provide LACs at 511 keV, the CT images were

transformed using the standard bilinear conversion (3). Because
PET/CT acquisitions were performed with arms up and not with arms

down as in PET/MR, the missing parts of each patient, mainly the
arms in the outer part of the field of view, were added from the MR-

based Dixon-VIBE m-map.

Data Processing

PET images were reconstructed iteratively on the PET/MR system
with 3-dimensional ordinary Poisson ordered-subsets expectation

maximization using 3 iterations and 21 subsets. The image matrix
was set to 172 · 172 with a pixel size of 4.173 · 4.173 mm as used for

standard whole-body PET/MR acquisitions.

Patients were scanned and reconstructed for
either 5 bed positions (515 slices) or 3 bed

positions (321 slices) with a slice thickness of
2.031 mm. All patient m-maps were postpro-

cessed with an algorithm (maximum-likelihood
reconstruction of attenuation and activity) to add

the missing parts of the arms. All PET images
were postsmoothed with a gaussian filter having

a full width at half maximum of 4 mm.

PET Evaluation

The PET images were evaluated using

MIMfusion, version 6.3 (MIM Software
Inc.). Volumes of interest (VOIs) were man-

ually drawn on normal tissue using super-
imposed MR images of a radial T1-weighted

VIBE sequence that is used as the diagnostic
MR sequence in whole-body PET/MR acqui-

sitions. The mean SUV (SUVmean) was calculated for the following

VOIs: aorta/blood level (15-mm sphere), liver (30-mm sphere), spleen
(20-mm sphere), femoral head left/right (25-mm sphere), iliac bones

left/right (dynamic brush), psoas muscles left/right (dynamic brush),
third lumbar vertebra (L3, 20-mm sphere), and subcutaneous fat (vari-

able VOI sizes). Furthermore, VOIs were drawn on all identified
lesions—soft-tissue lesions as well as bone lesions—in all 20 subjects

using a 50% maximum contour of the PET SUV. For all PET evalua-
tions, the SUVmean of the CT AC was used as a standard of reference,

and the percentage deviation was calculated for normal tissue across
all 20 subjects for Dixon and Model.

Of all VOIs in normal tissues, 1 femoral head and 1 iliac bone of 2
patients were excluded because of hip implants. Furthermore, 1

femoral head VOI and 2 iliac bone VOIs were excluded because of
lesions or metastases inside the VOIs. One spleen VOI is missing

because the patient underwent splenectomy.

RESULTS

All 3 different m-maps are shown in coronal view in Figure 3,
before the postprocessing algorithm was applied.
The diagnostic MR image of the radial T1-weighted VIBE

sequence, the PET image, and the superimposed PET/MR image of
a patient are shown in Figure 4. Additionally,
a maximum-intensity projection of the PET
data showing the drawn contours is included.
Mean deviations of SUVmean in percentage

of normal tissue across all 20 subjects are

plotted in Figure 5 for Dixon and Model nor-
malized to the corresponding CT SUVmean.
For the background VOIs of soft tissue, such

as aorta, liver, spleen, subcutaneous fat, and
psoas muscles, the SUVmean of Dixon and the
SUVmean of Model are almost equivalent,

with a maximum deviation of 1.2%. Both
methods are close to the CTAC (7.6% max-
imum deviation with Model). However, cold-

background VOIs within bone were underes-
timated with Dixon by 246.5% 6 9.3% for
femoral head, 220.0% 6 5.5% for iliac

bones, and 29.9% 6 8.9% for L3. With
Model, the underestimation was reduced
to 24.9% 6 7.7%, 22.8% 6 4.6%, and

27.1% 6 7.8%, respectively.

FIGURE 3. Example Dixon (A), Model (B), and CT (C) m-maps.

FIGURE 4. Diagnostic MR image of radial T1-weighted VIBE sequence, superimposed PET/MR

image, PET image, and maximum-intensity projection (MIP) of PET image displaying evaluated

contours. Differences in intensity of MR image are due to variances in radiofrequency coil adjust-

ments between bed positions.

1064 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 56 • No. 7 • July 2015



Deviations in the SUVmean of soft-tissue and bone lesions are shown
in Figures 6A and 6B, respectively. For soft-tissue lesions, the deviation
between Dixon and Model was negligible, with a mean of 0.3% and
a maximum of 1.5%. Furthermore, the SUVmean was overestimated by
more than 20% in some regions compared with CT AC.
All these lesions, however, were located either within the

lung or near lung tissue. Comparing the CT-based m-map with the
segmentation-based m-map for these cases, one can see that soft
tissue (LAC, 0.1 cm21) was assigned to some parts of the lung that
were actually lung tissue with an LAC of around 0.02 cm21. If the
lesion was within or near these areas, as seen in Figure 7, the SUV
of the lesion was highly increased for Dixon and Model compared
with CT AC. When these lung cases were excluded from the eval-
uation, the SUVmean difference in soft-tissue lesions was 5.1% 6
5.1% and 5.2% 6 5.2% for Dixon and Model, respectively.
For bone lesions, an underestimation of 27.3% 6 5.3% (max-

imum,219.4%) was observable for Dixon compared with CT, and
this underestimation was reduced to 22.9% 6 5.8% (maximum,
218.7%) with Model. Deviations between Dixon and Model were
4.5% 6 2.7%, with a maximum of 9.8%.

DISCUSSION

On a dataset of 20 PET/MR patients, it was shown that the new
Model approach improved PET SUVs in bony regions. Figures 5 and
6B show the benefit of adding bone to the MR-based m-map that is
based on segmentation. However, Model seemed to have little impact
on normal soft tissue (Fig. 5) or soft-tissue lesions (Fig. 6A).
The calculated SUV underestimation of 27.3% in bone lesions

with Dixon is comparable to the findings of former whole-body stud-
ies (between27% and211%), which were based on PET/CT instead
of PET/MR data (6,7,13). Hofmann et al. (14) reduced the bias to
28% and 26% for normal tissue and lesions, respectively, with an
atlas- and pattern-recognition–based method. However, in their study,
the MR m-map was transferred to the PET/CT dataset, and all PET
raw data were based on PET/CT. Within our current study, SUV
underestimation in bone lesions was reduced to 22.9% with Model.
When Model and Dixon were compared with CT AC in normal

soft tissue, Model and Dixon were consistent with each other (Fig.
5), having a mean overestimation of 2.4% and 2.7%, respectively.
Thus, adding bone to the MR-based segmentation m-map had only
a limited impact on SUVs in soft tissues distant from bone, as has

been shown by other groups (6,13). Furthermore, in these regions,
the Dixon m-map performed virtually identically to CT AC. This
effect was also observable for soft-tissue lesions. Compared with
CT, both methods overestimated the SUV by around 30% in some
soft-tissue lesions, confirming the findings of Drzezga et al. (8).
However, the overestimation was due to segmentation differences
that occur if soft tissue (LAC, 0.1 cm21)—instead of lung tissue
(LAC, 0.02 cm21)—is assigned to some parts of the lung, as
shown in Figure 7. When such lung cases were excluded, the mean
bias in soft-tissue lesions was 5.2% and 5.1% for Dixon and
Model, respectively. Furthermore, a potential respiratory differ-
ence between CT and MR for which registration cannot fully
compensate might affect evaluations in the lung.
Besides segmentation biases in the lung, the variation in bone

density between patients should be considered. Although variation is
expected to be relatively small in patients without bone diseases, bone
density changes due to diseases may have a greater impact on PET
quantification. SUV may be overestimated within or near bones of
decreased density, since the LACs of the model are higher than the
actual bone LACs. This limitation, however, applies to most MR-
based AC methods, including segmentation- and atlas-based AC. For
better matching of bone densities, the model might be improved by
being categorized by age, sex, and race.
In contrast to former whole-body PET/MR AC studies, the PET

data of each patient within this study were based on only the
emission raw dataset of the PET/MR system, which focuses the
quantitative comparison on differences in the attenuation maps.
Thus, physiologic aspects, such as differences in patient position-
ing or tracer washout between PET/CT and PET/MR scanning,
can be excluded. Also, the attenuation effect of local radiofre-
quency surface coils, leading to a potential average underesti-
mation of 25% to 220% when neglected in AC (19,20), can be

FIGURE 5. Percentage difference in PET SUVmean of normal tissue aver-

aged across all subjects for Dixon (red) and Model (green) compared with

CT AC. Vertical bars indicate mean ± SD (black) and total range (gray).

FIGURE 6. Percentage difference in PET SUVmean of indicated soft-tissue

lesions (A) and bone lesions (B) in individual patients for Dixon (red) andModel

(green) compared with CT AC. ax 5 axillary; fem 5 femoral; LN 5 lymph

node; met 5 metastasis; T 5 thoracic; tve 5 transverse; vert 5 vertebral.
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excluded because all PET reconstructions are performed with the
same settings and raw data. Furthermore, any potential interscan-
ner biases can be excluded if the raw datasets of different PET
systems are used in quantitative comparisons.
CT-based m-maps were used as a standard of reference in this

study, although missing parts such as the arms were added from
the Dixon-based m-map and thus it is not the actual CT m-map that
is the reference. However, the main part of the m-map is CT-based,
and the remaining part is identical in all 3 m-maps of each subject,
thus not introducing additional bias. Furthermore, the effect of the
arms on VOIs inside the body is expected to be negligible.
Compared with former approaches to including bone information

(mainly the head) in PET/MR AC, Model does not require any
additional MR sequences such as are needed in, for example, the
ultrashort echo time approach (16). Model is based on only the Dixon
MR sequence, which is already acquired for routine MR-based AC and
has a short run-time of about 2–3 min per whole-body dataset. This
advantage, as well as the overall improvement in PET AC and, espe-
cially, PET quantification in bone lesions compared with Dixon, shows
potential for clinical use of Model in whole-body PET/MR imaging.

CONCLUSION

This study evaluated a new AC method for whole-body PET/
MR imaging that combines the discrete LAC Dixon-based soft-
tissue segmentation with a model-based bone estimation pro-
viding continuous LACs for bone. The method was shown to
improve PET quantification, especially in bony tissue, bone
lesions, and tissue near bone, by reducing the SUV underesti-
mation that occurs with the Dixon-based m-map. Because the
new method utilizes the MR-based Dixon images, no further MR
acquisitions are required. This advantage and an average run-
time of 2–3 min per whole-body dataset make the new method
promising for clinical application.
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FIGURE 7. Coronal images of MR- and CT-based m-maps showing

differences in lung that lead to increase in SUVmean for Dixon and Model

compared with CT AC. m-maps are shown both by themselves and

superimposed on the PET images. Arrows point toward lesion that

showed 53% increase in SUVmean. Differences between Dixon-VIBE

segmentation (A) and CT (B) can be seen. Although CT shows primarily

lung tissue (LAC, ∼0.02 cm−1) around active lesion, this area is assigned

to soft tissue (LAC, 0.1 cm−1) in MR-based m-map.
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